
Crypto Corner
Editors: Peter Gutmann, pgut001@cs.auckland.ac.nz
David Naccache, david.naccache@ens.fr
Charles C. Palmer, ccpalmer@us.ibm.com

60	 COPUBLISHED BY THE IEEE COMPUTER AND RELIABILITY SOCIETIES 	 	 1540-7993/11/$26.00 © 2011 IEEE� JULY/AUGUST 2011

cryptographic solution. However,
the straightforward, textbook-style
solution for personal browsing
doesn’t work here; the legacy grid’s
computing infrastructure con-
strains the comfortable excess nec-
essary for this approach:

•	Vast portions of the computa-
tion infrastructure are old, and
won’t change anytime soon. We
can’t begin a solution with “re-
place it all with the latest and
greatest”; we have to work with
what’s there.

•	This infrastructure features
very slow (for example, 9600
baud) serial lines and occasion-
ally might operate at capacity.
In personal browsing, we can
ignore data bloat, but not here.

•	Grid control operates in near
real time—if a power line has
fallen, we can’t wait seconds
for the communication to fin-
ish. We need to think about the
latency cost of any protections
we add.

•	The communications we need
to protect might be very short—
dozens of bytes, not millions—
and might not necessarily
announce their lengths a priori.

•	Any computing devices we add
might also have limited power
and memory, and won’t likely be
replaced anytime soon.

Solving this problem requires
stepping away from the picture-
perfect world of textbook assump-
tions and into some dusty corners

to streaming audio, buying things.
So when we think of crypto-
graphic protections on the data
exchanged in distributed comput-
ing, it’s easy to think of the stan-
dard protections we use in these
scenarios, including public-key
handshakes for authentication and
establishment of session keys and
AES (Advanced Encryption Stan-
dard) with ultralong keys running
in CBC (cipher block chaining)
mode to protect the data from pry-
ing eyes. If we’re going to be fussy
and worry about data integrity as
well as confidentiality, we’ll add an
HMAC (hash-based message au-
thentication code) or such.

But there’s more to the story.
(Isn’t there always?) These scenarios
all feature comfortable excess—
computers are new and power-
ful and have ample memory, data
transmissions are plump with bytes
(so a few more here and there don’t
matter), the network is fast and
has plenty of bandwidth, and users
won’t notice if data is a bit late now
and then.

However, just as life on Earth
consists of far more than just
sentient mammals, the comput-

ing infrastructure consists of far
more than just these relatively
advanced scenarios. In particu-
lar, consider the electric power
grid—arguably the world’s largest
distributed system and the criti-
cal infrastructure that underlies
all other critical infrastructures.
Because electricity can’t be stored
efficiently in large quantities, grid
operation requires maintaining
delicate, near-real-time coordina-
tion among generation, transmis-
sion, and consumption—hence
the need for distributed compu-
tation and communication. Ad-
versaries forging communications
might cause havoc by impersonat-
ing the control center and telling
a substation to open or close lines
incorrectly, or impersonating a
substation and lying to the con-
trol center about the state of some
critical data. (Recall that an alarm
system’s failure to send out cor-
rect alerts exacerbated the 2003
Northeast blackout in the US.)

The consequences of a se-
curity problem in this distrib-
uted computation might be
considerably higher than in per-
sonal browsing—and argue for a

W
hen we hear the term distributed comput-

ing, it’s tempting to think of the things

we might do on a recent-issue PC or lap-

top connected to an ultrafast Internet—

surfing the Web, sending documents and images, listening

Sean W. Smith

Dartmouth
College

Room at the Bottom

Authenticated Encryption
on Slow Legacy Networks

Crypto Corner

	 www.computer.org/security� 61

of cryptography accommodating
real-world constraints.

However, in one aspect, our
problem is easier than personal
browsing: the network topology is
fairly static. The correct party on
the other end of the line will be
one of only a few possible candi-
dates, rather than anyone on the
Internet; as a result, we don’t need
a public-key infrastructure and
100 trust roots to make conclu-
sions about a huge population of
legitimate senders.

Bump in the Wire
So what do we do? To begin, we
must remember that cryptography
isn’t just for confidentiality. Often
in legacy networks, data content
isn’t particularly sensitive—what’s
critical is that a fresh communi-
cation comes from the correct
sender. This requirement takes us
away from the Crypto 101 con-
cept of “you need the secret key to
make sense of this message” to the
Crypto 102 concept of “you need
the secret key to have produced
this message in the first place.” In
the typical model, the sender uses
the secret key to produce some
cryptographically secure message
authentication code (MAC) on the
message data, and sends that along
with the message.

When random noise can cor-
rupt a message, a standard en-
gineering solution is to append
some type of checksum—such as
a cyclic redundancy checksum
(CRC)—to the message. The
checksum function C() is designed
so that if random noise changes
the message m and/or checksum c
to some m′,c′, it’s unlikely that c′ =
C(m′). However, security requires
protection against malicious, not
random, errors; if adversaries
know how to change m to m′, and
then are able to change the check-
sum c to one that matches m′, we
lose. Standard CRC techniques
fall prey to this, which is why we
need cryptography.

