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DO-IT-YOURSELF SCADA VULNERABILITY
TESTING WITH LZFUZZ

Rebecca Shapiro, Sergey Bratus, Edmond Rogers and Sean Smith

Abstract  Security vulnerabilities typically start with bugs: in input validation,
and also in deeper application logic. Fuzz-testing is a popular security
evaluation technique in which hostile inputs are crafted and passed to
the target software in order to reveal such bugs. However, for SCADA
software used in critical infrastructure, the widespread use of propri-
etary protocols makes it difficult to apply existing fuzz-testing tech-
niques, which work best when protocol semantics are known, targets can
be instrumented, or at least large network traces are available. These
things typically don’t apply in real-world infrastructure such as power
SCADA. Domain experts often do not have the time and data to un-
derstand the proprietary protocols their equipment uses well enough for
fuzz-testing. Domain experts are understandably unwilling to share suf-
ficient internal access to allow external security experts to perform the
fuzz-testing; and the domain uses live sessions with short data validity
time window, which makes it hard to prime a fuzzer with large network
capture dumps.

This paper presents a solution: LZFuzz, a man-in-the-middle, inline
fuzz-testing appliance which provides a domain expert with tools to
effectively fuzz SCADA equipment.
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1. Introduction

Critical infrastructure such as the power grid is monitored and con-
trolled by supervisory control and data acquisition (SCADA) systems.
Proper functioning of these systems is necessary to ensure the stability
of such infrastructure; something as simple as an input validation bug
in SCADA software can leave our infrastructure vulnerable to attack.
While large software development companies may have the resources to
develop techniques and tools to thoroughly test their software, our ex-
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perience has shown that the same cannot be said for manufactures of
SCADA equipment. Dr. Thomas Proll from Siemens has made similar
observations, finding that random streams of bytes are often enough to
crash SCADA equipment [18].

Securing SCADA systems requires testing for such vulnerabilities.
However, we have a Catch-22 situation here:

m  Software vulnerabilities are often not well understood by develop-
ers and infrastructure experts (who may themselves not even have
full protocol documentation).

m External security experts lack the domain knowledge, resources,
and access to run thorough tests.

Fuzz-testing, a form of security testing in which bad inputs are chosen
in attempt to crash the software, is a widely used method of testing
for security bugs, both in input validation and also in deeper applica-
tion logic. However, using fuzz-testing methodologies to secure such
SCADA systems is difficult. SCADA equipment often relies on poorly
understood proprietary protocols, complicating test development. The
session-oriented, short or time-sensitive (session data remains valid for
a short time only, and will likely get rejected out of hand by the target)
nature of many SCADA scenarios (such as those we've worked with in
the power grid) make it impossible to prime a fuzzer with a large cap-
ture; we need something that works inline. Furthermore, many modern
fuzzers require users to attach a debugger to the target — this is not
always possible in our target scenarios.

This paper presents a solution: LZFuzz, a fuzzing appliance designed
to allow asset owners to effectively fuzz their own equipment without
needing to modify the target system being tested — and without needing
to expose assets and information to external security evaluators. Sec-
tion 2 provides an overview of fuzzing. Section 3 presents our project.
Section 4 presents experimental results. Section 5 concludes.

2. Fuzzing Overview

Barton Miller, the father of fuzz-testing, observed during a thunder-
storm that the lightning-induced noise on his network connection caused
programs to crash [13]. The addition of randomness to the input trig-
gered bugs that were never found during the software’s testing processes.
After further investigation, Miller found that the types of bugs that were
triggered from the fuzzing included race conditions, buffer overflows,
failure to check return code and printf/format string problems. Such
types of bugs are often sources of security vulnerabilities in software
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[12]. Today, most modern software have aggressive input checking and
can handle random streams of bytes without crashing. Consequently,
modern fuzz-testing tools have adapted to be more effective on such
modern software, by becoming more selective of how they fuzz inputs.

