Secure Distributed Time for
Secure Distributed Protocols

Sean W. Smith

September 1994
CMU-CS-94-177

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Thesis Committee:
Doug Tygar, chair
Stephen Brookes
David B. Johnson
Maurice Herlihy, Brown University

©1994 Sean W. Smith

This research was sponsored in part by the Avionics Laboratory, Wright Research and Development Center,
Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, OH 45433-6543 under Contract
F33615-90-C-1465, Arpa Order No. 7597. Support also was sponsored by the Air Force Materiel Command (AFMC)
and the Advanced Research Projects Agency (ARPA) under contract number F19628-93-C-0193. In addition, IBM,
Motorola, and the NSF/Presidential Young Investigator Award under Grant No. CCR-8858087, TRW, and the U.S.
Postal Service gavetheir support. The author received support from an ONR Graduate Fellowship.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied, of AFMC or ARPA, the
U.S. Government, NSF, ONR, TRW, IBM, Motorola, or the U.S. Postal Service.

Keywords: Distributed systems, concurrency, security and protection, checkpoint/restart,
fault tolerance

Abstract

This thesis develops a framework for secure distributed time, and uses this framework to build
secure protocolsfor practical problems. Indistributed systems, many important problems—such as
detecting potential causality, obtaining global states, and recovering from process failure—center
on temporal relations more general than the linear order of real time. Systems with asynchronous
message passing requireapartial order timemodel, and systems with multiplelevels of abstraction
require multiple levels of time models. Building clock primitivesfor these time models facilitates
building protocols for these application problems. However, protocols built (even tacitly) on
such clocks open themselves to security and privacy risks, since tracking these temporal relations
requires sharing and trusting private information.

Thisthesis addresses these issues of time and security by constructing a distributed time formalism
that supports hierarchies of general time models, and then constructing clock primitives—the
Sgned Vector Timestamp protocol and the Sealed Vector Timestamp protocol—that provide security
and privacy. Framing application problems in terms of this distributed time framework grants
insight that often allows us to build protocols more general and flexible than were previoudy
possible. Separating clocks from protocols grants additional flexibility by allowing usto keep their
design issues mutually transparent.

Thisthesis exploresthree applications of this secure distributed time framework. We transparently
add security and privacy to immediate ordered service protocols. We build basic distributed
snapshot protocols and transparently add security, privacy, and increased flexibility. Finally, we
use the framework to build a new optimistic rollback recovery protocol that substantially improves
on previous work by providing full asynchrony while also reducing the worst-case bound for
rollbacks after a failure from exponential to one per process, further, developing this protocol
within the distributed time framework transparently allows for security and privacy.

Contents

1

Introduction

1.1 Distributed Time e
12 SecurityandPrivacy
1.3 Overview of PreviousWork
1.4 ThessContributions

Distributed Time

21 OVENVIEW . . . o e
2.2 Descriptionand Abstraction
221 Systemso
222 TraCes e e e
223 ComputationGraphs.
224 TimeModels.
225 Properttiesof TimeModels.
226 PadldPars.
227 Propetiesof Parallel Pairs.
228 NonlinearPairs
229 Examples
2.3 TimedicesandGlobal States.
231 Timedices
232 Globa States
2.3.3 TheRelation Between Timedicesand Global States
2.34 TheStructureof Timedlices
2.4 Clocksfor Digtributed Time
241 Primitivesfor TimeModels
2.4.2 PrimitivesforPairs
243 KnowablePursuits.
244 Anlmplementation
25 ExampleApplications
251 OrphanDetection
252 ImmediateOrdered Service
2.6 Comparisontoour Earlier Publication

Distributed Snapshots

31 Overview e

32 TheBascProblem.
3.21 BuildingaBasicProtocol

aprwWwkERLrF

B
R OO o~

3.2.2 ShortCULS. 47

3.3 SnapshotsfromHigher-level Models 51
331 TheEBaserCase i 52
332 AHaderCase. e 54
34 Furtherlssues e 58
341 ResolvingParallax 58
342 FutureWork 60
Optimistic Rollback Recovery 63
41 OVEIVIEW o 63
411 TheBascProblem. 63
412 FurtherIssues 64
4.1.3 Rollback Recovery Protocols 66
414 Asynchronous Optimistic Rollback Recovery 68
415 ASSUMPLIONS 70
4.2 Rollback and Distributed Time. 73
421 TheRelevanceof Digtributed Time 74
422 BipartiteProcesses. 75
423 TheSystem Computation, 75
424 TheUser Computation. 76
425 Mapping Between the System and User Computation 80
426 RetroactiveChange 82
427 VdidityandConsistency 86
4.3 Asynchronous Optimistic Rollback Recovery Using Distributed Time 89
431 Overview e 90
432 OrphanDetection 91
433 TheProtocol 98
434 ImplementationDetails 102
435 Piecewise Determinismand StatelIntervals 105
436 ComparisontoRelatedWork 106
44 A General Frameworko 109
Security and Privacy for Distributed Time 113
51 Overview 113
5.2 Security and Privacy Attacks. 114
53 Defenses 116
531 PreviousWork 117
5.3.2 The Sealed Vector Timestamp Protocol 118
533 CryptographicTools 120
54 DISCUSSION 123
541 Results. e 123
54.2 ImplicitAssumptions 125
55 FutureWork 126

Vi

6 Secure Distributed Time for Secure Distributed Protocols

6.1 Oveview

6.2 Security, Timestamps, and TimeModels

6.21 Timestamp Clocks
6.22 Attacks
6.23 Defenses.
6.3 Distributed Snapshots
6.3.1 ActiveAttacks.
6.3.2 PassveAttacks
6.3.3 AlternativeModels
6.4 Optimistic Rollback Recovery . . .
6.4.1 Standard Attacks.
6.4.2 Other Avenues of Attack . .

7 Conclusion
71 Summary. L.
7.1.1 Distributed Time.
7.1.2 Distributed Protocols . . .
7.1.3 Security and Privacy

7.14 A SingleArenafor Timeand Security

7.2 FutureWork
7.21 Future Work: Techniques .
7.2.2 Future Work: Applications
7.2.3 A Framework for the Future

Glossary

References

Vii

129
129
130
130
132
133
135
135
137
138
140
140
144

147
147
147
148
149
149
150
150
151
155

157

165

viii

List of Figures

21
22
2.3
24
2.5
2.6
2.7
2.8
29
2.10
211
212

3.1
3.2
3.3
3.4
3.5

41
4.2
4.3
4.4
45
4.6

4.7
4.8
4.9
4.10
411
412
4.13
4.14
4.15

4.16
417

A ground-level computation graph is the lowest level abstraction of a computation.

Each atom in aground-level graph represents part of space-time.
Applicationof atimemodel.
The representation map of composedtimemodels.
A pardlel pair providesfour views of acomputation.
The NET _ABSTRACT model removesirrelevant network detail.
Representation under the NET _ABSTRACTmodel.
TheTIMELINESMoOdel.
Representation under the TIMELINESmodel.
The PARTIAL_ORDER_TIMEMoOdel.
Globa statesarisefromrea simultaneity.
Some partial orders do not meet the Timedice Condition.

Distributed time simplifiesprotocol design.
The Round RobinProtocol.
The Reduced Round Robin Protocol.
Not all timedicesareadjustedvectors.
Parallax occurs when snapshots appear to beinconsistent.

A processfailsandlosesstate.
A process dependson failed state at another process.
Trangitive dependence complicatesrollback.
Rollback recovery must consider delayed messages.
Processes should not blindly discard delayed messages.
The Stromand Yemini protocol may cause surviving processesto roll back multiple
tIMeS. e
Two levelsof partial ordersavoids multiplerollbacks.
Encapsulating time services into a clock module revises our view of process. . . .
Managing the virtual existence required by rollback introduces another firewall.

USER _PARTIAL _ORDER state nodes represent maintenance of user state.
USER _PARTIAL _ORDER internal nodes represent internal transition of user state. . .
SYSTEM _PARTIAL _ORDER nodesimplementausersend.
SYSTEM _PARTIAL _ORDER nodesimplement auser receive.
The system processrollsback theuser process.
The same drawing shows information in both the user time model and the system
timemodel.

