
Chapter 1

A ROADMAP FOR CONVERTING AN
ELECTRIC POWER UTILITY NETWORK
TO DEFEND AGAINST CRAFTED INPUT

Michael C. Millian, Prashant Anantharaman, Sergey Bratus, Sean W.
Smith, and Michael E. Locasto

Abstract In this paper, we propose a concrete roadmap to eliminate the possibil-
ity of input-handling vulnerabilities in the OT side of an ICS network
by using secure parsing. ICS utilities are responsible for maintaining the
integrity of the power grid in the US. A complex communications net-
work is the backbone of these systems. Communication on ICS networks
is must be processed correctly and can’t crash devices or allow attackers
access to devices. Language-Theoretic Security (LangSec) is the practice
of secure input handling via hardened parsers. Secure parsers improve
ICS network security. Our previous work covers the implementation
details of various ICS protocols. Here, we show that the existing col-
lection of LangSec parsers for SCADA protocols offers coverage for the
communication needs of an ICS network. We demonstrate a high degree
of communications coverage on a network model, discuss the merits of
a network guarded by LangSec parsers, and propose a triage procedure
to implement such a network. Furthermore, we collect a summary of
security benefits and lessons learned.

Keywords: LangSec, parsers, ICS, network

1. Introduction
Devices in Industrial Control System (ICS) networks have supported

network communication for the past few decades. Connection to the
internet, either directly or via connection to internet-connected devices,
has become increasingly commonplace. ICS protocols ultimately control
actuators and sensors that affect the operation of the power grid in some
way. The cyber-physical nature of these devices paired with network



2

connection makes the security of network communication a concern with
very high priority.

Our goal is to eradicate input-handling vulnerabilities from an ICS
network. To motivate this goal, we will discuss in Section 2 how input-
handling vulnerabilities are a non-trivial class of vulnerabilities with a
long history and many modern examples [5, 6, 8, 19]. For example, our
previous work has shown that ICS networks are not immune. Between
2013 and 2014 over 30 input-handling vulnerabilities were discovered in
implementations of the DNP3 protocol in devices in ICS networks [2].

Our goal presents various challenges. First, while our Language-
theoretic Security approach to secure parsers and protocols has been
used to build implementations of several ICS protocols, our results have
thus far been constrained mainly to academic domains. Adoption of
these protocol implementations in real systems hasn’t been high. This
work aims to address the discrepancy by making clear the benefits and
explaining how to use secure parsers.

We present a notional architecture for an ICS network employing
LangSec parsers to secure its communications. Our notional architec-
ture is a general network model that contains the components found
in an ICS network. The model loosely maps a network that represents
the real world without being tied to a single utility. We show that the
LangSec parsers we developed over the past few years offer the necessary
coverage of the communication edges on this model. Therefore, we can
guard all communication with LangSec parsers.

Second, ICS networks operate a large variety of protocols. Securing
a protocol implementation requires a careful examination of a protocol
specification. Quite often, device manufacturers subset or fork existing
protocols, which results in new protocols that must be analyzed. Other
times device manufacturers build proprietary protocols, which makes
this step harder. To address this problem, we discuss our proposal for
best practice both for creating a new parser and for subsetting or forking
an existing protocol.

Third, updating ICS devices offers unique challenges. Because ICS
devices perform high priority operations, taking these devices offline or
interrupting their ability to communicate is not an option. Neverthe-
less, some protocols contain inherently unsafe features, and these fea-
tures must be removed in order to meet LangSec security standards.
Therefore we must design a system that allows all devices to continue
network operations during the transition. We offer a triage procedure
that addresses this need.

The core of our approach relies on subsetting existing protocols. A
subset of a protocol is just that protocol with particular messages not



Millian et al. 3

allowed. As a trivial example, a certain opcode may be removed if the
payload for that opcode is not safe (we define safety in Section 1.2.1).
We note that we never add features to a protocol; we only remove unsafe
features. As a result, all devices capable of understanding a protocol can
understand our safe subset of that protocol.