There usually are multiple layers of processing that data has to go
through before it reaches the target software’s application logic whether
or not the data has been fuzzed. We can think of a target’s application
logic as its soft underbelly — if we can penetrate it we can greatly
increase our chances of compromising the target. Fuzzed input has the
ability to trigger bugs or to be rejected by any layer of processing it
passes through before it gets to the application logic. To trigger bugs in
a target’s application logic, the fuzzer needs to generate inputs that are
clean enough to pass any sanity checks in the application but malformed
enough to trigger bugs in the application logic.

In practice, the most successful fuzzers create fuzzed input based on
full knowledge of the layout and contents of the input. If a fuzzer is
given information on how a specific byte is going to be interpreted, it
can manipulate the byte in ways that are more likely to compromise the
target. For example, if a particular sequence of bytes contains informa-
tion on the length of a string that is contained in the next sequence of
bytes, a fuzzer can try to increase, decrease or set the length value to a
negative number — the target software’s sanity checks may miss one of
these cases and blindly pass the malformed input on to the application
logic.

Fuzzing Methods. There are two different approaches to creating
fuzzed input: generation-based fuzzing and mutation fuzzing. In our
subsequent discussion of these methods, we will focus on fuzzing packets
sent to metworked software in order to simplify our explanations and
descriptions. (These methods, however, apply generally to fuzz-testing.)

Generation-based fuzzers construct their fuzzed input based on gen-
eration rules such as how valid input is structured or what the proto-
col states are. The most simple generation-based fuzzers, such as the
one used by Miller in [13], generate fuzzed input by creating strings of
random bytes and lengths. Today’s state-of-the-art generation-based
fuzzers, such as Sulley [21], fall into the subcategory of block-based
fuzzers. Block-based fuzzers require a complete description of the in-
put structure in order to generate inputs, and often accept a protocol
description as well. SPIKE [1], created by Dave Aitel, was the first block-
based fuzzer to be distributed. New generation-based fuzzers, such as
EXE [7], instrument code to automatically generate test cases that have
a high probability of succeeding.



Mutation fuzzers operate by reading in known good inputs and insert-
ing badness and swapping bytes to create fuzzed inputs. Some modern
mutation fuzzers such as the mutation aspect of Peach [17] make their
fuzzing decisions based on a description of the input layout. Other mu-
tation fuzzers such as General Purpose Fuzzer (GPF) [9] do not require
any knowledge of the protocol or layout. GPF uses simple heuristics to
guess field boundaries and mutates the input based on its guesses. Such
fuzzers do not need to know anything about the structure of what they
are fuzzing. They can blindly read in known good inputs and mutate
without knowing the semantics of the protocol they are fuzzing. Kamin-
sky’s experimental CFG9000 fuzzer [11] occupies a middle ground by
using an adaptation of the Sequitur algorithm [16] to derive an approx-
imation of the protocol’s generative model (specifically, a context-free
grammar) from a sufficiently large traffic capture, and then using than
model to generate the mutated inputs.

Most mutation fuzzers use previously recorded network traffic as a
basis for mutation, although there have been some inline fuzzers that
read in live traffic.

The most influential academic work on fuzzing is arguably the PRO-
TOS toolkit [20] developed at the University of Oulu. PROTOS first
analyzes a protocol and then generates fuzzing tests based on a model
it generated.

Fuzzing Successes. Historically, success is declared when a fuzzer
reveals a bug harboring a vulnerability. However, for critical infrastruc-
ture, we are considering a broader definition of success: discovering a
software bug that creates any sort of disruption. We care about all dis-
ruptions because any disruption, whether or not it is a security vulnera-
bility, may affect the stability of the system of which it is a component.

2.1 Inline Fuzzing

In general, most block-based and mutation packet fuzzers available
are only able to fuzz servers, whereas clients are left in the dark. The
reason such fuzzers cannot fuzz clients is because fuzzers are designed
to generate packets and send them to a particular IP address and port.
Since clients will not receive traffic they are not expecting, only fuzzers
that operate on live traffic are capable of fuzzing clients. Similarly, proto-
cols that operate in short or time-sensitive sessions may not be amenable
to fuzzing that requires a large sample packet dump—an inline fuzzer is
required.

