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ABSTRACT
How can Agnes trust a computation C occurring at Boris’s
computer? In particular, how can Agnes can trust that
C is occurring without Boris even being able to observe
its internal state? One way is for Agnes to house C in a
strong tamper-protected secure coprocessor at Boris’s site.
However, this approach is not scalable: neither in terms of
computation—once C gets larger than the coprocessor, it
becomes vulnerable to Boris again—nor in terms of cost. In
this paper, we report on our Faerieplay project: rather than
worrying about the limited size of a secure coprocessor, we
try to make it as small as possible, with limited RAM and
CPU. We start with the Fairplay work of Malkhi et al on
implementing Yao’s blinded-circuit solution to secure mul-
tiparty computation with software—this permits Agnes to
trust C, but is too inefficient for all but small C. We then
use our own prior work on using trusted third parties for
practical Private Information Retrieval to design and pro-
totype tiny trusted third parties (TTTPs) that substantially
reduce the overhead involved in blind circuit evaluation.

Categories and Subject Descriptors
K.6.5 [Computing Milieux]: Security and Protection

General Terms
Algorithms, Experimentation, Security

1. INTRODUCTION
One definition of “trusted computing” is that Agnes can

have assurances that Boris’s machine is carrying out the
computation correctly, without interference by Boris; a re-
lated one is that Agnes and perhaps other relying parties
can verify that they are interacting with the genuine com-
putation. These are the types of trust that the standard
TCG approach based to TPMs aims to provide.
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However, an even stronger property is that Agnes can
trust that C is occurring without Boris even being able to
observe its internal state. One way to provide this stronger
property is for Agnes to house C in a strong tamper-protected
secure coprocessor at Boris’s site. For example, suppose
Boris had an IBM4758 or 4764 installed and C was able
to fit inside it (e.g., its data and code could reside entirely
inside the device’s internal storage). C could use the 4758’s
outbound authentication scheme [31] to create keypairs with
certificate chains sufficient to attest to C’s configuration and
to establish authenticated communication channels to it—
thus enabling Agnes to carry out her computation, with
Boris learning nothing other than that a computation is tak-
ing place, its code, its duration, and the ciphertext of its
communications (assuming, of course, that Agnes believes
the platform’s protections have not been subverted).

However, this approach is not scalable: neither in terms
of cost nor computation. In terms of cost, devices such as
the IBM4758 or IBM4764 are not cheap; the former retailed
for $2K, and the latter for significantly more. However, in
terms of computation, Agnes immediately runs into prob-
lems should C’s code or data become larger than what fits
inside the coprocessor. For example, the obvious solution of
having the device page code and data out to Boris’s host,
acting as secondary storage, removes the opacity of the co-
processor: Boris can now see access patterns and other in-
ternal details of the computation.

In this paper, we report on our Faerieplay project: rather
than worrying about the limited size of a secure coprocessor,
we try to make it as small as possible, with limited RAM
and CPU. We start with the Fairplay work of Malkhi et al.
[26] on implementing Yao’s blinded-circuit solution [36, 24]
to secure multiparty computation with software—this per-
mits Agnes to trust C, but is too inefficient for all but small
C. We then use our own prior work on using trusted third
parties for practical Private Information Retrieval to design
and prototype tiny trusted third parties (TTTPs) that sub-
stantially reduce the overhead involved in blind circuit eval-
uation.

Section 2 reviews the basic building blocks of our ap-
proach. Section 3 presents the components we built, and
Section 4 presents how they fit together. Section 5 presents
our experimental evaluation, and Section 6 our theoretical.
Section 7 discusses our more recent work prototyping cus-
tom hardware for the TTTP core. Section 8 discusses related
work, and Section 9 concludes.

A preliminary snapshot of this project appeared as the
work-in-progress paper [16] and related technical reports [21,



20]. A much longer treatment appeared as the first author’s
doctoral thesis [18].

2. BUILDING BLOCKS

2.1 Basics
We start by reviewing some tools from prior work that we

use as building blocks.

Secure Coprocessors. As discussed briefly above, a secure
coprocessor (SCOP) is a small general purpose computer ar-
mored to be secure against physical attack, such that code
running on it has some assurance of running unmolested and
unobserved [37]. It also includes mechanisms, called out-
bound authentication (OA) o prove that some given output
came from a genuine instance of some given code running
in an untampered coprocessor [31]. The coprocessor is at-
tached to a host computer. The SCOP is assumed to be
trusted by clients (by virtue of all the above provisions),
but the host is not trusted (not even its root user). The
strongest adversary against the schemes presented here is
the superuser on the host, who may also be equipped with
a drill.

Our initial experiments used the IBM4758, is a commer-
cially available device, validated to the highest level of soft-
ware and physical security scrutiny then offered—FIPS 140-
1 level 4 [33]. It connects to its host via PCI. It has an Intel
486 processor at 99 MHz, 4MB of RAM and 4MB of FLASH
memory. It also has cryptographic acceleration hardware,
and notably a “fast path” DES and TDES mode of opera-
tion, where data can be streamed from the host through the
device’s DES engine without touching the device’s internal
RAM. The maximum throughput of the TDES engine is
about 20MB/s, which is certainly much faster than contem-
porary (ie. about 1998) CPUs could manage.

In production, the 4758 runs IBM’s CP/Q++ embedded
OS; however, IBM also provides an experimental configu-
ration with Linux (the follow-on product from IBM, the
PCIXCC [3] runs Linux normally). Linux has considerable
advantages over CP/Q++ in terms of code portability and
ease of development, so we have used only the Linux config-
uration for our implementations.

The 4758 presents a general purpose computing environ-
ment, but it is geared towards providing high assurance for
a single application, rather than supporting convenient mul-
titasking. Thus, the software configuration at any one time
consists of a single application. In terms of trust assurances
provided by the 4758, the operating system and the user
application can be considered as one: the 4758 assures that
they will run as programmed, with secure access to their
private key material. The device cannot assure that the ap-
plication and OS are themselves correct—they could leak
secrets or fail to preserve data integrity.

The 4758’s casing includes a tamper-detecting mesh. If it
detects an attempt to open the casing, it triggers zeroiza-
tion of the DRAM (computation state), and battery-backed
RAM (long-lived secret keys). Thus, a physically present
adversary cannot open the device and learn anything useful
about its computation. Additionally, the device will pre-
emptively zeroize itself if it detects too low temperature or
excessive radiation, both of which may prevent effective and
fast zeroization of the device’s RAM.