In summary, this paper makes the following contributions:

– We define and outline a notional architecture for a model of an ICS
utility where all communication is gated by LangSec-compliant
parsers.

– We offer an analysis of this architecture, focusing on three points:
the degree of network coverage we currently offer, trade-offs, and
benefits.

– We discuss the details concerning a real ICS utility, e.g., an electric
distribution utility, that wants to implement the proposed archi-
tecture.

The rest of the paper is organized as follows. Section 2 presents the
required background and prior work, Section 3 discusses the architec-
ture of our ICS network, Section 4 provides an analysis of our design,
Section 5 discusses the procedure to augment an existing network to be
LangSec-compliant, and Section 6 concludes.

2. Background and Prior Work
Input-handling vulnerabilities have plagued networked systems since

their creation. Several popular bugs such as Heartbleed [6], Shellshock [17],
Rosetta Flash [16], and Apple’s goto bug [5] are all input-handling vul-
nerabilities. Any program that accepts input must validate the input
holistically to ensure the input complies with the specifications of the
protocol. Input-handling vulnerabilities stem from a violation of the
protocol in some way. Typically this is due to a programmer error, such
as forgetting to check a condition, but sometimes it is not a violation of
the protocol per se, but a deeper flaw in the nature of the protocol.

Many bugs and exploits are parsing errors at their root. Some work
has been done to show this fact in specific domains, such as USB [11],
but there has not been a large-scale effort to label all parsing bugs as
such. Another domain-specific work found over 30 input-handling vul-
nerabilities in various implementations of the DNP3 protocol [2]: Chris
Sistrunk and Adam Crain found only a few implementations that were
free of vulnerabilities. The immune devices were similar because each
deployed a very constrained subset of the DNP3 protocol, which reduced



4

the attack surface drastically. This finding supports our position that
using language subsets is a good way to eliminate input-handling vul-
nerabilities.

The impact of input-handling vulnerabilities ranges from devices crash-
ing to attackers gaining access to the device. Heartbleed saw attackers
exfiltrate data, and Apple’s goto bug allowed man-in-the-middle attacks.
Credentials could be gathered from these attacks to allow attackers ac-
cess to systems. Shellshock directly allowed attackers access to systems.
Given the range of systems with input-handling vulnerabilities, there is
no reason to think that gaining access to ICS devices using ICS protocols
is uniquely not possible. Even the case of merely crashing devices can-
not be allowed for critical ICS infrastructure. We must protect against
input-handling vulnerabilities.

2.1 Language-theoretic Security
Language-theoretic security (LangSec) postulates that all input re-

ceived by a program must be validated in entirety by a parser written
based on the formal grammar of the input before any use by program in-
ternals. When a program receives an unanticipated input, it drives the
program into a state that the developers did not anticipate. LangSec
hardened parsers ensure that the input validation code is explicitly and
clearly based on such a grammar, that it is logically separate from the
code performing processing on the input, and that a program can never
operate on input that has not been exhaustively verified. There is no
room for input that is “almost correct” because such input cannot be
meaningfully distinct from malicious, crafted input.

Parsers. For the entirety of this paper, we use the following defini-
tions. A language is a set of allowed inputs. A protocol is a grammar—a
list of production rules for a language. A parser is an implementation
of a protocol in code.

To construct a parser in a way that clearly and explicitly represents
the protocol, we use a tool called a parser combinator . A parser combi-
nator is a toolkit or framework that allows writing code which visually
resembles the formal grammar rather than a collection of if statements
to check all necessary conditions. Parser combinators dramatically re-
duces the possibility of programmer error, e.g., forgetting to check a
condition. We implement parsers with a parser combinator tool called
Hammer [15]. Hammer was developed with a security focus. Safety
is measured against the Chomsky hierarchy. The Chomsky hierarchy
is a set of classes used to indicate the complexity of a language [3].
These classes range from regular languages (think regular expressions1)



Millian et al. 5

to recursively enumerable (think Turing machines). Grammars that can
be expressed as deterministic-context-free or simpler are considered safe:
this limit has been discussed in prior work [13]. Parser combinator toolk-
its enable developers to build parsers for binary protocols, and specify
byte-level constraints about languages. Parser combinators provide a
way of representing top-down grammars. Hammer will parse the input
into an Abstract Syntax Tree (AST).