The only fuzzers we have found that are capable of inline fuzzing,
such as QueMod [19], either transmit random data or make random
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mutations. To our knowledge, LZFuzz is the first inline fuzzer that goes
beyond random strings and mutations.

2.2 Network-Based Fuzzing

Most modern fuzzers come packaged with debuggers to instrument
and monitor their targets for crashes. However, using such debuggers
requires intimate access to the target system; in the power SCADA cases
we examined, such access was not possible.

Inline fuzzers such as LZFuzz must recognize when the target crashes
or is unresponsiveness without direct instrumentation. With some tar-
gets, this recognition must trigger a way to (externally) reset and the
target, whereas other targets may be restarted by hardware or soft-
ware watchdogs. We note that generation-based fuzzers that for various
reasons cannot take advantage of target instrumentation encounter sim-
ilar challenges: for example, 802.11 Link Layer fuzzers targeting kernel
drivers [6] had to work around its successes causing kernel panics on the
targets.

In either case, stopping and then restarting the fuzzing iteration over
the input space is required so that generated fuzzing payloads are not
wasted on an already unresponsive target. We believe that it is im-
portant for a fuzzer to be able to adapt to its target in these ways,
particularly when dealing with proprietary protocols.

2.3 Fuzzing Proprietary Protocols

It is generally believed that if a fuzzer can understand and adapt to its
target, it will be more successful than a fuzzer that does no. Therefore,
it is important for fuzzers to be able to take advantage of any knowledge
available about the target. When no protocol specifications are available,
we can work to reverse engineer the protocol manually or with the help
of debuggers. In practice, this can be extremely time-consuming and
thus is rarely an option for SCADA asset owners. Furthermore, it is not
always possible to install debuggers on some equipment — thus making
reverse engineering even more difficult.

Consequently, it is important to build fuzzing tools that can work effi-
ciently on all equipment and proprietary software without any knowledge
of the protocol they are fuzzing. Although mutation fuzzers do not need
knowledge of the protocol, we can build a more-efficient generation of
mutation fuzzers that have better field-parsing heuristics and that can
respond to protocol state changes on the fly without protocol knowledge.
Because our SCADA fuzzing goals make target instrumentation difficult
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or impossible, we are compelled to focus on an inline adaptive fuzzing
framework. We refer to this approach as live adaptive mutation fuzzing.

2.4 Fuzzing in the Industrial Setting

Proprietary protocols that SCADA equipment use — such as Harris-
5000 and Conitel-2020 — are often not well-understood. Understand-
ably, domain experts usually do not have the time or the skills to re-
verse engineer the protocols their equipment uses. Fuzzing experts can
be called in to do the work needed to fuzz the equipment; however in
certain domains, such as the power grid, the domain experts are wary of
allowing outsiders to work with their specialized equipment. In our own
experience with power industry partners, it was extremely difficult to
obtain permissions to allow our own researchers work with their equip-
ment. Domain experts are also understandably disinclined to share any
information on the proprietary protocols their equipment used, making
it difficult for a security expert to perform tests.

Domain experts in critical infrastructure would benefit from an effec-
tive fuzzing appliance that they easily use on their own equipment. We
seek to fill this gap.

2.5 Modern Fuzzers

In this section we will briefly describe examples of advanced fuzzers
that are popular in the fuzz-testing community. We also introduce some
tools that are available for fuzzing SCADA protocols.

General Network-Based Fuzzers. Sulley, mentioned above, is a
block-based generation fuzzing framework for network protocol fuzzing
[21]. It provides mechanisms for tracking the process of the fuzzing job
and performing postmortem analysis. It does so by running code that
monitors both the network traffic and the status of the target (via a
debugger). Sulley requires a description of the block layout in a packet
in order to generate fuzzed inputs. It also requires a protocol description
which it uses to iterate through different protocol states as it fuzzes.
The General Purpose Fuzzer (GPF) is a popular network protocol
mutation fuzzer that requires little to no knowledge of the protocol it
is operating on [9]. Although GPF is not being maintained anymore, it
is one of the few open-source modern mutation fuzzers available. GPF
reads in network captures and heuristically parses packets into to tokens
to fuzz. The heuristics it uses can be extended to improve accuracy for
any protocol, but by default GPF attempts to tokenize packets using
common string deliminators such as ’ > and ’\n’. GPF also provides
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an interface to load user defined functions that perform operations on
packets post fuzzing.