Secure Encryption. A symmetric encryption scheme SE

operates on the space of keys K, plaintexts X and cipher-
texts Y . We also explicitly specify the random bits R in-
volved in the randomized algorithms. SE consists of three al-
gorithms: SE = (K, E,D) where K : R → K is a randomized
key-generation algorithm; EK : X × R → Y is a random-
ized encryption algorithm using key K; and DK : Y → X
is a deterministic decryption algorithm using key K. Infor-
mally, the security property of a secure encryption scheme is
that, having seen a ciphertext, an adversary can only learn
one thing about the source plaintext, which is its length.
The formal statement of this security property allows the
adversary to view encryptions of multiple plaintexts of his
choice, and only requires that he has a negligible probability
of inferring something (even one bit of information) about
a “challenge” ciphertext. This security property is called in-
distinguishability under chosen plaintext attack (IND-CPA).
Encrypting with an encryption scheme which provides IND-
CPA is also referred to as semantic encryption.

Note that secure encryption does not only ensure that the
adversary cannot reverse the encryption, it ensures that he
cannot learn anything about the plaintext (apart from its
length), including whether it is the same as the plaintext of
some other ciphertext under the same key.

One immediate consequence of this security definition is
that the encryption scheme cannot be deterministic, or the
adversary could trivially learn if two ciphertexts correspond
to the same plaintext. A typical way to achieve the required
randomization is to use the CBC mode of encryption with
a random IV [8, Chapter 4]; there are many other ways
too, most involving different modes of operation with an
underlying block encryption scheme like AES.

2.2 Oblivious RAM
Motivated by the problem of protecting software from

copying and unauthorized use, Goldreich and Ostrovsky de-
veloped (theoretical) techniques for a trusted CPU to exe-
cute a program using an untrusted RAM, such that an ad-
versary controlling the RAM cannot learn anything about
the program [15].

The major challenge in foiling such an adversary is to
hide the access pattern to the RAM, ie. the sequence of
addresses issued to the RAM. This includes hiding the ac-
tual addresses, as well as relationships among them. More
concretely, the access pattern that an adversary controlling
the RAM observes should look the same to him, regardless
of the program that the CPU is executing, and its inputs.

Two main algorithms emerge from this oblivious RAM
(ORAM) work—the square root algorithm and the polylog
algorithm, named by their amortized overhead. Let’s define
a record to be the amount of memory the CPU can hold
inside at one time. In order to carry out one access to a RAM
of N records, the square root algorithm takes O(

√
N lg N)

time, and the polylog algorithm takes O(lg4 N). Both times
are amortized—the algorithms periodically engage in long
pre-processing operations. Also, the big O is much bigger for
the polylog algorithm—concrete operation counting shows it
overtaking the square root algorithm only at about N = 220.

The square root algorithm works in two stages. First,
the trusted party (the CPU, in the original ORAM model)
pseudorandomly permutes the contents of memory. E.g.,
it selects a permutation π on the index range {1..N} and
relocates the contents of each record r, 1 ≤ r ≤ N , to lo-
cation π(r), changing the encryption along the way. Using



the terminology of Goldreich et al., the permutation algo-
rithm must be oblivious: have the same I/O access pattern
regardless of the input (ie. the permutation)1. [15]. In the
second stage, the CPU makes k � N retrievals. By now,
the permuted dataset Dπ is available to the adversary, and
the CPU knows π. The CPU uses this knowledge to hide
the identities of retrieved records. In order to retrieve record
r, the CPU reads in π(r) from Dπ, and the adversary does
not learn what r can be. What is left is to hide the re-
lationships between retrieved items, so the adversary (for
example) cannot tell how many times a given item was re-
trieved. The approach is to copy records which have been
accessed into a working pool PS of maximum size k, which is
scanned in its entirety for every retrieval. On each retrieval
for record r, one record from Dπ is added to PS : either r if
it is not already there, or a random untouched record if it
is. Thus, records in Dπ are accessed at most once.

We do not discuss the polylog algorithm any further, as it
was more expensive for the dataset sizes which are feasible
to run on the TTTPs we were considering, and is also more
complicated than the square root algorithm (the polylog al-
gorithm can be considered a generalization of the square
root algorithm).

2.3 Secure Multiparty Computation
Secure (multiparty) computation (SMC) aims to enable

multiple parties to engage in a joint computation on their
private or proprietary data. They would like to learn some-
thing which is a function of all their data, but none of them
want to reveal their actual data to any of the others.

For example, a group could want to learn which of the
members has the highest income, but no member wants to
disclose their actual income to any of the others. This mil-
lionaires’ problem is the “hello world” example of SMC.

SMC provides a starting point for the trusted computing
model we aspire to: Agnes and Boris know C, each have in-
put xA, xB (respectively), and each want to know C(xa, xB)
without the other knowing any details about the other one’s
input.

2.4 Blinded Circuits
In 1986 Yao devised the first protocol for two parties to

securely compute a two-party function, such that each party
only learns their own partial result [36]. Like most subse-
quent works in this area, his protocol works with the two-
party function represented as a boolean circuit.

This protocol is attractive as it is reasonably simple, and
is very efficient in terms of rounds—the participants only
need one round of interaction, and the rest of the processing
is done locally.

The basic idea of the protocol is that one of the parties,
say Agnes, blinds or scrambles the circuit, to produce an
object which can be evaluated similarly to a circuit, but
using blinded values2. Agnes does not see any values besides
her own input and output, and in particular she does not

1The access pattern, ie. the sequence and values of I/O
operations, will not be identical for all π, but must look
identical to a computationally bound observer.
2The terminology for the transformed circuit has varied, the
most popular terms being “scrambled” and “garbled”. We
believe that“blinded”is appropriate as it captures the aspect
of doing specific things with objects/strings whose actual
value one does not know.

see any circuit internal values. Then the other party, Boris,
evaluates the blinded circuit, during which he does know
the blinded values being computed, but does not know what
they mean, ie. what boolean values they correspond to.