2.2 Industrial Control System Security
Industrial Control Systems differ from traditional IT systems and re-

quire appropriately different security approaches. ICS networks ulti-
mately control physical devices such as pumps or sensors using short
messages with extremely low latency. On the other hand, IT networks
are concerned with transferring data using much larger packets and
longer latencies. Additionally, ICS networks are typically deeper than
IT networks (see Figure 1). Much prior work has been done to ensure the
security of these systems. The prevailing security paradigm is defense-
in-depth, meaning adding security features and tools at each layer of the
network to compound protection against external threats [9].

Secure Design of ICS devices Our work on secure parsers comple-
ments the defense-in-depth model. Industrial Control Systems were ini-
tially designed with analog equipment for isolated, local use. Over time,
ICS networks have been augmented to allow automation and remote ac-
cess. New connections and capabilities pose new security concerns that
the systems were not designed to handle. Our approach is fundamen-
tally about ensuring message security at the protocol design phase. This
approach may require some modification of existing protocols if they do
not meet the complexity-limitation requirements for security. Because
we only restrict protocol complexity, our methods are compatible with
current defense-in-depth strategies. We do not require replacing exist-
ing security measures and can be used in conjunction with them. Our
approach can be used at every level of the defense-in-depth model to
increase the security claims at that level and between levels.

3. A Notional Architecture
In this section we discuss the design our notional architecture for a

LangSec-compliant ICS, that is, a utility which utilizes parsers developed
under a LangSec framework. Our notional architecture contains the
general elements and components of a real world network in an abstract
representation that is not tied to a single utility.



6

Figure 1. A summary of the Purdue model adapted from [18] annotated with various
paths an attacker might use to access the ICS network.

We first enumerate the types of devices found at a utility, which of
these are expected to communicate directly, and what protocols are used
for each edge of communication. Afterwards, we discuss the list of ex-
isting LangSec parsers developed in our lab over the past few years and
show that they offer coverage of the communication needs in our model
so that all communication may be guarded by LangSec parsers.

To design our notional architecture, we begin with the Purdue model,
shown in Figure 1. The Purdue model names six levels in ICS architecture—
Level 5: Enterprise Network, Level 4: Business Planning and Logistics
Network, Level 3: Site Manufacturing and Operations Control, Level 2:
Area Control, Level 1: Basic Control, and Level 0: Process Devices [18].
These levels are divided into several zones, where a zone corresponds to
large inter-connectivity. Implementing clear boundaries between zones
is considered best practice for enforcing multiple layers of defense.

For the scope of this paper, we focus mainly on Level 2 through Level
0, called the cell security zone or the SCADA zone. This zone is made
up of devices that can be found at a substation or directly involved
in managing a substation. Level 2 is concerned with monitoring and
controlling physical devices. Devices at this level include control center
operation workstations, Human Machine Interfaces (HMI), engineering
workstations, security event collectors, operations alarm systems, com-
munications front ends, data historians, and network/application ad-



Millian et al. 7

ministrator workstations. Level 1 is concerned with sensing and manip-
ulating physics devices. Devices at this level include dedicated operator
workstations, Programmable Logic Controllers (PLCs), control proces-
sors, programmable relays, Remote Terminal Units (RTUs), and process
specific microcontrollers. Level 0 contains physical devices such as sen-
sors, actuators, motors, process specific automation machinery, and field
instrumentation devices [12].

In our work, we had the opportunity to see several real and develop-
ment network architectures for the SCADA zone. These networks are
considered critical infrastructure so the specifics of network topology is
protected. Furthermore, there is a large variance in device types and
layout from station to station. These constraints move us to develop a
notional architecture that is not based on any given utility. We use an
architecture that is as generic as possible while still being useful. This
notional architecture, shown in Fig. 2 is derived from models described
in previous work [20, 10, 18].