Peach is a general fuzzing framework that performs both mutation and
block-based generation fuzzing [17]. Like Sulley, it requires a description
of the fields and protocol to operate. When performing mutation fuzzing
it reads in network captures and uses the field descriptions to parse and
analyze the packet for fuzzing as well as to fix the packet’s checksums,
etc, before sending. Like Sulley, Peach also uses debuggers and monitors
to determine success and in order to aid postmortem analysis.

SCADA Fuzzing Tools. There are a handful of tools available
that have been built for fuzzing non-proprietary SCADA protocols. In
2007 Ganesh Devarajan from TippingPoint released DNP3, ICCP, and
Modbus fuzzing modules for Sulley [21]. The details for these protocols
are well-known and have been published. SecuriTeam includes DNP3
support with their commercial beSTORM fuzzer [4]. Digital Bond offers
a commercial suite of ICCP testing tools called ICCPSic [10].! Also Mu
Dynamics offers commercial software called Mu Test Suite [15] which
supports modules for fuzzing standardized SCADA protocols such as
IEC61850, MODBUS, and DNP3.

3. The LZFuzz Project
3.1 Our Approach

Often the full details of a proprietary protocol are unknown outside
the company in which they were engineered. When we do not know
protocol details, the current state of fuzz-testing leaves us with three
options: we can either fuzz with random streams of bytes, or randomly
mutate live or pre-captured traffic with few heuristics, or we can attempt
to reverse-engineer the protocol — but reverse-engineering a protocol
takes resources power experts do not have. We believe LZFuzz hits
a balance between speed and accuracy while still producing protocols
models that are effective for fuzzing.

Our method employs a simple tokenizing technique adapted from the
Lempel-Ziv (LZ) compression algorithm [22] to estimate packet struc-
tural units. By combining this simple tokenizing technique with a mu-
tation fuzzer we believe we can generate effective inputs for fuzzing.
Our preliminary technical report explores the accuracy of the tokenizing
method in depth [5]. We can avoid the need to understand and model
the protocol’s behavior by adapting to and performing mutation on live
traffic.



In our experience we have found that SCADA protocols used in power
control systems perform elaborate initial handshakes and send continu-
ous keep-alive messages. If we crash the target process, the process will
often automatically restart itself and initiate a new handshake.?

This behavior is unusual for other classes of targets which need to be
specifically instrumented to insure liveliness and be restarted remotely.
Such restarting/session renegotiation behavior assists our construction
of successful fuzz sessions. From this observation, we propose the novel
approach of adaptive live mutation fuzzing. Our fuzzer can adapt its
fuzzing method based on the traffic it receives, automatically backing
off when it thinks it is successful.

3.2 Design

Overview. LZFuzz is an appliance that inserts itself into a live
stream of traffic, capturing packets that are being sent to and from a
source and target. A packet read into LZFuzz gets processed in several
steps before being sent to the target. Figure 1 maps these steps out.
When LZFuzz receives traffic destined for the target, it first tags the
traffic with its type. Then, it reads through a set of rules to see if it can
declare success. Next, it looks up the LZ string table for the traffic type it
is processing, updates the table and parses the packet accordingly. Next,
it sends one or more tokens to a mutation fuzzer. Finally, it reassembles
the packet, fixing any fields as needed in the packet finishing module.
As LZFuzz receives traffic destined for the source, it checks for success
and fixes any fields as needed before sending the packet to the source.

Intercepting Packets. Although it may be possible to configure
the source and target to communicate directly with the machine running
LZFuzz, it may not always be practical to do so. Consequently, LZFuzz
uses a technique known as ARP spoofing or ARP poisoning to trans-
parently insert itself between two communicating parties. This method
works when the systems are communicating over Ethernet and IP and
at least one of them is on the same LAN switch as the machine running
LZFuzz (in the case of only one target host being local, and the remote
host being located beyond the local LAN, the LAN’s gateway must be
“poisoned”.) When we have the ability to perform ARP spoofing we do
not have to make any direct changes to the source or the target’s con-
figuration in order to perform our fuzzing. The particular tool LZFuzz
uses to perform the ARP spoofing is arp-sk [3].