13
14
15
16
19
22
23
24
24
25
28
30

46
48
50
55
59

65
65
66
67

70
71
75
76
78
79
79
79
80

81

When relevant, a*“ peapod” drawing reveal sthe implementation detail of auser node. 82

Rollback with modifiedreplay.,

4.18
4.19
4.20
421

4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
431
4.32
4.33
4.34
4.35

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4

6.5

The virtual user computation beforerecovery.
The virtual user computation after recovery.
The USER _PARTIAL _ORDER graph for therecovery example.
The USER _PARTIAL _ORDER computation admitsathird failure-free virtual compu-
tation.
A vector for USER_PARTIAL - ORDER maximadoes not imply consistency.
Not being dominated by a consistent leaf vector does not imply inconsistency. . .
Rollback recovery requiresorphan elimination.
Rollback recovery requiresorphan prevention.
The SYSTEM _PARTIAL _ORDER timestamp vector determines known live history.
Digtributed time alows orphan elimination.
Digtributed time allows orphan prevention.
A protocol for optimistic rollback recovery based on distributed time.
Path information allows sorting inuser timetrees.
Exponential rollbacks: theassumption
Exponential rollbacks: theinductivestep
Exponentia rollbacks: theinductivebase
Allowing other processes to choose from their general pasts creates difficulty.
Allowing the initiator to choose from its general past creates difficulty.

Malicious processes can selectively backdatenodes.
Malicious processes can selectively postdatenodes.
Malicious processes can exploit vector datafor illicitpurposes.
Asealedtimestamp.
Themessageciphertext.

The Signed Vector Timestamp protocol failsfor flow-virtual time models.

Malicious processes may subvert the STRONG _PARTIAL _ORDER model.
Backdating Sy STEM _ PARTIAL _ ORDER rel ations can cause honest processesto waste
computation.
Backdating SYSTEM _PARTIAL _ORDER relations can cause honest processes to lose
credibility.
Postdating SYSTEM _PARTIAL _ ORDER relations fools honest processes into accept-
ingorphanmessages.

142

List of Tables

I Anexampleof asystemtrace.

Il Comparing our new rollback recovery protocol to previouswork.

11 Sealed Vectors provide better security than other protocols

Xii

Acknowledgments

A great many people deserve thanks for hel ping me reach this point.

First among these is my advisor, Doug Tygar, for his help throughout the research and writing
of thisthesis, and for his support, advice, and encouragement throughout my entire graduate career.

| also am grateful to the other members of committee—Steve Brookes, Maurice Herlihy, and
Dave Johnson—for their support and advice. Dave deserves a special note of thanks, for his
insstence that |1 explain what I mean (hence [Sm93]) and his insistence that | convince him that
this mathematics solved real problems (hence [SJT94]). | also am in debt to Carl Sturtivant for his
continued advice and collaboration.

| am grateful to Vaughan Pratt and Y. C. Tay for providing many helpful pointers during the
initial phase of this work. During the three years | spent on this thesis, | also benefited greatly
from the helpful comments of a number of other people, including Bob Baron, Sharon Burks, Jean
Camp, Eric Cooper, Gene Cooperman, Catherine Copetas, Marian D’ Amico, Nevin Heintze, Allan
Heydon, Juan Leon, Francesmary Modugno, Greg Nelson, Michal Prussak, Sandy Ramos Thuel,
Bad Bob Wheeler, Bennet Yee, and Marco Zagha. Francesmary deserves an extra note of thanks
for trandating [Ci89].

Most of all, without the prayers and love of my wife Nancy (who deserves a“co-doctorate” for
all this), my family, and the Pittsburgh Oratory community, none of thiswould have been possible.
| cannot begin to express gratitude.

Xiv

Chapter 1
Introduction

Many problems in distributed systems center on temporal relations more genera than the linear
order of real time, or even on asinglelayer of amoregeneral order. Put smply, distributed systems
need distributed time. Recognizing the central rolethat distributed time plays creates opportunities:

e Using the appropriate temporal relations can allow deeper insight into the nature of applica-
tion problems.

e Providing clock primitivesfor these temporal relations permits construction of clearer, more
flexible, and more general protocolsfor these problems.

However, recognizing the central role that distributed time plays also leadsto recognizing asignif-
icant problem:

e Protocols built (even implicitly) on distributed time are open to security and privacy risks,
since tracking these temporal relations requires sharing private information, and requires
trusting the information that is shared. Attacks on the lower-level clocks lead to attacks on
the higher-level protocols.

This thesis identifies and resolves these issues by building a framework for secure distributed
time, and by using this framework to build secure distributed protocols.

1.1. Distributed Time

Our first intuitions organize experience into a linear sequence of discrete events. However, this
approach is inappropriate for asynchronous distributed systems, where information is distributed
and perceptionisdelayed. Distributed environmentsrequireadistributed notion of time, to abstract
away not only irrelevant physical detail but also irrelevant temporal and computational detail. By
better expressing distributed systems concepts that are difficult to talk about in terms of real time,
and by distinguishing what “actually happens’ from what physically occurs, atheory of distributed
time provides a natural framework for solving problemsin distributed environments.

Chapter 2 lays the groundwork for these tasks by reviewing the theory of distributed time we
developed for thisthesis. Thistheory improveson previouswork on timein distributed systems by
supporting temporal relations more genera than partial orders, by supporting abstraction through
multiple levels of temporal relations, by separating the family of temporal relations an application
consults from the particular clock implementationsthat track them, and by providing asingle arena
in which to consider these issues for awide range of applications.

One central claim of this thesis is that distributed time provides a framework for building
general protocols for distributed systems application problems. We can first phrase problemsin
terms of distributed time, and then phrase protocolsin terms of distributed time clock primitives.
Chapter 2 through Chapter 4 develop this claim by considering several application problems:

e Potential Causality Determining whether one event could potentially have influenced
another requires sorting events in the partial order determined by the asynchronous compu-
tation, rather than in the linear order determined by real time. Clocks for partia order time
directly support building protocols for problems such as orphan detection and immediate
ordered service that reduce to sorting based on potential causality.

e Snapshots and Global States Distribution and asynchrony make it difficult for a
process to determine the state of the system at any given instant, since anything that the
process can perceive about other processes will be out-of-date. However, phrasing snapshots
as timedlices from a time model provides a way to use clocks for these models to capture
genera snapshots and to reason about global states. Phrasing the problem this way allows
us to extend a basic protocol by substituting clocks for more general temporal relations, and
to address performance concerns by substituting clock implementations.

e Optimistic Rollback Recovery Theproblem of rollbackrecovery arises when aprocess,
due to some type of failure, must roll back events and restart execution (possibly with
modified replay). Recovery is optimistic when other processes may depend on the lost
events at the failed process. Since optimistic recovery requires tracking dependency, many
previous approaches use some form of partial order clocks, and thus already dovetail nicely
with our work. However, effectively performing this recovery asynchronously requires
tracking potential knowledge of failures as well. This potential knowledge relation is aso
expressed by a partial order time model—but a lower-level model than the dependency
model. The distributed time framework provides the tools needed to clearly talk about such
hierarchies of time—and thus to develop new rollback protocols that improve on previous
work.

The distributed time framework introduces orthogonality between clocks and the higher-level
protocols that use them. Besides permitting more flexible protocols, this orthogonality has an
additional benefit: we can consider clock issues on the clock level, independently of the protocol
issues. This approach offers advantages:

e Orthogonality between Time Models and Protocols Separating clocks from proto-
cols provides a separation between time models and protocols. We can transparently change

2

the scope of a protocol by substituting clocks for a different time model—for example,
a change to the model underlying the snapshot protocols alows us to capture snapshots
satisfying the property of having no messages in transit.