Figure 2. Visual representation of our notional architecture



8

This generic architecture allows us to express coverage by focusing on
a small set of protocols being spoken on edges—e.g., RTU-RTU, RTU-
HMI, or Control Center-Substation—without too much concern for the
actual device model. What we mean by this is that while there are many
protocols for a given edge, e.g., RTU-HMI, our notion of coverage is that
we handle at least one of these protocols, therefore, it is feasible add this
protection. Vendor-specific protocols exist, but many vendors provide
devices capable of speaking a set of standard languages, so this concept
of coverage is practical. Using popular protocols allows easier integration
into any existing ecosystem. The set of popular protocols following is
determined by our own informal surveys and by existing surveys [10].

4. Analysis

4.1 Coverage
To date, our lab has developed secure input handling for the proto-

cols DNP3, MMS, Modbus, 61850-8-1 (GOOSE), IEEE C37.118 [1], SEL
Fast Message, HTTP, and Telnet. This section discusses how this se-
lection of protocols offers adaquate coverage of an ICS’s communication
needs.

DNP3, Manufacturing Message Specification (MMS) and Modbus are
considered the de-facto industry standards for communcation needs.
These protocols allow for communication between a master station’s Hu-
man Machine Interface (HMI) and other Remote Terminal Units (RTU),
Programmable Logic Controllers (PLC), and other Intelligent Electronic
Devices (IED). SEL Fast Message is a vendor-specific protocol for SEL
devices that handles much of the same communication. GOOSE is used
to broadcast or multicast event data fast and reliably in a substation;
GOOSE messages have a maximum latency of 4ms. For Wide Area Net-
works (WANS), phasor data can be transmitted used IEEE C37.118.
To allow communication between workstations and to configure devices,
HTTP, FTP, and Telnet may be used.

To reiterate, we cover communication from Level 2 downwards via
the popular DNP3, MMS, and Modbus protocols as well as the vendor-
specific SEL FastMessage. We cover Level 1 substation-to-physical de-
vices via GOOSE and IEEE C37.118. Finally, we can cover workstation-
to-workstation communication over HTTP and Telnet. By implementing
parsers for these ICS protocols, we offer a large degree of protection for
the majority of low level (on the Purdue Model) OT traffic on most net-
works. In particular, we offer secure parsing for the protocols responsible
for manipulating physical devices, a task which has a very high priority.

The process to add more coverage is discussed in Section 5.



Millian et al. 9

4.2 Benefits
In this section, we discuss the benefits our secure input handling offers.
The largest benefit for using a parser combinator tool is the possibil-

ity of provably correct code. The programmer implementing a parser
should not have to worry about the correctness of the combinators in
the same way that most programmers should not have to worry about
the correctness of the compiler.

While the work to prove the correctness of each combinator in Ham-
mer still needs to be done, there are only two possibilities from this
work: either each combinator is correct or there is a bug in some combi-
nator. If a bug is found in any individual combinator during this process,
it can be corrected without needing to rewrite any parsers built using
that combinator (though they will have to be recompiled using the up-
dated combinator library). This is because each combinator performs
a function that is fully understood from formal computational theory,
so the function signature of each combinator is set, only the internals
may change. Once this proof work is complete, every LangSec parser
built with combinations of these combinators immediately gets the full
benefit of provable safety.

The other benefit of the parser combinator is that it reduces the work
of the programmer working on a parser. A key observation of LangSec is
that attention to match the complexity of the parser to the complexity
of the protocol must be baked in during the development and imple-
mentation process. Traditional parser programming resembles a series
of if statements checking conditions. We have already discussed how it
is easy to miss a condition, as in Heartbleed and in Apple’s goto bug,
but even when a fix is provided, it is still difficult to compare the new
parser to the protocol to show they match completely [13].