We note that although various Link Layer security measures against
ARP poisoning and similar LAN-based attacks can be deployed either
at the LAN switches or on the respective hosts or gateways themselves
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Figure 1. How packets are processed by LZFuzz

(see, e.g., [8]), such measures are not typically used in control networks,
because of the configuration overhead they require. This overhead can
be especially costly in emergency scenarios where faulty or compromized
equipment must be quickly replaced, as it is desirable in such situations
that the replacement would work “out of the box”.

Estimating Packet Structure. As LZFuzz reads in valid packets
it builds a string table as if it were to perform LZ compression [22]. The
LZ table keeps track of all of the longest unique subsequences of bytes
found in the stream of packets. LZFuzz updates its LZ tables for each
packet it reads. A packet is then tokenized based on strings found in the
LZ table; and each token is treated as if it were a field in the packet. One
or more tokens is then passed tot GPF where GPF guesses the token
types and mutates the tokens. The number of tokens passed to GPF
is dependent on whether or not windowing mode is enabled. When
enabled, LZFuzz will fuzz one token at a time, periodically changing
which token it fuzzes.> When windowing mode is disabled, all tokens are
passed to GPF.
Figure 2 gives a high-level view of the tokenizing process.

Responding to Changes Protocol State. A major difference
between our mutation fuzzer and other existing mutation fuzzers is that
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technical report [5]
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Figure 3. Live, inline mutation enables us to fuzz short or time-sensitive sessions on
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ours performs live mutation fuzzing. This means instead of mutating
previously recorded packets, we mutate packets while they are in transit
from the source to the target. Figure 3 depicts how the live muta-
tion process differs from the existing mutation process. Other mutation
fuzzers mutate uncorrupted input from a network dump whereas LZ-
Fuzz mutates packets freshly from a source as it communicates with the
target.

Recognizing Target Crashes. Modern network protocol fuzzers
require attaching a debugger to the target to determine when crashes
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happen. However, our target scenarios don’t give us that access. Con-
sequently, because we are transparently fuzzing intercepted traffic, we
must infer success elsewhere. Because we are capturing live communi-
cation as it enters and leaves the fuzzing target, our novel approach can
make fuzzing decisions based on what types of messages (or lack thereof)
are being sent by the target or source.

In our experience with SCADA protocols, we have observed that these
protocols tend to have continuous liveliness checks. If a piece of equip-
ment revives itself after being perceived as dead, there is often an elab-
orate handshake as it reintroduces itself. LZFuzz has the capability of
recognizing such behaviors throughout a fuzzing session.

Even if a protocol doesn’t have these keep-alive/handshake properties,
there are other methods of deducing success from the network traffic. If
a protocol is running over TCP, the occurrence of an RST flag may
signify that the target process has crashed. This flag will be set when a
host receives traffic while it had no socket listening for the traffic. Our
experience with LZFuzz has shown us that TCP RST flags appear be a
reasonable success metric even though they produce some false positives.

Mutation. LZFuzz has the ability to work with a variety of fuzzers
to mangle the input it fetches. It can be easily modified to wrap itself
around new state-of-the-art mutation fuzzers. Currently, LZFuzz passes
packet tokens to the GPF mutation fuzzer (described in Section 2.5)
for fuzzing before it reassembles the packet and fixes any fields such as
checksums as needed.

3.3 Extending LZFuzz

The LZFuzz appliance provides an API to allow users to encode any
knowledge they have of the protocol being fuzzed. It can also be used
to tag different types of packets using regular expressions, for example.
LZFuzz will automatically generate new LZ string tables for each type
of packet it is passed. The API also allows users to provide information
on how to fix packets before sending so that any length and checksum
fields can be set appropriately. Finally, the API allows users to custom
define success conditions. For example, if a user knows that the source
will attempt a handshake with the target when the target dies, then
the user can use this API to tag the handshake packets separately from
the data and control packets and to instruct our appliance to presume
success upon receiving handshake packets.