Yao’s protocol is formalized and proved secure against a
semi-honest adversary in [24]. In describing the protocol, we
start with Agnes and Boris agreeing on the function they will
compute, as a boolean circuit C. They also agree that Agnes
will blind the circuit, and Boris will evaluate the blinded
circuit.

Circuit blinding. Agnes produces a blinded form of the
circuit in this manner. First, for every wire w in C, she
assigns a random secret k0

w to represent 0 and k1
w to rep-

resent 1. We call these blinded bits, keeping in mind that
they differ for each wire w. They can in practice be ran-
dom keys for a symmetric cipher like AES. Then for every
two-input gate g in C, she builds a blinded truth table which
will enable Boris to compute the output blinded bit given
the two input blinded bits, without revealing any additional
information. A simple way to do this is to represent each of
the four entries in the truth table as double encryptions of
the blinded output bit, using the two blinded inputs bits as
keys. The four entries must be in random order, otherwise
Boris could learn something about the actual values of the
inputs for a gate, based on which table entry he ends up us-
ing to evaluate the gate. The resulting set of blinded truth
tables constitute the blinded circuit blind(C); Agnes sends
this to Boris.

Now, Boris has blind(C), but does not know any of the
blinding keys. He also does not know any blinded values. In
order to start the blinded computation, he needs the blinded
values of the input gates. Getting Agnes’s blinded inputs is
easy: she knows the blinding mapping, so she can just blind
her input bits and send Boris the blinded values. Getting his
own inputs blinded is more complicated. Only Agnes knows
the blinding mapping. In order for Boris to obtain from
her the blinded bits corresponding to his own inputs, two
security concerns must be addressed. Agnes should clearly
not learn about the values of Boris’s inputs, and Boris should
not learn anything about the blinded values which do not
correspond to his actual inputs. Eg., if for a particular input
gate g his input is 0, then for gate g he should only learn the
blinded value of 0. If he did learn other blinded values for
the input gates, he could evaluate the blinded circuit with
varying values for his inputs (recall that he now has blinded
values for Agnes’s inputs), and thus possibly infer something
about Agnes’s inputs.

These security requirements are exactly addressed by 1
out of 2 oblivious transfer (OT) [7]. Thus, Agnes and Boris
engage in an OT protocol for each bit in the blinded val-
ues of Boris’s input, with Agnes acting as sender and Boris
as chooser. OT guarantees that Boris learns exactly one
value—the blinded value for his input, and no more, which
is what we need here.

Boris now evaluates the whole blind(C), starting with
the input blinded bits and using the blinded truth tables
to obtain, in the end, the output blinded bits. Boris sends
Agnes’s output blinded bits to her. She knows the corre-
spondence of blinded bits to actual bits and can so interpret
her result. Agnes sends Boris the blinding map for each
of his output wires, so he can interpret his blinded results.
These two steps can be done in either order, and the order
determines which player learns his or her result first.



2.5 Blinded Circuits in Practice
The Fairplay project built a system with which two play-

ers can actually carry out Yao’s protocol and compute a
function securely between themselves [26].

Fairplay specifies a two-party functionality using a high-
level imperative language called Secure Function Definition
Language (SFDL). SFDL looks like a normal imperative lan-
guage, and draws on the syntax of C and Pascal. The main
components of Fairplay are a compiler to translate SFDL to
a boolean circuit, and a runtime system which Agnes and
Boris can use to carry out Yao’s protocol: namely, blind the
circuit, transfer input values using oblivious transfer, evalu-
ate the blinded circuit, and distribute outputs.

The authors’ experiments with Fairplay focused on evalu-
ating SFE implementation techniques, like the OT protocol
used and the techniques employed against active adversaries.
The evaluation was in terms of computation as well as com-
munication between the parties.

Unfortunately, self-reliant circuit-based solutions for SFE
incur a communication and computation cost at least linear
in the circuit size, and thus the circuit size is the primary
performance metric. In addition, however, each gate is usu-
ally executed using an expensive algorithm or protocol in
order to achieve strong security properties, thus increasing
the cost even more.

Large constant overhead for scalar code. It is possible to
compile some functions into a boolean circuit which can be
executed serially3 with only a constant factor slowdown com-
pared to a RAM machine representation of the same func-
tion. For example, a scalar addition on 32-bit integers can be
compiled to 64 gates (with 3 inputs each); a RAM program
would require one 32-bit addition instruction. Likewise, any
sequence of scalar operations has the same asymptotic cost
in boolean circuit form as in RAM program form.

In these cases, the overhead of executing the function us-
ing a boolean circuit-based SMC protocol over executing the
same function “normally”, ie. on a RAM machine, is also a
constant factor. Each gate (analogous to an instruction)
works on single bits, and thus more gates are required than
instructions which operate on words of 32 or 64 bits, Each
2-input boolean gate requires several cryptographic opera-
tions for execution. For example, in Yao’s two-party proto-
col, each gate requires generation of two random symmet-
ric keys; encryption of two ciphertexts under each of the 4
permutations of the keys; random re-ordering of the 4 ci-
phertext pairs; and decryption of (expected) 4 ciphertext
blocks.

Linear overhead for array code. In addition to scalar op-
erations, high-level code can use indirect arrays. An array
access is indirect if the index is non-constant, and thus on a
RAM machine the array lookup requires two lookups—one
to get the index from RAM, and the other to read or up-
date the array value at that index. An indirect array access
is cheap on a RAM machine (disregarding issues of cache
efficiency)—it takes constant time.

In the traditional blinded-circuit approach to general SFE,
indirectly-addressed arrays are a major source of inefficiency.
Each bit in the array is represented by a wire in the circuit,
and the array lookup (or update) is translated to a lg N by
N multiplexer. There is no more efficient way to encode

3meaning with a circuit simulator which executes the gates
one by one

the array and lookups against it in a one-pass circuit—if the
array lookup sub-circuit included any fewer than N gates
(of small constant fan-in), it would not be able to produce
the value of some array index.

Thus, code which uses many indirect array accesses will
translate to a very large boolean circuit, and take corre-
spondingly long to evaluate. This is a serious problem, as
indirect array access is frequently an essential component of
efficient algorithms.

The existing SMC literature leaves open the problem of
indirect array access, eg. [29].