Using a parser combinator simplifies this comparison task and thus
decreases the likelihood of errors and the ease of fixes should errors
occur. A parser combinator tool produces code that visually matches
the structure of the grammar in order to make verification of equality
trivial. Furthermore, a tool like Hammer does not have combinators
that would allow programming too-complex constructions like Turing
machines. If a programmer cannot implement a protocol feature using
a parser combinator, it is an indication that perhaps that feature is
not safe and a subset of the protocol without that feature should be
used. Ideally, if we see the practice of subsetting protocols to remove
unsafe features, this will lead to more protocols designed without unsafe
features to begin with.



10

The goal, and the end result of using a parser combinator, is a parser
that accepts all only messages in the protocol specification. The work
of implementing protocols safely can then be properly pulled apart from
both the work of designing protocols and the work of designing the parser
combinator tool.

Our prior work with DNP3 demonstrates this approach in practice
for ICS protocols. Implementing the DNP3 parser revealed that the
specification indicated that the transport layer payload contain at least
1 byte, but “zero-length APDU (application layer message) would cause
unhandled exceptions in certain implementations” [2]. Each protocol we
implemented contained such features that are usually handled by an if
check in the parser. The LangSec approach to parser building considers
such a feature of the packets structure as a primary feature when writing
the parser. This approach greatly decreases the chance that such a check
can be left out.

4.3 Trade-offs
The major trade-off that comes with LangSec parsers is the occasional

need to subset the protocol when inherently unsafe features are found in
the protocol. The cost associated with this modification is the possibility
that existing network devices regularly or occasionally emit messages
using the unsafe features. In our experience, these messages represented
a small fraction, if any fraction, of actual traffic. However this may not
be representative, and the trade-off may be greater depending on use
case.

We offer a warning about keeping unsafe features. Unsafe features are
much more often about the format of the message than the content of
the message, especially when it comes to the kind of data used in ICS
networks. We understand the need to send certain kinds of messages
and the development cost involved in any change, but the cost is the
risk of an attacker crashing devices, exfiltrating data, or taking control
of devices, as we have seen many times in many different systems.

5. A Triage Procedure
In this section we discuss the roadmap we have developed to get

LangSec parsers into ICS networks so that utilities may realize the secu-
rity benefits from our architecture. The roadmap is described as a three
step plan to engage with utilities and vendors. First, we write LangSec
parsers and incorporate them into devices on a per-device basis on a lab
bench. Second, we create a virtual substation in a lab. Finally, we work
with utilities and vendors to replace parser implementations in device



Millian et al. 11

firmware on the existing product refresh cycle. We close this section
with the report of where we currently are on this roadmap.

5.1 Protocols and Devices
The first step is to write and test parsers for the range of protocols

used in ICS networks. We have made headway on this task by imple-
menting parsers for eight protocols, as noted earlier. Accomplishing this
task in full requires collecting a complete list of protocols used.

For each protocol, we find the protocol specification and then write
and test a LangSec parser. At first, this testing is implemented as a
bump-in-the-wire. We must ensure that the messages passed by the
LangSec parsers allow the normal operation of the devices behind them.

There are difficulties inherent in this procedure to be aware of. First,
obtaining documentation for SCADA protocols can be difficult. Many
of the protocols specifications we dealt with were not free; costs ranged
from a few hundred dollars to several thousand dollars. Second, the
protocol specification obtained may not include the complete protocol;
some protocols import other protocols to utilize existing work and offset
the design burden, e.g., the data encoding format or protocol data unit
(PDU). We found these embedded protocols might also not be free, in-
curring an additional monetary cost. Third, there is neither uniformity
nor good practice when it comes to describing the protocol. Some specifi-
cations are all prose, and the developer must extract the structure of the
grammar. Some protocols are more helpful and include state machines
or grammars. Possibly worse though, some include state machines or
grammars but modify the function of those machines in prose [2]. This
causes divergent implementations depending on how closely the pro-
grammer reads the documentation. Until protocol-specification writing
improves, a close reading of the specification is necessary. Fourth, some-
times the protocols themselves include unsafe features, and a LangSec
parser must subset the protocol before implementing the parser. An
example of an unsafe feature is nested length fields. Inclusion of nested
length fields requires the inner length agree, e.g., the inner length does
not exceed the outer length. This relation cannot be described purely in
terms of the structure of the packets using a context-free language since
it requires fully parsing both the outer and inner fields to determine
agreement. If adherence to the protocol is not maintained in the struc-
ture of the packet but left to a check after-the-fact, it is too common for
some check or other to be forgotten [5, 6].