12

4. Experimental Results

When LZFuzz was in its infancy, we tested it on some network pro-
tocols we had around the lab; we were able to consistently hang the
iTunes version 2.6 client by fuzzing the iTunes music sharing protocol
(daap). LZFuzz also able to crash an older version of the Gaim client
by intercepting and fuzzing AOL Instant Messenger traffic.

We chose to these protocols because we wanted to test our fuzzer on
examples of popular, modern, relatively complex client-server protocols
that are used for frequent, recurring transactions with an authentication
phase separate from the normal data communication phase. Also, we
wanted the example protocols to support some notion of time and timed-
out sessions. It was preferable that the target software be in common use
by many people so that the easier to find bugs have already presumably
been fixed. More importantly, however, LZFuzz was able to consistently
crash SCADA equipment owned by a power partner.

Beyond listing successes, it is not particularly obvious as to how to
quantitatively evaluate or compare the effectiveness of fuzzers. In prac-
tice, a fuzzer is useful if it is able to crash targets in a reasonable amount
of time. How do we encode such a goal in an actual metric that we can
evaluate? The best measure is to test the fuzzer’s ability to trigger all
bugs in a target. However, such a metric is impossible to measure be-
cause that would require knowledge of all bugs in an application to begin
with. A more reasonable measure would be to calculate code coverage
— the portion of code in the target that was executed in response to the
fuzzed inputs. This metric, too, has its flaws but it is something that
can be measured (given access to the source code of the target), and
still provides insight on the fuzzer’s ability to reach hidden vulnerabil-
ities. Indeed, in 2007 Miller et al. of Independent Security Evaluators
used code coverage as a metric to compare generational fuzzing against
mutation fuzzing [14]. Furthermore, the usefulness of coverage instru-
mentation has has long been recognized by the reverse engineering and
exploit development community; for example, Pedram Amini’s PaiMei
fuzzing and reverse engineering framework provides the means to eval-
uate code coverage of a process up to the basic block granularity [2].
Interestingly, his framework also includes tools for visualizing coverage.
Unfortunately, this metric glosses over differences between a fuzzer con-
strained to having canned packet traces and one that can work live,
inline.

In order to provide a means of comparing our method of fuzzing to
other existing methods of fuzzing proprietary protocols, we set up exper-
iments to compare code coverage of LZFuzz, GPF (the mutation fuzzer
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which LZFuzz itself interfaces with), and fuzzing with random strings of
random lengths. (As mentioned previously, Dr. Thomas Proll was able
to crash SCADA equipment with random fuzzing [18].)

4.1 Setup

We tested GPF, LZFuzz, random mutation fuzzing, and no fuzzing
on two targets: mi-daapd, and the Net-SNMP snmpd server. We chose
these two targets because mt-daapd is an open source server that uses a
(reverse-engineered) proprietary protocol and Net-SNMP uses the open
SNMP protocol seen in SCADA systems.

All experiments we ran were conducted on a machine with a 3.2GHz
i5 dual core processor and 8GB RAM running Linux kernel 2.6.35-23.
Each fuzzing session was run separately and sequentially. We measured
the code coverage of the target using gcov. In all tests, targets were
run inside a monitoring environment that would immediately restart
the target if a crash was detected to simulate the automatic reset of
common power SCADA applications. Each code coverage measurement
reported is a product of a separate and isolated run.

For each target, we conducted 8 separate tests, allowing the fuzzer
to run for 1, 2, 4, 8, 16, 32, 64, and 128 minutes. After each test run,
we calculated code coverage before resetting the code coverage counts
for the subsequent run. No fuzzer was provided information about the
protocol it was fuzzing beyond the IP address of the target the transport
layer protocol and port that the target was using. Because GPF uses a
network capture for a mutation source, we supplied GPF with a packet
capture of about 1600 packets as produced by the source/target setup
when no fuzzer was active.