¢ Unification of Protocols The distributed time framework unites protocolsthat individ-
ually deal with distributed time issues. This unification directly allows tasks such as taking
an offline snapshot after rollback with modified replay. For example, rollback with modified
replay creates three distinct versions of the computation: the failed computation, the virtual
failure-free computation, and the underlying failure-plus-recovery computation. For each of
these computations, scenarios exist where a snapshot would be useful. The distributed time
framework directly supports thisflexibility.

1.2. Security and Privacy

In a distributed system, a process can detect the local passage of real time by examining an
independent physical device, such as a quartz clock. However, to track more general temporal
relations, a process must collect and share private information. Consequently, dealing with these
relations—even implicitly—exposes protocol sto security and privacy risks:

¢ Istheinformation a process receives correct?

¢ Istheinformation a process shares being used for dishonest purposes?

This sharing and trusting creates opportunities for Byzantine (malicious) processes to manipulate
the clock protocols, and consequently to manipulate application protocols built on these clock
protocols. The orthogonality that distributed time introduces between clocks and protocols thus
hasthe additional significant benefit of creating asingle arenain which to examine and resolvethese
security issues. Installing clocksthat protect against security and privacy attacks will transparently
provide this protection to higher-level protocols.

The latter part of this thesis examines these security and privacy aspects of distributed time.
Chapter 5 begins this examination by considering secure clocks. For example, the standard time-
stamp vector mechanism for partial order time permits numerous attacks. We catal og these attacks,
and present two protocols that provide protection: the Sgned Vector Timestamp protocol and the
and Sealed Vector Timestamp protocol. We discuss scalability and implementation issues, and
outline avenues for further research into secure clocks.

Chapter 6 then uses these techniques to add security and privacy protection to the distributed
protocols devel oped in Chapters 2 through 4.

1.3. Overview of Previous Work

Previous work has explored partial order time for distributed systems, both through mathematical
models and through protocol construction. The mathematical work provided foundational insights
but did not support construction of clocks and protocols; the protocol work did not provide a fully
general framework, and consequently did not exploit the full power of the temporal abstraction
being performed. Further, the security challenges raised by using clocksfor relations more general
than linear time were unidentified and unsolved.

Time The notion that the linear order of real time may be inappropriate for asynchronous dis-
tributed systemsemergesin earlier work. Jefferson [Je85] used linear timethat departsfromtherea
time order. Lamport [La78] used partial ordersto track causal dependency in distributed systems.
Pratt [Pr86] argued for the universality of partial order time. Partial order temporal relations have
also emerged inthe areas of semantics (e.qg., [Gr75, Pe80, GaPr87, CCM P89, Win89]) and artificial
intelligence (e.g., [Ba93, Bo93, Ts87, YaAl93]). Using partial orders for distributed systems is
sometimes called logical time; Fidge [Fi91] presents a good survey paper, and very recently Yang
and Mardand [YaMa93, YaMa94] have published a collection of some of the principa papers on
these issues (and the orthogonal issues of total order clock synchronization).

Asynchrony Previous work [BiJo87, PBS89, SES89] has also explored the communication
problems introduced by asynchrony: by the fact that the underlying temporal structure is not the
linear order of real time. One proposed solution to this problemisto fix apartial order structure as
the causal order and to enforce (via multicasting) that processes perceive aconsistent view of this
order. (The appropriateness and scalability of this solution haslately generated no small amount of
controversy [ChSk93, Bi94, Co94, Re94].) Other approaches to this problem include frameworks
to adapt protocolsfor the asynchronous partial order environment after devel oping themin ssimpler
environments [Aw85, Mo85, NeTo90] .

Protocols Partial order time has also appeared in various forms in distributed systems appli-
cations. Some of these areas include distributed debugging [Fi89, Sp89], distributed snapshots
[ChLa85, AhKs89, Ma93] and the use of distributed snapshots in debugging [CoMa9l, MaNe91l,
MaSa91, GaWa94]. Partial order time has also been used in deadlock detection [Ma87, TaL091],
immediate ordered service [KeKo089], and rollback recovery [StYe85, Jo89, JoZw90, ElZw92,
PeKe93].

Clocks Lamport [La78] proposed a clock mechanism that allows processes in an asynchronous
distributed system to track atotal order consistent with the underlying partial order. Fidge [Fi88]
and Mattern [Ma89] formally explored partial order time and concurrently introduced the vector
timestamp mechanism. (Protocols essentially identical to the vector timestamps mechanism also

4

independently appeared in other work [StYe85, KeKo89]). Other research has explored opti-
mizations to the vector clock protocol [SiKs90], trading decreased accuracy for decreased size
[ACGS91], and limitsto vector size [CB91] and to clock accuracy [Va93].

Security The author [Sm91] identified security problemsin the vector clock and Lamport clock
mechanisms, and introduced the Sgned Vector Timestamp protocol. Reiter and Gong [ReGo93]
also explored thisarea and independently discovered this protocol. Amman and Jgjordia[AmJa93]
explored some issues in securely generating timestamps in the face of confinement levels.

1.4. Thesis Contributions

This thesis uses aframework for general temporal relations to advance the state of the art both in
distributed protocol design and also in security and privacy for distributed systems.

Time To begin with, this thesis provides a fully-developed formalism to talk about clocks for
temporal relations that differ from the linear order of real time. This formalism improves on the
foundational work by allowing usto talk about arbitrary relations (not just partial orders, and not
just the single partia order of information flow) and hierarchies of abstraction (not just a single
level), and allowing usto build clocks for these relations and protocol s based on these clocks.

Protocols Thisthesisthen appliesthisframework to the example problems of distributed snap-
shots and optimistic rollback recovery. We can define global states in terms of distributed time
relations, and build snapshot protocolsin terms of clock queries; this approach allows us to substi-
tute clock implementations (e.g., for increased security) and to substitute underlying time models
(e.g., to capture speciaized properties or to examine alternate virtual computations). The ability to
talk about multiple levels of time allows us to build an optimistic rollback recovery protocol that
provides fully asynchronous recovery while also reducing the worst case number of rollbacks after
afailure from exponential (asin Strom and Yemini’s asynchronous protocol [StYe85]) to at most
one per process. Further, the single framework of distributed time alows us to consider in one
place problems and protocols separately affecting time abstraction .

Secure Clocks Thisresearch wasthefirst to identify security and privacy problemsinherentin
partial order time. Thisthess presents both the first secure partial order clock protocol, as well as
the most secure clock protocol to date. This latter protocol provides security and privacy despite
any number of corrupt agents—and extends to partial order temporal structuresthat differ from the
underlying partial order of information flow.

Secure Protocols This thesis demonstrates a systematic and transparent way to add secu-
rity and privacy protection to protocols developed within this secure distributed time framework.
Consequently, thiswork shows how to solve application problems using partial order time—while
also defending against espionage and Byzantine attacks. We show how to add this protection
to example protocols for providing immediate ordered service, taking distributed snapshots, and
performing optimistic rollback recovery.

As computer systems become increasingly distributed and user applications become more
attractive to attack, the issues of time and security will only become more important. This thesis
lays the groundwork for solving these problems.

(A gdlossary follows the text of this thesis. This glossary presents four lists: terms, clock
primitives, time models, and symbols.)

Chapter 2

Distributed Time

This chapter reviews the theory of distributed time, a genera framework (developed as part of
this thesis research) for temporal relations in distributed systems. Section 2.1 presents the moti-
vation behind the theory. Section 2.2 presents tools for representing and abstracting computation.
Section 2.3 discusses timeslices and global states. Section 2.4 specifies and builds some clock
primitives. Section 2.5 examines some example applications. Section 2.6 relates this chapter to
our earlier, more detailed publication on distributed time [Sm93].

2.1. Overview

Beyond Real Time Normally we think of a computation as a sequence of states and events
ordered by real time. However, even this natural view performs abstraction from full physical
detail to discrete events. Describing asynchronous distributed computation requires extending this
abstraction to time: if two events occur without knowledge of each other, then their real time
sequence does not matter and also may not be observable [La78, Pr86]. Consequently, many
application problems are simplified by thinking of time asthe partial order determined by potential
information flow. (Thisrelation is sometimesreferred to asthe “Lamport order,” after [La78], and
also the “causal order,” since it expresses potential causality.)