2.6 Practical Private Information Retrieval
The problem of private information retrieval considers

how a user can obtain a particular record from a large data
set that a server offers, without the server learning anything
about which record was requested Several ideas may come
to mind about how to achieve PIR. One could be that if the
records were somehow encrypted, the server could be kept
in the dark about the retrieved records. To examine this
further, note that for this scenario to make sense, the data
records must have been generated by another party, who
then provides them to the data server in encrypted form.
However, this approach does not fully achieve the desired
properties of PIR. In particular, it does not hide from server
the relationships between retrievals: the server can always
learn whether a request is for the same record as some pre-
vious request, and how popular records are.

Theoretical computer scientists developed many algorithms
(e.g., [11, 10]) through which users, servers, and sometimes
other parties could carry out computation and achieve PIR.
However, these algorithms are not satisfactory in practice.
Two threads of theoretical PIR work exist. The first as-
sumes that the distribution server consists of k non-colluding
servers, with replicated copies of the database. The other
approach to theoretical PIR makes the more standard as-
sumption of a single server which is computationally bound
in the usual sense, eg. finds exponential algorithms infeasi-
ble. In this case, a best-of-breed scheme has poly-logarithmic
communication (O(log4 N)), but linear work for the server,
with a large constant [10]. Concretely, the server’s work is
one mod-exp per bit in the dataset—too expensive for large
N . For example, if N = 10, 000 items of 8, 000 bits each, re-
trieving one item would need 80 million mod-exp operations,
which take about 24 hours on a 2GHz AMD Opteron-280
64-bit server using openssl (openssl speed rsa1024 reports
900 private key RSA operations per second).

Smith and Safford [32] then proposed the problem of prac-
tical PIR: using existing systems, can we provide PIR along
the lines of a Web model: the user establishes an SSL ses-
sion, issues a request, waits a short while, then receives the
response? Their solution used commercial secure coproces-
sors and assumed that a coprocessor can only hold a fixed
small number of records internally at one time. Asonov et
al. [4] improved the Smith-Safford scheme by decreasing the
processing time for a query at the expense of a periodic
preprocessing step. We note that Asonov’s algorithm is es-
sentially the same as the “square root” algorithm developed
earlier as one solution to the Oblivious RAM (ORAM) prob-
lem [15], with the SCOP playing the role of the CPU. In
subsequent work, we reduced Asonov’s preprocessing cost of
O(N2) to O(N log N) by carrying out the permutation using
switching networks [17], and then reduced the internal stor-



age requirements to O(log N) and added the ability to store
records as well as retrieve them [19]. We also implemented
these approaches, using an IBM4758.

The crux of our approaches here lie in using the TTTP to
carry out the operations of a switch in a switching network,
but in an oblivious way. The TTTP reads in two records
(the inputs), switches their places if its switch-bit is set,
and writes them out to the same two positions. The host
should be unable to tell if the two records were switched or
not. This can be achieved by re-encrypting the records for
example, assuming semantically-secure encryption is used.

3. FAERIEPLAY COMPONENTS
Our Faerieplay system uses the Fairplay implementation

of Yao’s blinded circuit approach to secure multiparty com-
putation as a starting point, but abstracts inefficient opera-
tions (such as array lookups) into new types of gates, moves
these gate operations into TTTPs, and uses tricks such as
our PPIRW scheme (Section 2.6) to implement them effi-
ciently.

In this section, we present the system components we de-
veloped.

3.1 Languages
SFLD0. The first high-level language supported by Faerieplay

was Fairplay’s Secure Function Definition Language (SFDL).
We wanted to be compatible with Fairplay so we could test
execution of the same function on both systems.

As Faerieplay progressed, we found that diverging from
SFDL in some ways was quite useful. From now we will refer
to the Faerieplay SFDL simply as SFDL; we will refer to
Fairplay ’s SFDL as SFDL0. SFDL is strongly typed. Each
expression and variable has a type. Variable types must
be provided when the variable is declared–in this SFDL is
similar to statically typed languages without type inference,
like C and Java. SFDL semantics are similar to the C-family
of imperative languages, with a sprinkling of Pascal: the
result of a function is specified by assigning to a variable
with the same name as the function.

SFDL. As we attacked more problems with Faerieplay, we
found SFDL0 difficult to work with in some ways, and ad-
dressed the problems by adding these features to it. We
added support for passing function parameters by reference,
so that assignments to a parameter inside a function are vis-
ible once it returns. In the absence of this, the programmer
has to resort to defining and returning structures contain-
ing all the modified variables. We enhanced for loops to
count down as well as up, with the same syntax. The choice
depends on which end-point is larger. We support a print

statement which allows a snapshot of program state to be
obtained, for debugging. We define outputs of the compu-
tation to be the return value of sfdlmain. SFDL0’s entry
point is the function main, and it passes inputs and outputs
in specified fields in the structures which are passed to main.
We do not specify a convention for naming parameters to the
main function with the names of their owners, eg. Alice and
Bob. Binding data owners to parameter names is left for a
higher-level Faerieplay component.

(The syntax of our SFDL is fully specified in Appendix B
of [18].)

FC++. We continued to increase the complexity and size
of the problems we tackled with Faerieplay: e.g., electricity

power scheduling auctions ([22, 28], and also 7.5 in [18]). At
this point, our extensions to SFDL0 still left the develop-
ment process quite difficult. We realized that we needed a
different approach: enable reuse of an existing development
toolset.

A way to do this in Faerieplay (and other systems with
experimental execution environments) is to use a high-level
language which can be passed both to our system (com-
piler, circuit machine, etc.) for specialized execution, and
to an existing development and execution toolset for auxil-
iary tasks like debugging and code analysis.

We selected C++ for this job, and we call the resulting
language Faerie C++ (FC++). C++ has a rich enough
syntax to provide all the functionality in Faerieplay. The
C preprocessor allows us some flexibility in specifying our
language, and patching up any difference to standard C++.
Eg. FC++ requires a keyword var before a variable decla-
ration. Such keywords make the grammar more regular and
a custom parser’s job much easier (in this case Faerieplay’s
parser). When compiling with a standard C++ compiler,
we simply need a #define var somewhere in the program.
C++ has a well-developed toolset. Finally, C++ is one of
the most popular programming languages, so it is likely that
a prospective Faerieplay programmer will already be famil-
iar with it.

(The syntax of FC++ is fully specified in Appendix D of
[18].)