4.2 mt-daapd

mt-daapd is an open source music server that uses the proprietary
iTunes daapd protocol to stream music. This protocol was reverse-
engineered by a variety of developers so that they could build open
source daapd servers and clients. We choose mt-daapd specifically be-
cause we wanted to test a proprietary protocol but required source code
in order to calculate code coverage. In our tests, we fuzzed mt-daapd
version 0.2.4.2. The mt-daapd daemon was run on the same machine as
the client and fuzzer. The server was configured to prevent stray users
from connecting to it. We used the Banshee media player as a client and
traffic source. To maintain consistency between tests, we used a set of
xmacro scripts to control Banshee and cause it to send requests to the
daap server.
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Figure 4. Comparison of code coverage of mt-daapd (left) and Open-SNMP (right)
as produced by different fuzzing methods

Results. In general, we found that LZFuzz does as well or even
better, in terms of code coverage, than running the test environment
without any fuzzer, as shown on the left in Figure 4. Furthermore, we
found that of all fuzzers, LZFuzz was able to trigger the largest amount
of code in the target. This means that LZFuzz was able to reach into
branches of code that none of the other fuzzers we tested were able
to reach. It is also worth noting that the random fuzzer consistently
achieved the same code coverage on every test run regardless of the
length of the run.

Other than LZFuzz, no fuzzer that we tested in this scenario was able
to achieve higher code coverage than that of a non-fuzzed run of Banshee
and mt-daapd.

4.3 snmpd

Net-SNMP is a suite of open source SNMP (simple network manage-
ment protocol) tools which include snmpd, an SNMP server. SNMP is a
flexible monitoring and management protocol used to monitor networks
and other systems both inside and outside of SCADA environments.
Net-SNMP is one of the few open source projects we found that used
SCADA protocols. We used snmpd, the daemon that responds to SNMP
requests in Net-SNMP version 5.6.1, as a fuzzing target. Like mt-daapd,
the daemon was run on the same system as the client. We scripted sn-
mpwalk, provided by Net-SNMP, to continuously send queries to the
server. For the purpose of code coverage testing, snmpwalk was used to
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query the status of variety of parameters including the system’s uptime,
the system’s location, and information about TCP connections that are
open on the system. Because we weren’t able to get consistent code
coverage measurements between runs of the same fuzzer and length, we
ran each fuzzer and run length combination five times. The averages are
displayed in our results, along with error bars for runs with noticeable
variation (standard deviation of more than 0.025%).

Results. GPF outperformed LZFuzz when GPF was running at
full strength. However, we were also interested in seeing the relative
performance of LZFuzz and GPF when GPF had rate-adjusted flow so
that GPF would send the about the same number of packets LZFuzz
sends for a given run length. With this adjustment we were able to have
insight into how much influence a GPF-mutated packet has on the target
compared to a LZFuzz-mutated packet. We also observed that LZFuzz
induced a larger amount of code coverage in snmpd when the mutation
rate that controls the mutation engine aggressiveness was set to medium
(instead of high or low).* Because GPF uses the same mutation engine,
we instructed GPF to run with a medium mutation level as well. Note
that for snmpd, a 1% difference in code coverage corresponds to about
65 lines of code.

Figure 4 shows, on the right, the code coverage of GPF with a rate
adjusted flow and a medium mutation rate, compared to LZFuzz with
medium mutation, random fuzzing, and the environment with no fuzzer
running. With rate adjusted flow, LZFuzz induces a higher code coverage
than GPF. LZFuzz also clearly outperforms random fuzzing.