Beyond Partial Order Time Pioneering work in partial order time [Fi88, Ma39] leaves us
thinking about computation as atemporal relation on a set of objects—except each object actually
represents the activity in aregion of space-time, and the relation does not follow directly from real
time order on these regions. Many application issues suggest that we should continue removing
irrelevant temporal and computational detail—that we should continue the process of abstraction:

e Using multiple levels of partia order time clarifies distributed computations that fail and
recover.

¢ Omitting the details of recovery facilitates describing the failure-free virtual computation.

e The tempora relations of interest may not necessarily follow from the information flow
partial order. One example is the partial order describing the virtual computation after re-
covery; another arethe zigzag pathsin Xu and Netzer’s recent work [XuNe93] in checkpoint
coordination.

e The tempora relations of interest may not necessarily be a mathematical order. (As
Section 2.2.3 discusses, an order is a relation both transitive and antisymmetric.) For
example, relaxing the transitivity requirement clarifies discussion of confinement barriers
and individual steps in information flow. Relaxing the acyclic requirement allows a natural
way to unite sets of events into atomic units: cycles.

Extending partial order time to agenera framework for temporal abstraction provides the toolsto
talk about these scenarios. Put ssmply, describing a distributed computation requires a theory of
distributed time.

Distributed Time for Distributed Protocols A theory of distributed time has practical
motivations and uses. Consider the computation performed by asynchronous distributed systems,
with processes that possess no common clock, that fail and restart, and that frequently may be
disconnected or even powered down. Many application problems that arise in these systems
reduce to asking questions about temporal relations other than the natural real time sequence.
Thinking in terms of these alternative temporal relationsclarifies these problems; providing clocks
for theserelationssimplifiesprotocol design. Indeed, building protocol sfor these problemsrequires
confronting these clock issuesin oneform or another. However, exploiting the power of alternative
temporal relationsrequiresunderstanding the underlying framework. The remainder of thischapter
devel ops these formal mechanisms of distributed time.

This research improves on earlier work by providing a single, genera theory of distributed
time suitable for awide range of applications. By supporting temporal relations more general than
partial orders and by supporting hierarchies of temporal abstraction, this theory can express the
computational abstraction appropriatefor familiesof application problems. By providing ageneral
approach to distributed time, this theory allows us to unify in a single framework protocols that
separately consult and affect time, and to consider once the clock issues central to each separate
protocol. By introducing orthogonality between temporal relations and the clocks that track them,
this theory allows us to consider (and alter) clock implementations without changing higher-level
protocols.

Considering these goals raises some critical issues:
e We want to represent a computation as some abstract set of “things that happened,” with a
relation indicating the temporal order in which these things happened.

e The components in these abstractions themselves represent various parts of aliteral descrip-
tion of what physically happened.

e These abstractions should permit temporal relations more genera than that of linear time.

e We need to distinguish between the way we obtain the abstract representations and the
representations themselves, since we may have multiple routes to the same representation.

¢ We want to be able to apply abstractions to abstractions.
We conclude that a general theory of distributed time should contain three components.

e astandard format for these abstract representations (so we can talk about computations);

e away to specify time models. representational transformations on these objects (so we can
abstract from one representation to another); and

e a way to trandate some level of physical description into this format (so our chains of
abstraction have some footing in reality).

Distributed time models provide several advantages:

e If the desired physical description is unavailable, our time model should express the best
observabl e approximation.

e If the complete physical description obscures key concepts, then our time model should
abstract to a more appropriate description.

e If the processes collectively pretend that the “current” computation differs from the one
a complete physical description would record, then our time model should express this
abstraction.

2.2. Description and Abstraction

2.2.1. Systems

In the theory of distributed time, we model the system as a collection of process automata that
send and receive messages asynchronoudy (and unreliably). Each process has a send queue and
areceive queue, not necessarily FIFO. When a process sends a message, it appends the message
to its send queue. At some undetermined time later, the network removes the message from the
send queue. Eventually the message may appear in the receive queue of the destination process,
which may then receive the message. (Thus, each message may be received at most once.) We
assume that each message is sufficiently distinct (perhaps using identifier tags) so that we can
unambiguously identify the send corresponding to a given receive.

9

Each process aso has a state transition rule 6. The 6 rule may differ at each process and may
even be nondeterministic (specifying a set of possible new states at each transition). We constrain
the 6 rule to force processes to behave reasonably with respect to messages. That is, during a
transition, a process may do one of three things:

e try to recelve a message fromitsinput queue,
¢ send amessage, or

e perform internal computation.

Sending or receiving a message changes the internal state at a process. A process may receive
messages by periodically polling its queue, or by continually looping on a poll (thereby blocking)
until amessage isreceived. We aso permit interrupt-driven receive events. a process may attempt
to perform an internal computation, with the caveat that if a message is present in the input queue,
the process will receive that instead.

A process operates in real time and changes state at indeterminate intervals. We model this
behavior by saying that each process has a black box that generates ticks nondeterministically (but
generating only finitely many in any finite period of real time). When receiving atick, a process
transforms state instantaneoudly according to its state transition rule. If atick arrives at real time
u, the old state persists for times ¢ satisfying ¢ < u; the new state existsfor ¢ > .

A system computation iswhat happens when the processes are set to their initial conditionsand
fed with nondeterministic ticks.

2.2.2. Traces

Probably the most practical ground-level view of computation is a linear trace. A trace is an
exhaustive physical description analogous to a movie reel, each frame stamped with a real time
value and recording the states of each process. We requirethat the cameraman obtaining thetraceto
be lucky but not necessarily regular: the interval of time between frames need not be constant, but
at least oneframe must be taken between any two consecutive ticks (or message arrival s/departures)
in the system. Table | shows an example.

So that traces have non-zero duration, we require that they have at least two frames.

In some sense, atrace is a hypothetical construct, since obtaining one requires access to the
complete physical state of each process at any instant in real time. Nevertheless, traces serve as a
starting point, describing the physical action in a computation.

10

| time |t=00[t=08[t=15[¢t=22[t=30|t=42 |t=48]

p: State initial 17 17 17 23 23 23

p: send queue % {M} D D D D D
p. receive queue % % % % % % %
q. State initial initial initial 32 32 32 12

q: send queue)) D D D D D
q: receive queue % % % % % (M} %

Table 1 In this simple example of a system trace,
process p sends a message M to process g.

2.2.3. Computation Graphs

In order to express computation as a temporal relation on some set of abstract, discrete objects,
distributed time uses a computation graph format where nodes represent the objects, and directed
edges represent precedence. This construction is similar to ordered multisets, but allows us to
express relations more general than orders, and to use language already in the common parlance of
systems scientists.

Notation An atom of a graph is a node or an edge. A minimal node in a computation graph
is one that has no node preceding it: a node with in-degree zero. Similarly, amaximal node in a
computation graph is one that has no node following it. We usually use lower-case Greek letters
to refer to computation graphs, upper-case Roman from the front of the alphabet to refer to nodes,
and upper-case Roman from the end of the alphabet to refer to sets of nodes.

Precedence and Concurrence Fornodes A and B inacomputationgraph, wewrite A — B
to indicate that node A precedesnode B, and A +/— B toindicatethat A and B areincomparable:
neither precedes the other. We say that incomparable nodes are concurrent.

Wewrite A — B toindicate that either A — Bor A = B.

The precedence relation specified by a computation graph is an order when it satisfies two
conditions:

e The relation is antisymmetric (or acyclic): for any A, B, if A— B and B — A then
A= B.

e Therelationistrangtive: forany A, B,C,if A— Band B— C'then A — (.

11

We use graphs to permit temporal relations more general than orders. In particular, defining
precedence by edges, rather than paths, permits nontransitive relations.

Prefixes and Past-Closure Suppose o’ is a subgraph of computation graph «. We say that
o' isaaprefix of « when o’ is connected and contains all minimal nodes of o. We say that o’ is
past-closed when common nodes have the same history in « and o’. (That is, for any node B in
o', if node A precedes B in o, then A exists and precedes B in «’.) The past-closure of asubgraph
o isthethe intersection of all past-closed subgraphs of « that contain «’.