3.2 Circuit and Circuit Virtual Machine
We present the specifications of the Faerieplay circuit vir-

tual machine (CVM) and also the format of circuits given
to the CVM to execute. We refer to the specification of the
circuit as the circuit format (CF).

A circuit is conceptually a directed acyclic graph (DAG),
with vertexes corresponding to gates of several kinds, and
edges corresponding to data flow from gate outputs to sub-
sequent gate inputs.

Our CVM supports several kinds of data on the circuit
data wires (edges). First we will describe the different kinds
of data types supported by the CVM, and then specify the
bit format used to represent them.

Scalars. The most basic data types is an integer scalar,
which is defined to be the same as a word on the underlying
machine where the circuit virtual machine is run, eg. 32 bits
on a 32-bit machine, or 64 bits on a 64 bit machine. In future
work, we could decouple the word size specified by the CVM
from the the word size of the native machine. This would
increase implementation complexity, but improve portability
of Faerieplay code.

Array references. Indirect arrays are represented in the
CF as opaque references, with the same physical representa-
tion as scalars. The circuit machine can implement these ref-
erences as it chooses, provided that it satisfies the required
obliviousness properties. The CVM will have to maintain
the actual array as well as any extra needed state (like a
permuted version of the array) on the host, and will proba-
bly use the array reference as a pointer to the correct actual
array to operate on. We’ll refer to the state (on the host
and in the TTTP) associated with an array as the array
representation.

The CF specifies an important property of array refer-
ences, which enables the circuit machine to implement array
accesses efficiently: array references are linear, ie. they are



used only once. Each array gate has as part of its result
a new array reference, and a subsequent operation on that
array must use the new reference.

This rule allows the CVM to perform array operations
in place, without concern that a subsequent operation will
expect the old array representation to be preserved. This
license is significant, as an array read or write could trig-
ger a full re-permutation of the array representation, and
the CVM can safely perform this without worrying about
preserving the previous state of the permuted array.

In contrast, there is no requirement that a scalar value
be linear—a single gate’s scalar value can be used by many
subsequent gates, for example if multiple expressions refer
to a single variable. This is safe as a gate’s scalar value never
changes after it is set.

Structures. The CF supports structures as first-class val-
ues, and provides a construct to extract fields from them—
the Slicer gate, described below.

Array-read gates produce complete structure values. Fields
are extracted by Slicer gates if needed by subsequent gates.
Array write gates take a parameter which can limit the write
to just part of a structure (usually one field); a whole struc-
ture value can also be written to an array.

NIL. What does the CVM do in the case of invalid gate
inputs, like a zero-divisor, or an out-of-range array index?
Since circuit evaluation should look the same outside the
TTTP, independent of inputs; terminating execution is not
an acceptable error-handling strategy, as it can tell the ad-
versary when some particular event occurs, eg. when some
value is zero. Thus, all invalid operations succeed, but re-
turn an error value, NIL. All gate operations are defined on
normal values as well as on NIL.

Note that the security model requires that all values sent
to the host (and thus visible to the adversary) be securely
encrypted, and thus the adversary cannot tell if any given
value is NILor not.

3.3 Gates
We outline the Faerieplay circuit gates.
Evaluating an (unclocked) hardware circuit involves eval-

uating every gate once, whether its value is used in the end
or not. For example, a multiplexer could discard values pro-
duced by earlier gates, but those gates produce their val-
ues anyway. Faerieplay follows the same principle for most
gates—all are evaluated, even if their result is subsequently
discarded, in our case by a Selector gate. For Faerieplay,
this behavior is mandated by the requirement to make every
execution look the same to the adversary, not because the
CVM could not compute the circuit more efficiently. The
CVM could just compute taken branches (and thus reduce
its work), but this would provide information to the adver-
sary.

Since both branches of a conditional expression are always
evaluated, the evaluator must expect illegal expressions in
the not-taken branches, like division by zero or out-of-range
array access. Such gates are evaluated as always, but yield
a NIL value. If the code is correct, NIL values will be un-
selected by a subsequent select gate.

We could use the same approach for arrays as for scalars:
always carry out the reads and updates and keep all copies
until the end of the conditional section, when we can discard
the un-selected copies and continue with the selected ones.
But doing this efficiently is complicated, and has runtime

overhead (a factor of b with respect to the existing PIR/W
overhead, where b is the branching depth—the number of
active conditional branches).

Instead, our CF specifies a different treatment for arrays
inside conditionals, which saves considerable work for the
CVM. Array gates are supplied with an additional “gate
enable” input, a boolean which specifies whether the gate
is enabled or not, depending on the enclosing conditional
values. Then during execution, only enabled array accesses
modify the array, while disabled accesses perform a dummy
operation. Using the PIR/W algorithm for array update, the
CVM can easily make a dummy write look indistinguishable
from a real write. The time cost of an enabled and disabled
array access must of course be the same, or they would look
different to the adversary.

Arrays are thus not selected on at the end of a conditional
block, as the selection has been implicit during the execution
of the branches.

We decided not to use the gate-enable approach for scalar
gates, but stick to Select gates to implement conditionals.
The main reason is that scalar Select gates impose no more
overhead than maintaining an enable bit inside conditionals,
and they provide a more modular approach to conditional
evaluation than do gates with an enable input.

In Table 1 we describe the (slightly) formal semantics of
the main gates comprising our circuit format: Bin, Un, Lit,
ReadDynArray, WriteDynArray, and Select.

Mostly the gates semantics are obvious, but the possibil-
ity of NIL values almost everywhere complicates the picture.
The remaining gates (Input, Slicer, Print, InitDynArray)
have more of a support role, and thus do not require a formal
definition.

3.4 Compiler
We decided to build our own compiler from scratch (rather

than use Fairplay’s). We anticipated the need to modify the
compiler extensively for different purposes, which is easier
to do with one’s own code. Additionally, Fairplay’s compiler
had a hand-written recursive descent parser which seemed
too inflexible on the front end. We did indeed modify our
compiler extensively after its initial version, for several main
purposes: We also wanted to extend Fairplay’s language and
then to support a second source language. The flexibility of
a capable parsing tool was very helpful here, and allowed us
to add the second language easily. Finally, we also wanted
to produce different forms of output: the executable circuit,
various circuit visualizations, and a circuit simulator which
helped with debugging the CVM.