We can’t replace the lega-
cy network or the legacy end-
point devices. So, we live with
them, but insert a bump in the wire
(BITW) on either end. We use
these specialized boxes to add
cryptographic protections to the
legacy network. Figure 1 sketches
this framework.

Of course, now we have to
figure out what these protections
should be!

A critical challenge is latency.
Adding cryptographic integrity
protections to communications
can’t delay the process of sending
and receiving a message. Keep-
ing latency down leads to think-
ing about obvious issues, such as
reducing the computation’s over-
head. However, in the context of
our constraints, it also leads to a
perfect storm of more subtle issues.

When dealing with slow serial
networks, we need to think about
bit overhead. The MAC or crypto-
graphic checksum we add must be
long enough to prevent adversaries
from randomly guessing the cor-
rect one. For example, if the MAC
value is only 4 bits long, adversar-
ies have a one-in-16 (24) chance
of finding one that matches the
forged message simply by guess-
ing. Consequently, we measure an
integrity method’s security by how
long the MAC value is and thus
how resistant it is to guessing—as-
suming, of course, that the system
is designed to be cryptographically
strong and resistant to more clever
computational attacks.

But because every byte costs a
delay in transmission, we want to
minimize the number of extra bytes.

With the communicating send-
er’s slowness, we don’t have the
luxury of waiting for the message
to fully arrive before computing
our cryptographic protections and
sending them on. Thus, instead of
the typical offline model, we need
to think about an online model.
When the bits arrive, we must do
something quickly and send them
on. Consequently, we probably
won’t send the MAC until after
we send the message, because we
won’t know what it is until we see
the entire message.

For computer scientists, sym-
metric ciphers are always block ci-
phers—keyed permutations on bit
strings with a fixed block length.
Secure operation requires chain-
ing together successive blocks in
a message. For short transmis-
sions, we must also consider the
rounding up of bits to a full block
length. For instance, if our mes-
sage is only a few bytes, extending
it out to a full 128-bit AES block
adds significant overhead. Con-
sequently, we need to move from
block- to stream-oriented ciphers.

To deal with the receiver’s
slowness, we also need to think
about message holdback. Our receiv-
ing BITW won’t know whether a
message is valid or forged until it
receives the entire message and
the MAC value. If our receiving
BITW starts forwarding bits on to
the legacy endpoint as soon as it
receives them, what should it do
if the MAC check fails? It can’t
reach down the wire and pull the
bits back! But the alternative is to
buffer the entire message until the
MAC arrives and is verified, and

Legacy
sender

Legacy
receiver

Bump in
the wire

Bump in
the wire

Sending station Receiving station

Subject to
adversary

Figure 1. The basic framework adds a bump in the wire at either end. These

specialized embedded boxes add cryptographic protection.

Crypto Corner

62	 IEEE SECURITY & PRIVACY� JULY/AUGUST 2011

then start sending it on. Unfor-
tunately, this alternative approach
delays each message by at least the
length of time it takes to transmit
the message over our slow net-
work and also requires sufficient
memory at the receiving BITW
to hold the entire transmission.

Stream Ciphers
If we need confidentiality, we
can’t use a traditional block ci-
pher in a block-oriented fashion;
this would require rounding up
to a block length before send-
ing. However, standard textbooks
give ways to use blessed block
algorithms in stream fashion.
For example, in the project my
lab built in this space, we used
AES in counter mode: we used
the secret key to transform a se-
quence of counter values into a
pseudorandom sequence, which
we could then use as a stream ci-
pher.1,2 This approach also has
the advantage that we can do the
hairy computation—the AES
operations themselves—indepen-
dently of the plaintext, before we
even know the plaintext bits. The
only operation affecting latency

is a simple bitwise exclusive-OR
(XOR); the same considerations
apply at the receiver.

For integrity and authenticity,
we can use standard HMAC based
on SHA-1, but truncate the out-
put to a value that’s long enough
to be secure yet smaller than the
full 160-bit SHA-1, which takes
too long to transmit. The MAC
value length has other costs: be-
cause the receiving BITW can’t
know whether the message is valid
until it receives the entire MAC
value, it can’t finish forwarding
the message to the receiving end-
point until the entire HMAC has
arrived. (Although claiming ab-
solute limits is a risky business, it
certainly appears the latency can
never be lower than the time it
takes to transmit the HMAC.)

The receiving BITW can’t for-
ward the message to the receiving
endpoint until it has obtained and
verified the HMAC. However,
it can start transmitting bytes as
soon as it gets them (and XORs, if
we want confidentiality too). Ear-
lier, I lamented how the BITW
can’t reach down the wire and
pull back the bits if the HMAC

fails. However, it doesn’t have to.
Although these legacy networks
weren’t designed for security, they
were designed to work despite
random failures. Consequently,
the legacy protocols typically have
some way—such as a checksum or
a closing handshake—for an end-
point to detect if the message was
damaged in transit. Building on
this, Andrew Wright and his col-
leagues made the clever observa-
tion that a receiving BITW can
transform a malicious error into a
random error: if the HMAC value
fails, the receiving BITW delib-
erately fouls the end of the hand-
shake.3 Figure 2 shows this trick.