Ground-level Computation Graphs Directly trandating traces into computation graph for-
mat yields ground-level computation graphs. Ground-level graphs have six types of nodes. a photo
node, representing the state of a process captured in a frame of the trace, and nodes representing
each way that process state might transform:

¢ When a process sends a message,

e When a process receives a message,

e When a process computes something internaly (i.e., a state transition not involving input or
output),

¢ When a message departs from the send queue at a process, or

e When amessage arrives at areceive queue at a process.

We transform atrace into its ground-level graph by constructing a photo node for each process
in each frame of the trace. Should two consecutive photos of a process indicate a state change,

we insert the appropriate transition node. Directed edges connect the consecutive nodes at each
process.

Figure 2.1 shows an example of this construction.

Representation Each atom in a ground-level computation graph represents some part of the
computational space-time expressed by the trace. The space coordinate of the region an atom
represents is determined by the process. the process p atoms represent activity at process p. The
time span is determined by the following rules:

¢ Each photo node represents the instant in time of that frame.

e Each transition node represents the unknown instant in time the transition occurred.

e Each directed edge between two nodes represents the open interval between the instants
represented by the endpoints.

12

photo: photo: photo: photo: photo: photo: photo:
initial,d0,0 17,{M},0 17,0,0 17,0,0 23,0,0 23,0,0 23,0,0

P - 0-0-0-0—0-0-0—0—0

send M internal
M departs computation

photo: photo: photo: photo: photo: photo: photo:
initial,0,0 initial,0d,0 initial,0,0 32,0,0 32,0,0 32,0,{M} 12,0,0

« @&—0—0-0-0—0-0+-0-0+0

internal M receive
computation arrives M

Figure 2.1 A ground-level computation graph is the lowest level abstraction of a
computation. This sketch shows the ground-level graph for the computation whose
trace appearsin Table I.

Figure 2.2 shows an example of this representation.

Event vs. State Considering how to build computation graphs brings up an important question
[Pro2]: should the fundamenta object (the nodes) represent events or states? Should the main
unit of description be the dynamic “thing that happens’ at a process, or the static “interval of
holding a specified bit-pattern?” Ground-level graphs admit both types of objects. photo nodes
describe process state, while the other nodes describe inferred (rather than directly observed) state
transitions.

Each approach can be useful, and the distributed time formalism supports both.

2.2.4. Time Models

Representative Transformations A ground-level graph provides too much detail. A time
model isamechanism to generate more abstract descriptions. Formally, time models are represen-
tative transformations on computation graphs. This description highlights the two key properties:

e Transformation A timemodel M isapartial function on computation graphs. Applying
M to agraph « (for which M is defined) produces a new, more abstract graph M («).

e Representation If model M is defined on graph «, each atom of M(«) may represent
atomsin the original graph «. However, this representation may be a Chicago-style democ-
racy: some atoms of M(«) may represent no one, and some atoms of « may have multiple
representatives. We formalize this arrangement by saying that the application of M to «
induces arepresentation map fromthe atomsof M(«) to sets of atomsof «. Thismap, which

13

photo: photo: photo: photo: photo: photo: photo:

initial,0,0 17,{mM},0 17,0,0 17,0,0 23,0,0 23,0,0 23,0,0
" Or@r0rer0—0+0-0——0——0
send M internal
M departs computation

p MTMFH I |;T|m;;;;;;;;;;;|;;|| Tl

1 2 3 4

O — p—

Figure 2.2 Each atom in a ground-level computation graph represents part of
the space-time region in which the computation occurs. This diagram shows how
the process p part of the ground-level graph from Figure 2.1 partitions the time
experience of process p in the computation from Table I.

we denote as (M, «), takes each atom in the new graph to the set of atomsit representsin
the original graph.

Figure 2.3 shows an example of thisrelationship.

Composition and Hierarchies The functional nature of time models allows us to compose
them. This allows us to place models—and computation graphs—into hierarchies. For example,
M; might take a set of ground-level computation graphs G, to a set of more abstract graphs G;.
This abstraction might lose information, in the sense that M; might take several graphsin Gy to a
singlegraphin G;. Model M, may abstract from G, to G,; the composition model M, o M takes
the ground-level graphs directly to G,.

The representation map for composed models follows naturally. For a computation graph «,
let 3 = Mj(a) and v = My(8) = (M2 0 Mj)(«). Wefind out what an atom A in v represents
under the representation map for M, o M; by the following steps:

1. We apply the map for M, to find out what A representsin j3.
2. We then apply the map for M, to find out what each atom in this set representsin «.

3. We take the union of the results of this second round.

14

M(a): O)

M (M,a) (M,a) (M,a)

&—0—0

Figure 2.3 Time model M transforms computation graph « to computation graph
M(«). The representationmap (M, «) takes each atom of M(«) back to the set of
atoms in « it represents. The bold arrow indicates the action of M; the gray arrows
indicate the action of (M, «).

8

We state this formally in the equation:

(MzoMy, a)(A) = U (My, o)(B)
Be(M;, Mj(a))(4)

Figure 2.4 illustrates this construction.

Refinement Suppose two models M;, M, have the property that for all computation graphs
a and o', Mi(a) = Mj(a’) implies My(a) = M»(e’). Knowing the M; image of a graph is
sufficient to determine the M, image. We say that M; refinesto M, and write M; > M.

When M; > M, model M, providesamore abstract view of the underlying computation, but
inaway that is still well-defined in terms of the view M provides.

Abstraction Hierarchies Refinement is clearly transitive. This fact allows usto put models
into abstraction hierarchies. chains of modelsthat successively refine to each other.

2.2.5. Properties of Time Models

We now define several time model properties that we will use in this thesis. Temporal relations
determine two of these properties:

e A modd istransitively bounded when its transitive closure has a unique maximum node and
a unique minimum node.

¢ A model is acyclic when its transitive closure has no cycles. (A nodein agraph is acyclic
when it does not precede itself.)

15

(M5,
M,

M, 0 M, B: O—0O) (M, 0 My,a)

(Mq,0) (Mq,00)

My

~ 7

a:

Figure 2.4 To obtain the image of graph « under the composition M, o M;, we
first obtain 5 = M;(«), and then obtain v = Mj(3). To apply the representation
map (M o My, o) to an atom in ~, we first apply (M, 3)(A) to that atom. We
then apply (M4, ') to each atom in the resulting subset of 3, and take the union
of the result. In this diagram, solid arrows indicate the action of the time models;
gray arrows indicate the action of the representation maps.

16

The remaining properties involve relating the graphs a model produces to the computation
underlying this graph (through the trace and the ground-level computation graph.) First, moving
from an M graph back to the static underlying computation allows us to define two properties:

e We say atime model M is flow-supported when transitive precedence implies information
flow. Every precedence pathis supported by potential informationflow. That is, suppose that
A and B aretwo nodes in agraph 5 produced by M, and that ground-level graph o satisfies
M(a) = . If A— Binj, thenaninformation flow path existsfrom the space-timeregion
A represents (through «) to the space-time region that B represents (through «).

e We say atime model M is flow-virtual when information flow does not necessarily im-
ply precedence. Such a model may express the information flow in a simulated virtual
computation.

We a so need to movefrom an M graph back to the dynamic underlying computation. A trace of
acomputation correspondsto aground-level graph. A computation in progressinduces a sequence
of increasing finite traces;, hence we can think of an unfolding computation as the sequence of
ground-level graphs

[Oéi] = QQ,01,..., 04, ...

corresponding to this sequence of traces. For a graph 3 produced by a time model M, we can
definethe set Sy 5 of ground-level graph sequences corresponding to unfol ding computationsthat,
at some point, generate 3 through M.