Comparing Apples to Oranges. Although LZFuzz and GPF
share a common heuristic mutation engine, they fall in different classes of
fuzzers, each with its own strengths and weaknesses. LZFuzz is capable
of fuzzing both servers and clients; GPF can only fuzz targets that are
listening to incoming traffic on a port known to GPF before the fuzzing
session. GPF is capable of sending many packets in rapid succession;
LZFuzz is restricted to only fuzzing packets sent by the source. GPF
requires the user to spend time preparing a representative packet capture
— and thus implicitly assumes such representative captures even exists
for the target scenario. The time spent preparing the network capture is
not taken into account in our results. The packet capture given to GPF
potentially provides it with a wealth of information about the protocol
from the get-go, whereas LZFuzz needs to develop most of its knowledge
about the protocol it is fuzzing on the fly. Finally, the mutation engine
of GPF was built and tuned specifically for what GPF does — fuzzing
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Figure 5. Comparison of code coverage of Net-SNMP server as produced by LZFuzz
with tokenizing both enabled and disabled.

streams of packets. LZFuzz uses the same mutation engine but only
ever has one packet in each stream. The GPF mutation engine is not
designed to be used this way and we believe we can improve LZFuzz’s
effectiveness if we spent time tweaking the mutation engine.

Although when we used GPF and LZFuzz at full strength against mt-
daap, LZFuzz outperformed GPF in terms of code coverage, we found
this was not the case when both fuzzers were tested against snmmpd.
When running at full-force, GPF was able to achieve 1-2% more code
coverage than LLZFuzz in comparable runs. We can argue that in the case
of snmpd, GPF is the more effective fuzzer. However, the clear advantage
of LZFuzz over GPF and similar fuzzers is that it is also capable of
fuzzing SNMP clients, such as snmpwalk, whereas GPF is unable to do
so without requiring some kind of session-tracking modifications.

4.4 Tokenizing

One might wonder whether the LZFuzz tokenizing method improves
the overall effectiveness of LZFuzz. If tokenizing is disabled in LZFuzz
during a run and the entire payload is passed directly to GPF, then GPF
will attempt to perform its own heuristics to parse the packet. Figure 5
shows how LZFuzz with tokenizing compares to LZFuzz with tokenizing
disabled when run against snmpd in the same environment as described
in section 4.3. These results suggest that the LZ tokenizing does indeed
improve the effectiveness of inline fuzzing with GPF’s mutation engine.
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5. Conclusion

In this paper we propose a novel approach to fuzzing that allows do-
main personnel without fuzzing expertise to efficiently fuzz implemen-
tations of proprietary protocols. We have shown that our adaptive live
mutation fuzzing approach has the ability to fuzz the proprietary pro-
tocol, daap, more efficiently than other existing methods of fuzzing pro-
prietary protocols. We have also shown the LZFuzz is more effective at
fuzzing an SNMP server than random fuzzing. The GPF mutation fuzzer
was more effective at fuzzing the SNMP server than LZFuzz; however
unlike LZFuzz, GPF is unable to fuzz SNMP clients. Because LZFuzz
requires minimal knowledge of the protocol it is fuzzing it can be used
to empower SCADA asset owners to access the brittleness of their own
equipment. LZFuzz has already been used to consistently crash a device
in a SCADA test environment owned by a power partner.

Future Work. LZFuzz still needs more work to ensure it is a
useful and usable appliance for a domain expert. Work needs to be done
on the user interface so that the user can disable fuzzing and change
the aggressiveness of the fuzzing on the fly, without restarting LZFuzz.
Tools to make LZFuzz more useful include ones that attempt to identify
checksums by intercepting traffic to the target and passively searching
for bytes that appear to have a high entropy among the set of packets it
sees. Another useful tool could test for the existence of authentication or
connection setup traffic by inspecting traffic it sees at the beginning of
a run as well as any traffic it sees from the target after blocking replies
from the client, and vice versa. This information can be passed onto
the domain expert so she can build custom traffic rules to make LZFuzz
more effective.
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Notes

1. This test suite is not publicly available anymore.
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2. There may be cases when there are hard crashes where the process does not automat-
ically restart. In those cases the devices must be manually restarted.

3. LZFuzz may fuzz multiple tokens at a time in windowing mode in order to ensure there
are enough bytes available to mutate effectively.

4. The mutation rate governs how much GPF’s mutation engine mutates a packet. Al-
though this feature isn’t documented, this setting is required to be explicitly set during a
fuzzing session. Line 143 of the GPF source file misc.c offers an option "MutationRate =
Rate of Mutations: "high’, 'med’, or ’low’” which it does not document further; we chose the
'med’ option for this test and high’ for mt-daapd.
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