We implemented the compiler in Haskell, which is strong
in manipulating tree-structured data, like abstract syntax
trees. Haskell is additionally a very succinct and high-level
language, which allowed us to enhance the compiler with
fairly little effort. For circuit generation and manipulation,
we extensively used the Functional Graph Library (fgl) which
is included in the Glasgow Haskell Compiler (GHC) distri-
bution.

We used the compiler structure laid out in Appel’s Modern
Compiler Construction series [2]. Guided by this framework,
the implementation went fairly smoothly. The last step,
circuit generation, is not covered in compiler textbooks.

The compiler makes several passes over the code: pars-
ing using the BNF converter (BNFC), which defines Haskell
types corresponding to the syntactic elements and automat-



Gate Output Comment

Bin[⊕](x, y) NIL Ifx = NIL or y = NIL Binary operator; Note that we propagate NIL generously; one could
argue for (eg.) Bin[Eq](NIL,NIL) → true. Our current approach is
defensive—less likely that two errors will produce a valid (non-NIL)
result and this remain undetected.

x ⊕ y otherwise

Except

Bin[And](x, y) true Ifx = true and y = true
false Ifx = false or y = false This implements shortcutting And. Eg. consider x != 0 && y/x > 1. If

x is 0, this should be false even though the RHS is NIL due to division
by zero. Note that the parameters to && could be reversed, and the same
would apply.

NIL otherwise ie. one true and one NIL.

Bin[Or](x, y) true Ifx = true or y = true This implements shortcutting Or. Eg. consider x == 0 || y/x > 1. If
x is 0, this should be true even though the RHS is NIL due to division
by zero.

false Ifx = false and y = false
NIL otherwise ie. one false and one NIL.

Un[op](x) NIL Ifx = NIL Unary operator
‘op‘x otherwise

Lit[i] i A literal scalar.

Select(sel, t, f) t Ifsel = true
f Ifsel = false
NIL Ifsel = NIL A NIL selector should only happen in an un-selected conditional branch,

unless the program has an error.

ReadDynArray(A, i) (A′,NIL) Ifi = NIL
(A′,NIL) Ifi ≥ length[A] A′[i] = A[i], ∀i
(A′, A[i]) otherwise

WriteDynArray[slice](A, i, x, e) A′ Ife = false e is an enable bit, set to false if gate is inside a non-selected branch.
A′ Ifi = NIL A′[i] = A[i], ∀i
A′ Ifi ≥ length[A]

A′′ otherwise

∀j, A′′[j]|slice =

(
x, if j = i

A[j]|slice, otherwise

slice specifies which (contiguous) part of the array element to update.
Used in case of updating part of a structure.
Notation: x|slice is the part of x specified by slice, eg. one field from
a structure.

Table 1: Gate semantics. A gate’s static parameters are shown in square brackets (they can be considered
part of the opcode), and the runtime parameters (which are obtained from earlier gates, with addresses
specified by this gate’s inputs parameter), are in parentheses.

ically produces an abstract syntax tree (AST) composed
of those types; type checking the correctness of the AST,
building symbol tables, and converting the AST to an inter-
mediate form; conversion to canonical form, where some of
the constructs in the source code are converted to a smaller
number of canonical constructs; function expansion and loop
unrolling; circuit generation; and circuit cleanup and topo-
logical sorting. (Chapter 10 in [18] provides more design and
implementation details.)

3.5 Implementation and Debugging
Our initial implementation of the circuit virtual machine

(CVM) consisted of a software application running inside
a 4758. We settled on C++ as providing a good mix of
runtime efficiency and high-level abstraction, which helps
with achieving a correct implementation.

While developing example applications, we reached the
situation where bugs in the actual SFDL program were more
problematic than bugs in the compiler or circuit evaluator.
Since the entire platform is experimental, there are no devel-
opment tools like debuggers to help with this. Moreover, the
circuit model of evaluation results in a very different, and
rather less intuitive, order of execution than a RAM imple-
mentation. Thus, we had to provide ourselves with several
compiler capabilities to help with development.

First we added a circuit simulator to the compiler, which

would evaluate a circuit without any of the PIR/W compli-
cations. To help with the association between a particular
gate and the corresponding SFDL source code, we intro-
duced print gates. Debugging the circuit evaluator, and fol-
lowing traces of circuit execution, is helped along by having
a clear visualization of the circuit to look at. We have the
compiler generate a graph for two popular graph formats:
uDraw(Graph) and Graphviz.

4. PUTTING IT TOGETHER
Faerieplay provides a secure multiparty computation ser-

vice, whose users have to trust a tiny TTP to get similar
security assurances as with traditional SMC protocols, but
with much improved efficiency and scalability.

This is a summary of how a programmer, Peggy, would
use both the Faerieplay and C++ toolsets to develop, debug
and securely run an FC++ program.

First, Peggy writes FC++ code whose entry point is func-
tion sfdlmain. sfdlmain can have any parameters and re-
turn values. The Faerieplay compiler generates some boiler-
plate C++ code, to enable compiling and running the pro-
gram with a C++ compiler and toolset. This helper code is
just a main function customized for the program input and
output structures. This generated main function interprets
inputs to the program. These can come either as (string)
parameters to main, or through a specified API which ac-



type Vertex  = struct { Idx num,
                        Idx edge_list_head,
                        Word num_out_edges,
                        Weight d, 
                        Idx pi_idx, 
                        Idx heap_idx
                        };

type Edge    = struct { Idx dest_idx,
                        Weight w };

type Graph   = struct { Vertex[V] Vs,
                        Edge[E] Es };

Figure 1: The graph representation in the SFDL
implementation of Dijkstra. The types Word, Idx

and Weight are all integers. In the Graph structure,
The Es array is a flat array of edges, which holds all
the edges in the graph. The adjacency list (ie. the
outgoing edges) of vertex V is located contiguously
within Es—it starts at Es[V.edge_list_head], and oc-
cupies the next V.num_out_edges elements in Es.

cepts input from the user in some manner, eg. through the
standard input. With the input data, main prepares param-
eters for sfdlmain, calls sfdlmain, collects its return value,
and returns the output to the outside, eg. by printing it to
standard output in a specified encoding.