Smps = {lei] 1 Ik M(ay) =5}
We use this set Sy ; to define several types of monotonicity:

¢ A model M is node-monotonic when, for any graph 3 it produces, each node in 3 never
vanishes onceit exists.

vnodesAing Vo] €Smg Jk Vi @ AcM(ey) <= (j > k)

A model M is weakly edge-monotonic when, for any graph 5 it produces, each edge in /3
never vanishes once it exists.

vedgesEinB Vo] €Smyp Tk Vi @ Ec€M(a)) < (j >k)

A model M is strongly edge-monotonic when an edge exists between two nodesin 5 only if
it always existsin all graphs containing those two nodes.

VnodesA,Bing Vi €Sms V)
A, BeM(a;) = (A— BinM(q;)) < (A— Binp))

A model is weakly monotonic when it is node-monotonic and weakly edge-monotonic.

A model is strongly monotonic when it is node-monotonic and strongly edge-monotonic.

17

2.2.6. Parallel Pairs

Frequently the single perspective from a single time model is not sufficient. A distributed system
provides two simple examples:

¢ We may want to distinguish between “node B happened immediately after node A” and
“node B happened after node A.”

¢ We may want to distinguish between the ordering of nodes at an individual process (the local
computation) and the system-wide ordering of nodes at all processes (the global computa-
tion).

Distributed time allows such multiple perspectives.

Composition allows us to distinguish between the basic steps in a computation—e.g., events
A, B, C happened in sequence—and the general ordering. We ssimply build our model M to draw
edgesfor the basic steps and build a standard model TRANSto take the transitive closure of agraph.
Then we can talk about basic steps using M, and full transitive precedence using M = TRANSo M.

Eventg/states in a distributed system can exist and be ordered on two levels. locally, in the
timelines of their processes, and globally, in terms of the entire system. A graph describing the
local computations clearly relates to a graph describing the global computation: join the local
graphs“in parallel,” merge some events, and possibly add some edges.

A parallel pair is such a pair of models (M, M'). Both models act on ground-level graphs.
Model M produces a graph describing the global computation; model M’ produces a graph com-
posed of digoint straightline graphs, each describing a local process timeline. The modelsin a
parallel pair must satisfy one additional rule: minimal events at processes must correspond to
minimal eventsin the global graph, and similarly for maximal events. When M’ isthelocal model
in aparallel pair, we denote its process p component by 7, M'.

The two modelsin a paralel pair must closely correlate. This closeness alows us to define a
time model taking graphs produced by the local model to graphs produced by the global one. We
call this model the factoring model M /M’ . The factoring model satisfies the equation:

M = (M/M')oM

Figure 2.5 illustrates the four perspectives that a parallel pair provides.

2.2.7. Properties of Parallel Pairs

Time model propertiesdirectly lead to several parallel pair properties:

18

local global

full M/M'
transitive rm—
precedence
TRANS TRANS
basic M/M'

transition
steps

ground-level

Figure 2.5 A time model generates an abstract view of a computation. A parallel
pair generates four views, according to the two independent choices: whether we
use the process timelines or the overall system graph, and whether we consider
basic transitions or transitive precedence. Here, the parallel pair (M, M’) acts on
ground-level «, the computation graph corresponding to system trace 7'. The local
model M’ takes a to 3 = M/(«), the collection of process timelines. The global
model M takes « to v = M(«), the overall system description. We can take the
transitive closure of either of these graphs—and of either of these models. The
graph 3 = M’(a) expresses the full transitive relation induced by the basic steps
in 3; the graph 5 = M(«) expresses the full transitive relation induced by the basic
steps in 4. The factoring model M /M’ takes the M’ image to the M image; the
factoring model M /M’ takes the M’ image to the M image.

19

A parallel pair istransitively bounded when its global model istransitively bounded.

A paralle pair is acyclic when its global model is acyclic.

A pardld pair is weakly monotonic when the transitive closure of each model is weakly
monotonic.

A paralld pair is strongly monotonic when the transitive closure of each model is strongly
monotonic.

A paralle pair is flow-supported when each model is flow-supported.

A paralle pair is flow-virtual when the transitive closure of each model is flow-virtual.
The pairing of time models |eads to other properties:

e Each atom at a process affords some view of the activity at the other processes. Two such
atoms at a process are externally equivalent when they afford the same view: either both
are cyclic or both are acyclic, and both have the same transitive global relation to each node
at all other processes. A graph o from the global model in a parallel pair is view-complete
when any edge at any process has, in @, an externally equivalent node at that process. That
is, if any basic step at a process affords some externa view in the transitive global graph, a
node exists at that process giving the same view. A paralel pair (M, M') is view-complete
when al graphs produced by the global model M are view-complete.

e A consistent parallel pair is onethat is view-complete and transitively bounded.

¢ In an independent parallel pair, each non-extremal node in the global model represents a
unique node in the process model.

Types of Parallel Pairs Thisthesiswill focus primarily on parallel pairs of four types:

e Type 1. those that are consistent;

e Type 2: those that are consistent and independent;

e Type 3: those that are strongly monotonic, consistent, and independent;

e Type 4: those that are flow-supported, strongly monotonic, consistent, and independent.
For n € {1,2,3}, any Type n pair is a Type n — 1 pair, but some Type n — 1 pairs may not
necessarily be Typen pairs.

We will also consider independently when aparallel pair is flow-virtual.

20

The Type 1 and Type 2 conditions describe the internal structure of time models. The Type 3
and Type 4 conditions describe properties useful for specifying clocks for these models. The
flow-virtual condition will be useful in considering security properties of these clocks.

When aparallel pair (M, M) is Type 2, we will informally identify the nodes in the M graph
with their matesin the M’ graph.

2.2.8. Nonlinear Pairs

A nonlinear pair isapair of models (M, M’) that meetsthe definition of parallel pair, except for the
requirement that M’ produce straightline graphs. The definitions of Section 2.2.6 and Section 2.2.7
apply to nonlinear pairs as well.

2.2.9. Examples

Thinking about timein asynchronous distributed computationsas apartial order, determined by the
asynchrony and distribution, holds a number of advantages over thinking of time as atotal order,
determined by real time. This section devel opstime modelsto transform ground-level computation
graphsto graphs depicting their natural partial order time descriptions.

Partial order time abstracts away irrelevant temporal detail. As we shall see in subsequent
chapters, frequently we need to abstract away irrelevant computationa detail as well—deriving
temporal relations more general than the standard partial order, aswell as deriving instances of the
standard partial order that do not arise directly from the actual computation.

Thissection proceedsby removing theirrelevant detail of the network activity, and then building
apartial order time model that will be standard for this thesis.

Abstracting Away Network Activity Thegoal of partial order timeisto expressthe temporal
ordering perceived by the processesthemselves. Thefirst step toward building such modelsconsists
of abstracting away details imperceivable by the processes: the state and transformations of their
gueues. Thus we begin by defining the NET _ ABSTRACT time model which acts on ground-level
computation graphs.

TheNET _ABSTRACT model abstractsaway network activity asfollows. Inaground-level graph,
the photo nodes record both the automata state and the queue state at the process. For each photo
node, we retain only the recorded automata state. We delete the nodes marking arrive transitions
and depart transitions. For each process, the nodes in the NET _ABSTRACT image correspond to a
subsequence of the nodes in the ground-level graph; we draw edges connecting the nodes in this
sequential order.

21

Basically, the NET _ ABSTRACT image of agraph consists of acopy of theoriginal graph, withthe
photo nodes relabeled and the irrelevant transition nodes deleted. The representation map follows
this description. Let o be a ground-level graph, and 5 = NET_ABSTRACT(«). The representation
map (NET _ABSTRACT, «) takes each atom in /3 to its original image in «, with one exception—
deleted transition nodes. Suppose node A in « is a transition node that NET _ABSTRACT deletes.
Let I7; and F, bethe edgesincident to «. Let I betheedgein 3 where A would have been. Then

(NET_ABSTRACT, o)(FE) = {F1, A, F}

Figure 2.6 shows how the NET _ABSTRACT model applies to the sample ground-level computa-
tion graph from Figure 2.1. Figure 2.7 clarifies the representation map.