After the parsers are written and tested as a bump-in-the-wire to en-
sure that devices can operate as needed, we must replace native parsers



12

with LangSec parsers on a by-device basis. This action is required
because ICS protocols have maximum latency requirements, and pars-
ing every message twice is not something we can afford. Incorporating
LangSec parsers as the native parser also explains one way we provide
security benefits beyond traditional Intrusion Detection Systems. IDS
programs have difficulty providing insight into encrypted messages, but
every message must be decrypted and parsed by a device. Thus, in-
corporating LangSec parsers as the only native parser in a device adds
precise security properties to devices.

5.2 A Virtual Substation
After implementing a full range of parsers for ICS protocols and in-

corporating them into devices, the next step is to create and operate a
virtual substation containing LangSec-hardened devices in a lab. Before
deploying LangSec parsers into critical infrastructure, we want guaran-
tees that not only will individual devices will work, but that we under-
stand the consequences of a network of such devices operating under
normal and stress conditions.

The virtual substation should be a fully-functioning substation that
runs parallel to real-world networks but which does not affect real-world
networks. It can ingest either real-time data or replayed captures, and
it can operate either real or simulated devices. Developers can analyze
the system to ensure correct operation of the virtual substation with no
risk to the larger network.

The first step can motivate LangSec-hardened devices through a list
of vulnerabilities that LangSec parsers prevent. This step will provide
the data that LangSec-hardened devices are operationally viable, which
we can present to utilities and vendors.

5.3 Deployment
Our last step involves putting LangSec-hardened devices in the field.

This step has all the real-world constraints not found in the lab tests of
the first two steps. In particular, ICS networks are slow to incorporate
changes, and these changes are designed to last decades. We believe we
can take advantage of the existing refresh cycle to push LangSec parsers
to devices as a firmware update.

5.4 Where We Are
We are currently in step one on our roadmap. This paper outlines the

work we have done writing eight LangSec parsers on a per-protocol basis.
We have tested these protocols as bump-in-the-wire tools in confidential



Millian et al. 13

field trials [14]. We have also put LangSec parsers for a proprietary
JSON-based protocol into devices at GE [7].

We want to make these parsers publicly available, either as open
source or under a similar license. It should not be the case that ev-
ery programmer needs to implement a parser to read input in a known
format. We aim to move towards a world where a standard library ex-
ists for each parser. We would love the crypto-idiom “don’t roll your
own crypto” to extend to parsers - “don’t roll your parsers”. The num-
ber of vulnerabilities we see due to poor parser code makes us feel our
motivation here is justified.

Currently, the code for our DNP3 parser and our C37.118 parser is
available on GitHub [4]. We are working on getting the rest of the parsers
to live under the same master repository.

6. Conclusions
This paper presented the design and implementation of an ICS that

used only LangSec-compliant implementations of their protocols.
This paper helps prevent input-handling vulnerabilities in an ICS that

could lead to denial of service attacks and cause remote code execution.
We achieved this by implementing LangSec-compliant parsers for all the
communication protocols in an ICS. We presented the overall architec-
ture of the power utility communications and described various ways
utilities could install these parsers in their networks.

Acknowledgement
This material is based upon work supported by the United States Air

Force and DARPA under Contract No. FA8750-16-C-0179 and Depart-
ment of Energy under Award Number DE-OE0000780.

Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect
the views of the United States Air Force, DARPA, United States Gov-
ernment or any agency thereof.