Then Peggy compiles her program, together with the gen-
erated helper file, using a standard compiler like g++. She
can debug this program using debuggers available in the
C++ toolset. She can also perform other correctness verifi-
cation, like information-flow analysis. At this point, she can
be confident that her code is correct for the desired function-
ality. Finally, she compiles her program with the Faerieplay
compiler to obtain a circuit, and runs it with the CVM to
obtain the Faerieplay security properties.

5. EXPERIMENTAL EVALUATION
Most of our measurements and other experimental results

are based on running a simple but complete implementation
of Dijkstra’s algorithm with heaps. We ran similar imple-
mentations on Faerieplay and on our Oblivious RAM pro-
totype. Our SFDL implementation of Dijkstra’s algorithm
represents the graph as shown in Figure 1. The graphs we
ran it on ranged in size from 7 to 255 vertexes. They were
generated randomly with 5 − 10 outgoing edges per vertex.

5.1 Against Oblivious RAM
To compare the Faerieplay circuit implementation against

an implementation using oblivious RAM, we wrote a simple
C implementation of the algorithm, and ran it on a MIPS
emulator using an oblivious RAM.

We ran both implementations on graphs of various sizes.
The graphs were randomly generated, with a fixed num-
ber of vertexes, and a random outgoing edge list from each
vertex: the number of out-edges for each vertex was nor-
mally distributed around a fixed mean, between 5 and 8, and
each edges’s weight and destination vertex were uniformly
selected. A random pair of vertexes was used as the source
and destination inputs to the shortest path algorithm.

The hardware setup was the same in both cases—an IBM

vertices V = 7

ORAM
Faerie-
play

4.1time (mins) 174

vertices V = 15

ORAM
Faerie-
play

8.9 300

vertices V = 63

ORAM
Faerie-
play

53 1554

5.4Kinstructions/gates 10.5K 15.1K 18.7K 93K 90K

640mem/array reads 1.2K 1.7K 2.4K 11.3K 13K

510mem/array writes 1K 1.1K 1.8K 9.5K 8K

n/aRAM size (words) 4.8K n/a 4.9K n/a 6K

Table 2: Table of running times of Dijkstra on
Faerieplay and ORAM

4758 as TTP, running the TTP portion of the Faerieplay
CVM. The host was a Dell Optiplex desktop, with a single
Intel Pentium IV 1.8 GHz CPU.

We recorded several measurements from the experiments.
Note that many of the measurements for the ORAM im-
plementation are not specific to Oblivious RAM but apply
in general to the RAM machine form of the function. The
measurements are shown in Table 2.

The measurements we obtained are for the most not sur-
prising. ORAM has a larger RAM than Faerieplay has indi-
rect arrays, and thus it spends much more time on oblivious
access. The number of operations in each case is quite simi-
lar, which suggests that the Faerieplay circuit version is not
burdened with overhead when compared to the optimized
RAM executable (we compiled it with gcc at -O2 optimiza-
tion)

One surprising result is that both implementations gener-
ate a similar number of memory accesses. We would have
expected that Faerieplay would have fewer indirect accesses
than ORAM, because its indirect indexing is limited to ar-
rays which require it. One explanation is that the circuit
implementation performs some array accesses inside non-
selected conditional branches. Those accesses are “dum-
mies”, but they still incur the cost of the indirect array ac-
cess.

5.2 Against Fairplay
We could not run our Dijkstra SFDL code with Fairplay,

as the Fairplay compiler does not support enough of the
language we use (and, in our earlier experiments, Fairplay
did not scale beyond small problem sizes). Instead, we used
several indirect ways to compare the performance of the two
systems.

We ran an SFDL program, defextreme-indirect-indexing,
which sums N 16-bit numbers in an indirectly-addressed ar-
ray, thus generating N indirect accesses to an N -element
array. The example is of course artificial, as one would nor-
mally sum the array in a fixed order, which Fairplay does
efficiently, treating each array member as a separate vari-
able. We show this example as a pure illustration of the
difference in indirect array access speed, which can then be
used to predict relative performance in other more realistic
programs, like our Dijkstra shortest paths example.

One run of the program used the Fairplay version 2 com-
piler and evaluation engine, and the other used the Faerieplay
compiler and CVM in a 4758.

The hardware setup for the Fairplay runs was: Alice and
Bob4 each on a separate machine with a 2.7 GHz Xeon CPU,

4Fairplay uses the more traditional character names



gates time

Fairplay Faerieplay

N (array
size)

64 193K 64448 12

128 772K 255896 26

256 3085K 10951702 57

512 - -3584 142

1024 - -7168 372

Fairplay Faerieplay

Table 3: Faerieplay vs. Fairplay: circuit size and ex-
ecution time for intensive indirect indexing. (Fair-
play failed to evaluate its circuit for arrays larger
than 256.)

gates time

Fairplay Faerieplay

N 
(additions)

512 33K 17513 9

1024 66K 331025 17

Fairplay Faerieplay

Table 4: Faerieplay vs. Fairplay: circuit size and
execution time for scalar-only program

4 GB memory, and SCSI drive, connected by gigabit Ether-
net.

The results are shown in Table 3. They indicate that the
TTP-based approach is indeed vastly more efficient than the
blinded circuit approach, even with the latter on very fast
machines.

To give an idea of how Faerieplay and Fairplay compare
when there is no indirect-addressing involved, we ran a pro-
gram which performs N 32-bit additions. The results are
in Table 4, and indicate that the two execution models are
quite similar. The blinded circuit evaluation system has an
edge through much faster hardware, whereas the TTP-based
evaluation benefits from larger (and hence fewer) gates and
wires.

6. THEORETICAL EVALUATION
We begin with the view of a single user of the Faerieplay

system.
Agnes has a value a ∈ A. She also has a function f :

A × B → Y × Z. She wants to learn the partial value y
of f(a, b), where b ∈ B comes from Boris. We temporarily
hold off deeper analysis of “comes from Boris”, beyond the
intuitive understanding that b is Boris’s input for the joint
computation. Boris’s view is symmetrical: he has a value b
and the same function f , and wants to learn the partial value
z of f(a, b), where a comes from Agnes. Note that these are
just the users’ functional expectations, we will address their
security requirements shortly.

In Faerieplay, Agnes will learn the result of the com-
putation by sending a and f to the Secure Computation
Server (SCS), which carries out the computation securely,
and sends the results back. The main component of the
server is a tiny TTP.