Timelines The TIMELINES model organizesindividual process activity into linear timelines. We
obtain the TIMELINES image of a ground-level computation graph « in several steps:

e We apply NET _ABSTRACT to «. Let /3 be the resulting graph.

e At each process, we create a L node for the first photo nodein 3, and a T node for the last
photo nodein .

e We copy each send and receive nodein /.

¢ Removing the send nodes, receive nodes, and extremal photo nodes from 5 would leave
us with a collection of maximal connected sequences of atoms, each occurring at only one
process. For each such sequence, we create a state node reflecting the process state. (This
state is well-defined: each sequence will have at least one photo node, except possibly the

initial state state state state state state

state 17 17 17 23 23 23
00— 0—0+-0+-0 0 —"0

send internal
M computation

initial initial initial state state state state

state state state 32 32 32 12
@ o—0—0+0-0 0 —0+0+0

internal receive
computation M

Figure 2.6 The NET_ABSTRACT model removes irrelevant network detail. This
computation graph shows the result of applying NET_ABSTRACT to the graph of
Figure 2.1.

22

initial state state state state state state

state 17 17 17 23 23 23
00T 0——0-0-0—0—0
send internal
M computation

photo: photo: photo: photo: photo:
7,0,0 17,0,0 23,0,0 23,0,0 23,0,0

~0—0

photo: photo:
initial,0,0 17,{M},

send M internal
M departs computation

Figure 2.7 Representation under the NET _ABSTRACT model is practically the iden-
tity. This diagram shows how atoms in the process p part of the NET_ABSTRACT
graph of Figure 2.6 represent atoms in the process p part of the ground-level graph
from Figure 2.1. The darker gray arrows leading to the deleted depart node are the
only significant change.

first and last sequences at aprocess. These extremal sequenceswill pick up their valuesfrom
land T.)

¢ \We connect consecutive nodes at each process with directed edges.

Figure 2.8 sketches this construction.

Representation follows from this construction. Suppose « is a ground-level graph, and we
apply the time models to obtain the graphs:

[= NET_ABSTRACT(«)
¥ = TIMELINES(«)

Each node A in ~ replaces a sequence S of atomsin 3. Node A representsin « the union of what
the elements of 5’ represent.

(TIMELINES, o)(A) = | J (NET_ABSTRACT, o)(B)

Figure 2.9 sketches thisrelation.

For process p, the model TIMELINES,, produces only the timeline belonging to process p.

23

0 initial send state internal state O
state M 17 computation 23

. —0—0—0—0—0—0

« &—0—0—0—0—0—0

0 initial internal state receive state 0
state computation 32 M 12

Figure 2.8 The TIMELINES model produces this graph when
applied to the ground-level graph of Figure 2.1.

0 initial send State internal state O
State 17 computation 23

P-’.>.>.>.>.>.>.

photo: photo: photo: photo: photo: photo: photo:
initial,0,0 17,{M},0 17,0,0 17,0,0 23,0,0 23,0,0 23,0,0
- 00000000 —+0
send M internal
M departs computation

Figure 2.9 Each node in the TIMELINES model represents a sequence of atoms in
the original ground-level graph. This diagram shows how atoms in the process p
part of the TIMELINES graph of Figure 2.8 represents atoms in the process p part of
the ground-level graph from Figure 2.1.

24

The Partial Order The PARTIAL _ORDER_TIME model organizes the timelines of TIMELINES
into a system-wide partial order. We obtain the PARTIAL _ORDER_TIME image of a ground-level
computation graph « in severa steps:

e We apply TIMELINES tO a.

¢ We merge the L nodesinto asingle global L node.

e We mergethe T nodesinto asingle global T node.

e For each recelved message, we draw a directed edge from its send node to its receive node.
Representation follows directly from TIMELINES representation: the | and T nodes represent the

union of what the merged nodes represent, and the message edges represent nothing. Figure 2.10
sketches this construction.

Since atrace must have at |east two frames, we observe that the minimal PARTIAL _ ORDER_TIME
graph consists of |, T, and a state node for each process.

This construction ensures that a process cannot have two consecutive “external” nodes (that is,
extremal or message event nodes).

The models (PARTIAL _ORDER_TIME, TIMELINES) form a Type 4 parallel pair: consistency, in-
dependence, flow-support, and strong monotonicity are all easily established. Indeed, we could
define flow-support in terms of PARTIAL _ORDER_TIME: agraph M(«) is flow-supported iff

A— BinM(a) = A — BinPARTIAL_ORDER_TIME(«)

The construction of PARTIAL _ORDER_TIME naturally suggests how to obtain the factoring model
PARTIAL _ORDER_TIME/TIMELINES.

initial send state internal state
state M 17 computation 23

P -0—0

¢ ~0—0

initial internal state receive state
state computation 32 M 12

Figure 2.10 The PARTIAL _ORDER_TIME model produces this graph
when applied to the ground-level graph of Figure 2.1.

25

Thetransitiveclosure TIMELINES buildsatotal order onthe nodesat each process. Thetransitive
closure PARTIAL _ORDER_TIME builds a partial order on the nodes at all processes.

2.3. Timeslices and Global States

This section discusses how the mechanics of distributed time extend to handl e the problems of redl
and apparent ssimultaneity in asynchronous distributed systems. Section 2.3.1 defines timedlicesin
computation graphs. Section 2.3.2 discusses global statesin computations. Section 2.3.3 discusses
the relation between global states and timeslices, and Section 2.3.4 discusses the finer structure of
timedlices.

2.3.1. Timeslices

We construct time models to package periods of activity at processes into events or states, which
appear inthe computation graph asnodes. Two nodesthat acomputation graphleavesunorderedare
logically concurrent, in that the graph does not specify one happening before another. A maximal
set of mutually concurrent nodes represents a logical dice of time across this computation; this
meaning follows naturally from the semantics of the computation graph: any other node must
happen either before or after some node in the set.

We define a timedlice! to be a maximal mutually concurrent set of nodes. That is, X isa
timediceiff X satisfies two conditions:

1. X ismutually concurrent: no A, B € X satisfy A — B, and

2. X ismaximal: no mutually concurrent Y exists properly containing X.

This definition of mutually concurrent automatically prohibits cyclic events from timedlices.

A partial timedlice isasubset of atimesice—that is, aset of mutually concurrent nodesthat is
not necessarily maximal. (If the precedence relation from acomputation graph were guaranteed to
be an order,? then a partial timeslice is simply an antichain.)

1Spezialetti [Sp89] uses the term “timeslice,” and Mattern [Ma89] uses “time dlice’; the timeslices there are special
cases of the timeslices here.

2Section 2.2.3 presented aformal definition.

26

2.3.2. Global States

The Physical Computation Inthephysical system, computation takes placein the space-time
region consisting of the cross product of the set of processes with a continuousinterval of real time.
A physical global state consists of the state of the entire system at some point in time—that is, a
dice of the space-time region.

Ground-Level Graphs Each atom of aground-level computation graph « implicitly represents
some subset of the computation space-time region. The collection of subsets represented by all the
atomsin « constitutes a partition of the space-time region. For the space-time dlice corresponding
to aphysical global state, we can find sets of atoms from the ground-level graph « that represent a
subset of the space-time region that contains this dice. (For atrivial example, consider the set of
all the atomsin the graph.) We say that aset X of atoms of ground-level « isaglobal state when
it isthe minimal subset representing aslice: when X contains the dlice but no proper subset of X
does.

Abstract Graphs Suppose time model M is defined for ground-level graphs. A computation
graph 5 produced by M is supposed to “forget” which ground-level graph generated it. The graph
3 is also supposed to express the objects of interest as nodes. The model M has an explicit
representation map to tell us what these nodes represent in pre-images of 3. To talk about global
statesin 3, we want to talk about three aspects:

e aset X of nodesin 3

¢ that minimally represents a ground-level global state

e in some ground-level graph that M transformsto /3.

Formally, suppose that time model M is defined on ground-level graphs. A graph /5 that M
produces is the M image of at least one ground-level graph «. A set X of nodesin # minimally
represents a global state when some ground-level graph « exists satisfying the conditions:

o M(a) =4

e X representsaglobal state Y in

Y J(M, a)4)

AeX

¢ however, no proper subset of X representsY’.