References

[1] Anantharaman, P., Palani, K., Brantley, R., Brown, G., Bratus,
S., Smith, S.W.: PhasorSec: Protocol security filters for wide area
measurement systems. In: 2018 IEEE International Conference on
Communications, Control, and Computing Technologies for Smart
Grids (SmartGridComm). pp. 1–6 (2018)

[2] Bratus, S., Crain, A.J., Hallberg, S.M., Hirsch, D.P., Patterson,
M.L., Koo, M., Smith, S.W.: Implementing a vertically hardened
DNP3 control stack for power applications. In: Proceedings of the
Second Annual Industrial Control System Security Workshop. pp.
45–53 (2016)

[3] Chomsky, N.: Three models for the description of language. IRE
Transactions on information theory 2(3), 113–124 (1956)

[4] at Dartmouth College, S.S.G.: Dartmouth’s PKI/trust lab, github.
com/Dartmouth-Trustlab

[5] Ducklin, P.: Anatomy of a “goto fail” Apple’s SSL bug explained,
plus an unofficial patch for OS X!, nakedsecurity.sophos.
com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-
explained-plus-an-unofficial-patch/

[6] Durumeric, Z., Li, F., Kasten, J., Amann, J., Beekman, J., Payer,
M., Weaver, N., Adrian, D., Paxson, V., Bailey, M., et al.: The
matter of heartbleed. In: Proceedings of the 2014 conference on
internet measurement conference. pp. 475–488 (2014)

[7] for Energy Delivery Systems (CEDS) R&D Program, C.: From inno-
vation to practice: Re-designing energy delivery systems to survive
cyber attacks (2018)

[8] Freeman, J.: Exploit (& fix) Android “master key”, www.saurik.
com/id/17



16

[9] Galloway, B., Hancke, G.P.: Introduction to industrial control net-
works. IEEE Communications Surveys & Tutorials 15, 860–880
(2013)

[10] Hurd, C.M., McCarty, M.V.: A survey of security tools for the indus-
trial control system environment. Tech. Rep. INL/EXT-17-42229,
Idaho National Lab (2017)

[11] Johnson, P.C., Bratus, S., Smith, S.W.: Protecting against malicious
bits on the wire: Automatically generating a USB protocol parser
for a production kernel. In: Proceedings of the Thirty-Third Annual
Computer Security Applications Conference. pp. 528–541 (2017)

[12] Lee, R.M.: Detecting the Siemens S7 worm and similar capa-
bilities (2016), blogs.sans.org/industrial-control-systems/
2016/05/

[13] Momot, F., Bratus, S., Hallberg, S.M., Patterson, M.L.: The seven
turrets of babel: A taxonomy of LangSec errors and how to expunge
them. In: Cybersecurity Development (SecDev), IEEE. pp. 45–52
(2016)

[14] Newman, L.H.: The hail mary plan to restart a hacked US electric
grid. Wired (2018)

[15] Patterson, M.: Parser combinators for binary formats, in C, github.
com/UpstandingHackers/hammer

[16] Spagnuolo, M.: Abusing JSONP with Rosetta Flash, miki.it/
blog/2014/7/8/abusing-jsonp-with-rosetta-flash/

[17] Symantec Security Response Team: ShellShock: All
you need to know about the bash bug vulnerability,
www.symantec.com/connect/blogs/shellshock-all-you-
need-know-about-bash-bug-vulnerability

[18] Team, I.C.S.C.E.R.: Recommended practice: Improving industrial
control system cybersecurity with defense-in-depth strategies. Tech.
rep., Department of Homeland Security (2016)

[19] Torpey, K.: The DAO disaster illustrates differing philosophies in
Bitcoin and Ethereum, www.coingecko.com/buzz/dao-disaster-
differing-philosophies-bitcoin-ethereum

[20] Veitch, C.K., Henry, J.M., Richardson, B.T., Hart, D.H.: Microgrid
cyber security reference architecture. Tech. Rep. SAND2013-5472,
Sandia National Laboratories (2013)




