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cryptographic solution. However, 
the straightforward, textbook-style 
solution for personal browsing 
doesn’t work here; the legacy grid’s 
computing infrastructure con-
strains the comfortable excess nec-
essary for this approach: 

•	Vast portions of the computa-
tion infrastructure are old, and 
won’t change anytime soon. We 
can’t begin a solution with “re-
place it all with the latest and 
greatest”; we have to work with 
what’s there.

•	This infrastructure features 
very slow (for example, 9600 
baud) serial lines and occasion-
ally might operate at capacity. 
In personal browsing, we can 
ignore data bloat, but not here.

•	Grid control operates in near 
real time—if a power line has 
fallen, we can’t wait seconds 
for the communication to fin-
ish. We need to think about the 
latency cost of any protections 
we add.

•	The communications we need 
to protect might be very short—
dozens of bytes, not millions—
and might not necessarily 
announce their lengths a priori.

•	Any computing devices we add 
might also have limited power 
and memory, and won’t likely be 
replaced anytime soon.

Solving this problem requires 
stepping away from the picture-
perfect world of textbook assump-
tions and into some dusty corners 

to streaming audio, buying things. 
So when we think of crypto-
graphic protections on the data 
exchanged in distributed comput-
ing, it’s easy to think of the stan-
dard protections we use in these 
scenarios, including public-key 
handshakes for authentication and 
establishment of session keys and 
AES (Advanced Encryption Stan-
dard) with ultralong keys running 
in CBC (cipher block chaining) 
mode to protect the data from pry-
ing eyes. If we’re going to be fussy 
and worry about data integrity as 
well as confidentiality, we’ll add an 
HMAC (hash-based message au-
thentication code) or such. 

But there’s more to the story. 
(Isn’t there always?) These scenarios 
all feature comfortable excess—
computers are new and power-
ful and have ample memory, data 
transmissions are plump with bytes 
(so a few more here and there don’t 
matter), the network is fast and 
has plenty of bandwidth, and users 
won’t notice if data is a bit late now 
and then.

However, just as life on Earth 
consists of far more than just 
sentient mammals, the comput-

ing infrastructure consists of far 
more than just these relatively 
advanced scenarios. In particu-
lar, consider the electric power 
grid—arguably the world’s largest 
distributed system and the criti-
cal infrastructure that underlies 
all other critical infrastructures. 
Because electricity can’t be stored 
efficiently in large quantities, grid 
operation requires maintaining 
delicate, near-real-time coordina-
tion among generation, transmis-
sion, and consumption—hence 
the need for distributed compu-
tation and communication. Ad-
versaries forging communications 
might cause havoc by impersonat-
ing the control center and telling 
a substation to open or close lines 
incorrectly, or impersonating a 
substation and lying to the con-
trol center about the state of some 
critical data. (Recall that an alarm 
system’s failure to send out cor-
rect alerts exacerbated the 2003 
Northeast blackout in the US.)

The consequences of a se-
curity problem in this distrib-
uted computation might be 
considerably higher than in per-
sonal browsing—and argue for a 
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of cryptography accommodating 
real-world constraints.

However, in one aspect, our 
problem is easier than personal 
browsing: the network topology is 
fairly static. The correct party on 
the other end of the line will be 
one of only a few possible candi-
dates, rather than anyone on the 
Internet; as a result, we don’t need 
a public-key infrastructure and 
100 trust roots to make conclu-
sions about a huge population of 
legitimate senders.

Bump in the Wire
So what do we do? To begin, we 
must remember that cryptography 
isn’t just for confidentiality. Often 
in legacy networks, data content 
isn’t particularly sensitive—what’s 
critical is that a fresh communi-
cation comes from the correct 
sender. This requirement takes us 
away from the Crypto 101 con-
cept of “you need the secret key to 
make sense of this message” to the 
Crypto 102 concept of “you need 
the secret key to have produced 
this message in the first place.” In 
the typical model, the sender uses 
the secret key to produce some 
cryptographically secure message 
authentication code (MAC) on the 
message data, and sends that along 
with the message.

When random noise can cor-
rupt a message, a standard en-
gineering solution is to append 
some type of checksum—such as 
a cyclic redundancy checksum 
(CRC)—to the message. The 
checksum function C() is designed 
so that if random noise changes 
the message m and/or checksum c 
to some m′,c′, it’s unlikely that c′ = 
C(m′). However, security requires 
protection against malicious, not 
random, errors; if adversaries 
know how to change m to m′, and 
then are able to change the check-
sum c to one that matches m′, we 
lose. Standard CRC techniques 
fall prey to this, which is why we 
need cryptography.

We can’t replace the lega-
cy network or the legacy end-
point devices. So, we live with 
them, but insert a bump in the wire 
(BITW) on either end. We use 
these specialized boxes to add 
cryptographic protections to the 
legacy network. Figure 1 sketches 
this framework.

Of course, now we have to 
figure out what these protections 
should be!

A critical challenge is latency. 
Adding cryptographic integrity 
protections to communications 
can’t delay the process of sending 
and receiving a message. Keep-
ing latency down leads to think-
ing about obvious issues, such as 
reducing the computation’s over-
head. However, in the context of 
our constraints, it also leads to a 
perfect storm of more subtle issues.

When dealing with slow serial 
networks, we need to think about 
bit overhead. The MAC or crypto-
graphic checksum we add must be 
long enough to prevent adversaries 
from randomly guessing the cor-
rect one. For example, if the MAC 
value is only 4 bits long, adversar-
ies have a one-in-16 (24) chance 
of finding one that matches the 
forged message simply by guess-
ing. Consequently, we measure an 
integrity method’s security by how 
long the MAC value is and thus 
how resistant it is to guessing—as-
suming, of course, that the system 
is designed to be cryptographically 
strong and resistant to more clever 
computational attacks.