The TTP executes its program on its data by doing inter-
nal computation, and interacting with its host for bulk data
storage. The host should be thought of as being under the
adversary’s control. During the computation, the adversary
sees various intermediate data involved in the computation,

any of which could potentially provide him with information
he should not have. We will model this exchange of infor-
mation with the adversary using a transcript. Note that a
transcript is a standard tool used in security modeling.

Definition 1. The transcript should be a complete record
of the data which the TTP exchanges with its host during a
computation.

We specify our transcript form aiming to categorize sev-
eral kinds of data it contains, which will structure the sub-
sequent security discussion. Thus, a Faerieplay transcript T
consists of entries of the form (Time,Operation,Data).

At the end of a TTP-based computation of (y, z) = f(a, b),
Mallory has the complete transcript T for that computation.
Note that this will usually include some entry corresponding
to the results y and z, as they are communicated to the users
via Mallory.

Definition 2. A TTP-based computation of function f
on input (a, b) with resulting transcript T is secure against
adversary Mallory if Mallory’s knowledge about (a, b) is the
same given T as it was before the computation, without know-
ing T .

Lemma 1. A TTP-based computation of function f on
input (a, b) with resulting transcript T is secure against a
computationally bounded adversary A, if all entries in T are
either (1) independent of (a, b), or (2) encrypted by the TTP
with an IND-CPA secure encryption scheme. A can be pas-
sive or active.

Lemma 2. The transcript generated by a Faerieplay com-
putation is secure, according to the definition in Lemma 1.
This applies both to a passive and active adversary.

Lemma 3. Within the Faerieplay circuit and TTP-based
model, an adversary can mount an active attack only by re-
turning incorrect gate descriptions and gate values to the
TTP.

Theorem 1. Faerieplay’s TTP-based circuit evaluation
is secure according to Definition 2, against both passive and
active adversaries.

For full proof details, we refer the reader to Chapter 8 of
[18].

7. FASTER AND SMALLER
As we noted, one of the motivations of this work was scal-

ability: trying to preserve the “fully oblivious” nature of
housing trusted computing inside a secure coprocessor when
the computing is much larger than would fit inside such a
hardware trusted third party. We approached this by giving
up on putting significant computation inside the TTP, and
instead tried to put as little as possible.

However, the commercial coprocessor we used for our pro-
totype still has far more inside it that is strictly necessary
and is rather expensive. Furthermore, it’s not particularly
good at the primary operation our TTTP must perform:
quickly streaming data in and out that is both encrypted
and integrity-protected.

In our preliminary work [21], we speculated on the po-
tential of building special-purpose hardware for the core



“encrypted switch” functionality necessary for our approach
to practical private information retrieval and writing (Sec-
tion 2.6), and speculated that a tiny TTP vastly smaller than
a 4758 could vastly outperform it. In the subsequent soft-
ware and theoretical work reported in this paper, our TTTP
requirements generalized to arithmetic and other gates (Sec-
tion 3.3) as well as the encrypted switches necessary for ef-
ficient array references.

More recently, we have been experimenting with prototyp-
ing such hardware (via an FPGA), and exploring additional
optimizations such as pipelining the internal TTTP opera-
tions and running many TTTPs in parallel.

Due to space constraints (and disappearing authors), fur-
ther discussion of these experiments will be left to a later
paper.

8. RELATEDWORK
Wang et al. [34] extended our TTP-assisted PIR/W work

to improve the time, at the expense of more space inside
the TTTP (and also provided a nice formal proof, which we
used as model for ours). Williams and Sion have improved
the polylog algorithm for oblivious RAM to produce a new
randomized algorithm with much lower overhead [35]. Their
projected performance of a PIR implementation using this
algorithm on an IBM 4764 secure coprocessor.

The most relevant SMC implementation for this work is
Fairplay (Section 2.5). A system to generate code for cryp-
tographic protocols for functionalities like signatures and en-
cryption is given in [25]. This is a much lower-level system
than ours or Fairplay, but shares the aim of building a shared
infrastructure for implementing secure protocols from an ab-
stract description, and thus avoiding all the potential pitfalls
of doing this by hand for every different scheme. A project
aiming to produce a usable SMC system using the avail-
able self-reliant protocols is SIMAP5. They are developing
a language for describing SMC functionalities [30], as well
as a runtime system (called SMCR) to implement various
self-reliant SMC protocols. The TrustedPals project aims
to build an SMC system in a setting where each user has a
smart card which is trusted by all the other users [13] for
most purposes, and whose only failure mode is general omis-
sion, where they stop participating in the execution. Given
this trusted network of security modules, they reduce the
SMC problem to a fault-tolerance problem on the network
of secure modules, and show solutions and impossibility re-
sults inherited from the fault-tolerance literature.

Remotely keyed encryption schemes seek to enable high-
bandwidth encryption (on a host machine) using long-term
keys held in low-bandwidth devices like smart cards [9]. This
work shares the theme of enabling large computations using
a small trusted space, but is otherwise quite different as it
has no obliviousness requirements, and an adversary con-
trolling the host can decrypt ciphertext until he is removed.
On a similar theme, Modadugu et al. have developed a pro-
totype using an untrusted host to help a Palm Pilot with the
computation of generating RSA keys [27]. A large body of
work also exists on designing specialized protocols for solving
specific two-party or multi-party problems privately (e.g., [1,
23, 6, 14, 12, 5]).

5See http://www.sikkerhed.alexandra.dk/uk/projects/
simap.htm

9. CONCLUSIONS AND FUTUREWORK
Beyond attestation and authentication, a stronger prop-

erty of trusted computing is obliviousness: Boris knows no
internal details of the computation taking place on his own
computer, except for the fact that it’s taking place and any
inputs and outputs he is allowed. Providing this stronger
form of trusted computing is straightforward with an ar-
mored secure coprocessor—but only as long as the compu-
tation fits inside it. In this paper, we presented our system
for providing obliviousness for arbitrary large computations,
via a compiler that transforms a high-level program to a cir-
cuit of elemental gates, and a circuit virtual machine that
(executing inside a tiny trusted third party) executes this
circuit obliviously. We demonstrated its practicality by ex-
ecuting Dijkstra’s shortest path algorithm this way.

In (ongoing) future work, we plan to finish an FPGA pro-
totype of a streamlined tiny trusted third party.
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