Patrick Tsang and I designed
and prototyped the YASIR (Yet
Another Security Retrofit) pro-
tocol, which followed this design
sketch1 and tried to further opti-
mize it by exploiting local knowl-
edge.2 Other solutions include the
Hallmark/SSCP (Secure SCADA
Communication Protocol) proj-
ect developed by Mark Hadley at
Pacific Northwest National Lab
and commercialized by Schweizer
Engineering.4 The details of Hall-
mark are still confidential, but
its BITW version appears to use
message holdback.

I n personal browsing scenari-
os, the notion of data arriving

gradually seems rather natural (if
annoying). We don’t wait until all
the gigabytes arrive to suddenly
see them; things appear piecemeal.
In the slow legacy networks we’re
considering, latency forces us to
process data on the fly.

Surprisingly, symmetric cryp-
tography analysis has focused on
offline schemes.5,6 Online en-
cryption and decryption analysis
was slow in coming7,8 and even
then focused on blockwise models
rather than the streamwise model
forced on us by low-latency appli-
cations on slow networks.9

Computing systems in the real

Legacy
sender

Legacy
receiver

Sending station Receiving station

Protected against
random errors
but vulnerable

to malicious attack

(a)

Legacy
sender

Legacy
receiver

Bump in
the wire

Bump in
the wire

Sending station Receiving station

A malicious
attack here ...

... turns into a
random error here(b)

Figure 2. (a) Legacy networks already protect against random errors. (b) By

transforming a hash-based message authentication code (HMAC) failure into

a random error, the receiving bump in the wire (BITW) can deliberately foul

the end of the closing handshake.

Crypto Corner

www.computer.org/security 63

world aren’t always as simple and
conveniently powerful as one
might think; engineering cryp-
tography for these systems can be
interesting.

References
1. P. Tsang and S. Smith, “YASIR:

A Low-Latency, High- Integrity
Security Retrofi t for Legacy
SCADA Systems,” Proc. IFIP
TC 11 23rd Int’l Information Se-
curity Conf., Springer, 2008, pp.
445–459.

2. R. Solomakhin, P. Tsang, and
S.W. Smith, “High Security with
Lower Latency in Legacy SCA-
DA,” Proc. 4th Ann. IFIP Work-
ing Group 11.10 Int’l Conf. Critical
Infrastructure Protection, Springer,
2010, pp. 63–80.

3. A. Wright, J. Kinast, and J. Mc-
Carty, “Low-Latency Crypto-
graphic Protection for SCADA

Communications,” Proc. 2nd Int’l
Conf. Applied Cryptography and
Network Security, LNCS 3089,
Springer, 2004, pp. 263–277.

4. J. Chappell, “Hallmark Cryp-
tographic Serial Communica-
tion,” 2010; www.oe.energy.gov/
D o c u m e n t s a n d M e d i a /
H a l l m a r k _ C r y p t o g r a p h i c
_Serial_Communication.pdf.

5. M. Bellare et al., “A Concrete Se-
curity Treatment of Symmetric
Encryption,” Proc. IEEE Symp.
Foundations of Computer Science
(FOCS 97), IEEE CS Press, 1997,
pp. 394–403.

6. P. Rogaway, “Nonce-Based Sym-
metric Encryption,” Proc. FSE,
LNCS 3017, Springer, 2004, pp.
348–359.

7. M. Bellare, T. Kohno, and C.
Namprempre, “Authenticated En-
cryption in SSH: Provably Fixing
the SSH Binary Packet Protocol,”

Need to keep up with the newest developments in computing and IT?
Looking to enhance your knowledge and skills?

Want to shape the future of your profession?

If you answered “yes” to any of these questions, IEEE Computer Society membership is definitely for you!

With benefits that include:

Discover	even	more	benefits	and	become	an	IEEE Computer Society Member	today	at

www.computer.org

Why

as	a	Member	of		IEEE	Computer	Society
YOU	BELONG	

•	Access	to	600	online	books	from	top	publishers,	such	as	O’Reilly	Media.
•	Access	to	3,500	technical	and	business	courses.
•	Access	to	conferences,	publications,	and	certification	credentials	at	exclusive	member-only	savings.

Proc. ACM Conf. Computer and
Communications Security, ACM
Press, 2002, pp. 1–11.

8. A. Joux, G. Martinet, and F.
Valette, “Blockwise-Adaptive
Attackers: Revisiting the (In)
Security of Some Provably Se-
cure Encryption Models: CBC,
GEM, IACBC,” Crypto, LNCS
2442, Springer, 2002, pp. 17–30.

9. P. Tsang, R. Solomakhin, and
S.W. Smith, Astro: Authenticated
Streamwise On-line Encryption,
tech. report TR2009-640, Com-
puter Science Dept., Dartmouth
College, Mar. 2009.

Sean W. Smith is a professor at Dart-

mouth College. Contact him at sws@

cs.dartmouth.edu.

Selected CS articles and columns
are also available for free at

http://ComputingNow.computer.org.