But because every byte costs a 
delay in transmission, we want to 
minimize the number of extra bytes.

With the communicating send-
er’s slowness, we don’t have the 
luxury of waiting for the message 
to fully arrive before computing 
our cryptographic protections and 
sending them on. Thus, instead of 
the typical offline model, we need 
to think about an online model. 
When the bits arrive, we must do 
something quickly and send them 
on. Consequently, we probably 
won’t send the MAC until after 
we send the message, because we 
won’t know what it is until we see 
the entire message.

For computer scientists, sym-
metric ciphers are always block ci-
phers—keyed permutations on bit 
strings with a fixed block length. 
Secure operation requires chain-
ing together successive blocks in 
a message. For short transmis-
sions, we must also consider the 
rounding up of bits to a full block 
length. For instance, if our mes-
sage is only a few bytes, extending 
it out to a full 128-bit AES block 
adds significant overhead. Con-
sequently, we need to move from 
block- to stream-oriented ciphers.

To deal with the receiver’s 
slowness, we also need to think 
about message holdback. Our receiv-
ing BITW won’t know whether a 
message is valid or forged until it 
receives the entire message and 
the MAC value. If our receiving 
BITW starts forwarding bits on to 
the legacy endpoint as soon as it 
receives them, what should it do 
if the MAC check fails? It can’t 
reach down the wire and pull the 
bits back! But the alternative is to 
buffer the entire message until the 
MAC arrives and is verified, and 
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Figure 1. The basic framework adds a bump in the wire at either end. These 

specialized embedded boxes add cryptographic protection.
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then start sending it on. Unfor-
tunately, this alternative approach 
delays each message by at least the 
length of time it takes to transmit 
the message over our slow net-
work and also requires sufficient 
memory at the receiving BITW 
to hold the entire transmission.

Stream Ciphers
If we need confidentiality, we 
can’t use a traditional block ci-
pher in a block-oriented fashion; 
this would require rounding up 
to a block length before send-
ing. However, standard textbooks 
give ways to use blessed block 
algorithms in stream fashion. 
For example, in the project my 
lab built in this space, we used 
AES in counter mode: we used 
the secret key to transform a se-
quence of counter values into a 
pseudorandom sequence, which 
we could then use as a stream ci-
pher.1,2 This approach also has 
the advantage that we can do the 
hairy computation—the AES 
operations themselves—indepen-
dently of the plaintext, before we 
even know the plaintext bits. The 
only operation affecting latency 

is a simple bitwise exclusive-OR 
(XOR); the same considerations 
apply at the receiver. 

For integrity and authenticity, 
we can use standard HMAC based 
on SHA-1, but truncate the out-
put to a value that’s long enough 
to be secure yet smaller than the 
full 160-bit SHA-1, which takes 
too long to transmit. The MAC 
value length has other costs: be-
cause the receiving BITW can’t 
know whether the message is valid 
until it receives the entire MAC 
value, it can’t finish forwarding 
the message to the receiving end-
point until the entire HMAC has 
arrived. (Although claiming ab-
solute limits is a risky business, it 
certainly appears the latency can 
never be lower than the time it 
takes to transmit the HMAC.)

The receiving BITW can’t for-
ward the message to the receiving 
endpoint until it has obtained and 
verified the HMAC. However, 
it can start transmitting bytes as 
soon as it gets them (and XORs, if 
we want confidentiality too). Ear-
lier, I lamented how the BITW 
can’t reach down the wire and 
pull back the bits if the HMAC 

fails. However, it doesn’t have to. 
Although these legacy networks 
weren’t designed for security, they 
were designed to work despite 
random failures. Consequently, 
the legacy protocols typically have 
some way—such as a checksum or 
a closing handshake—for an end-
point to detect if the message was 
damaged in transit. Building on 
this, Andrew Wright and his col-
leagues made the clever observa-
tion that a receiving BITW can 
transform a malicious error into a 
random error: if the HMAC value 
fails, the receiving BITW delib-
erately fouls the end of the hand-
shake.3 Figure 2 shows this trick.

Patrick Tsang and I designed 
and prototyped the YASIR (Yet 
Another Security Retrofit) pro-
tocol, which followed this design 
sketch1 and tried to further opti-
mize it by exploiting local knowl-
edge.2 Other solutions include the 
Hallmark/SSCP (Secure SCADA 
Communication Protocol) proj-
ect developed by Mark Hadley at 
Pacific Northwest National Lab 
and commercialized by Schweizer 
Engineering.4 The details of Hall-
mark are still confidential, but 
its BITW version appears to use 
message holdback.

I n personal browsing scenari-
os, the notion of data arriving 

gradually seems rather natural (if 
annoying). We don’t wait until all 
the gigabytes arrive to suddenly 
see them; things appear piecemeal. 
In the slow legacy networks we’re 
considering, latency forces us to 
process data on the fly.

Surprisingly, symmetric cryp-
tography analysis has focused on 
offline schemes.5,6 Online en-
cryption and decryption analysis 
was slow in coming7,8 and even 
then focused on blockwise models 
rather than the streamwise model 
forced on us by low-latency appli-
cations on slow networks.9

Computing systems in the real 
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Figure 2. (a) Legacy networks already protect against random errors. (b) By 

transforming a hash-based message authentication code (HMAC) failure into 

a random error, the receiving bump in the wire (BITW) can deliberately foul 

the end of the closing handshake.
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world aren’t always as simple and 
conveniently powerful as one 
might think; engineering cryp-
tography for these systems can be 
interesting. 
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