Figure 2.11 illustrates how node sets from higher-level graphs correspond to global states.

27

initial send State internal State
state M 17 computation 23

-@
O O
q:
initial interna state receive state
state computation 32 M 12
photo: photo: photo: photo: photo: photo: photo:
initial, 01,00 17,{mM},00 17,0,0 17,0,0 23,0,0 23,0,0 23,0,0
P -0—0
send M internal
M departs computation
photo: photo: photo: photo: photo: photo: photo:
initial,(0,0 initial,1,0] initial,D,* 32,0,0 32,0,0 32,0,{M} 12,0,0

“ @—0

M receive
arrives M

1111 1

0 1 Z5 3 4

—_—>
time

Figure 2.11 Global states arise from real simultaneity. Here, the region Z in the
space-time diagram at the bottom indicates the activity attime ¢ = 1.9. The atom set
Y in the ground-level graph in the middle is the minimal set mapping to this instant,
and thus is a global state. The node set X in the PARTIAL _ ORDER_TIME graph at top
minimally represents the global state Y. (The set X also is a timeslice.)

28

2.3.3. The Relation Between Timeslices and Global States

A ground-level graph « expresses the physical computation. Its abstraction under the time model
M isthegraph 5 = M(«). Ingeneral, timemodelswill not beinjective: many ground-level graphs
may map to 5 under M. If the set of ground-level graphs describes “possible” computations, the
set

G = {M(«) : «aisaground-level graph}

describes the possible computations when viewed through the model M.

The Timeslice Condition If M is well-constructed, then the timedlices in a graph that M
generates represent exactly the significant global states in the physical computations from which
this graph abstracts. Formally, suppose time model M on ground-level graphs generates the set
G. We develop criteriafor amodel to have timedices with the appropriate semantics. Model M
satisfies the Timeslice Condition iff for each 3 € G, M satisfies these requirements:

1. For each set X of nodesin 3, the following are equivalent statements:
e X minimally representsaglobal state Y in some ground-level graph o withM(«a) = £.
e X isatimedicein 3.

2. Each ground-level graph o with 5 = M («) and each global state Y in o satisfy the statement:

o If (M, a)(A)NY # @ for somenode A, then sometimedicein 3 minimally represents
Y.

Some partial order models fail to meet the Timedice Condition. For example, a version of
PARTIAL _ORDER_TIME that omitted the state nodes would fail: if a process p executes a receive
immediately after a send, then global states corresponding to the real timeinterval between those
events cannot be represented by timedlices. Figure 2.12 sketches an example.

The view-completeness property from Section 2.2.6 prevents these scenarios where timeslices
cannot extend to all processes.

Theorem 2.1 Suppose (M, M’) isaType 1 paralel pair. Then al timeslicesin M
touch every process.

Proof Suppose timedlice X does not touch process p. Let A be the maximal node at p that
precedes or equals some node in X. Let B be the minimal node at p that follows some node
in X. Wemust have A — B, for if B — A then X could not be atimedice. All nodes and
edges between A and B must be mutually concurrent with each node in X. Further, the first

29

Ry S

Figure 2.12 Consider the partial order produced by the transitive closure of this
event-only graph. Edge F at process p is concurrent with both R; and S5 at process
g. However, all nodes at process p either precede R; or follow S,. Consequently,
this graph is not view-complete. As a result, no timeslice can minimally represent
a global state containing R, or S, since any corresponding process p hode will not
be concurrent.

and last edges must be acyclic (otherwise A would advance and/or B would move back). View-
completeness gives the existence of nodes at p with the same properties, thus X could not have
been atimedice. [

By including state nodes, the PARTIAL _ORDER_TIME model of Section 2.2 is easily view-
complete and thus consistent. The construction of PARTIAL _ ORDER_TIME provides some additional
properties:

e Precedence of two nodes in PARTIAL _ORDER_TIME implies real-time precedence of the ac-
tivity those nodes represent in any underlying computation.

e Each nodein PARTIAL - ORDER_TIME represents a connected region of activity at a process.
e The activity of each process any point in timeisrepresented by some nodein
PARTIAL _ORDER _TIME.
These properties serve to establish the following result:

Theorem 2.2 ThePARTIAL _ORDER_TIME model satisfies the Timedice Condition.

Proof Let 3 beagraph generated by PARTIAL _ ORDER_TIME.

Suppose node set X isnot atimedice. Then either X does not touch every process (in which
case it cannot represent aglobal state), or X" is not mutually concurrent (in which case one node of
X must precede another in 3, and thusin real timein all traces).

30

Suppose node set X isatimedice. We construct a trace where the activities X represents are
simultaneous. Assign integersto the nodes of 5 by first setting each node of X to O, then setting
each node A following X to be one greater than the maximum value of its predecessors and each
A preceding X to be one less than the maximum value of its successors. If —j isthevalueon 1,
add 5 to each value. A trace exists that schedules each instantaneous node (L, T, and transition
nodes) labelled : at ¢ = 7, and each state node labelled : in the open interval (: — 1, + 1). Then
timedlice X describes the state of the system at ¢ = 5.

In any computation generating 3, a physical global state generates a node set X in 3 touching
every process. [

2.3.4. The Structure of Timeslices

By definition, atimeslice is maximal set of mutually concurrent nodes. What do these timeslices
look like? If acyclic, the singletons { T} and { L} are trivialy timeslices. no concurrent nodes
exist. What about the other timedlices?

Naively, a timedlice should consist of one node per process. In genera models, nodes may
represent activity at multiple processes. Hence in general, the informal “one-per-process’ tuple
has two formal characterizations:

e asavector—an array of nodes, with the constraint that the process p entry occurs at p; and

e asacut—a set of nodes that contains, for each process p, exactly one node occurring at p.

A cut isthe node set of a unique vector, but the node set of an arbitrary vector isnot necessarily
acut. In either case, we can use projection to isolate particular entries—e.g., 7, X isthe process p
entry of X.

Theliterature uses consistent cut for acut that isalso atimediceinthe global model. If thenode
set of avector isatimedlice, thenitisalso aconsistent cut (becausein parallel pairs, thelocal process
models are total orders, so distinct nodes at the same process cannot be concurrent). However, not
al timedices will be consistent cuts—Figure 2.12 shows a counter-example. View-completeness
eliminates this problem for our partial order models, as Theorem 2.1 showed. View-completeness
also provides a convenient extension property for partial timeslices.

Corollary 2.3 Let (M, M')beaType 1 parallel pair. Any set of mutually concurrent
nodes from M extendsto a full consistent cut.

Thetimedlicesinapartia order graph will betheextremasingletons (which areeasily consistent
cuts, since the extrema represent every process), and the sets consisting of a non-extremal node
from each process.

31

Timestamp Vectors Let (M,M’) beaparallel pair. We define the timestamp vector for anode
A to be the vector V(A) consisting of the maximal node at each process that precedes or equals A
in the global model. That is, let B bethe process p entry 7, V(A). Then B — A in M, and each
node C' at each process p satisfies

C —= AInM — C’ﬁB’inﬂpW
(Where C" isthe maximal =, M’ nodethat (' representsthere, and B’ is the minimal).

When the global model of a parallel pair is transitively bounded, all entries of all timestamp
vectors are defined. When the parallel pair is Type 2 aswell, the definition becomes much ssimpler,
since each non-extremal nodein M corresponds to a unique nodein M’.

View-compl eteness endows timestamp vectors with another useful property:

Theorem 2.4 Suppose parallel pair (M, M) isType 1. Let Ay, ..., Ax be mutualy
concurrent nodes in a graph from M, let p be aprocess at which no A; occurs, and let
node B be the p-maximal node among the p entries of the vectorsV(4;).

Then there existsaminimal acyclic node C following B at p, and C' is concurrent with

Proof Thisresult followsdirectly from the proof of Theorem 2.1. [

Suppose A isanodein aPARTIAL _ORDER_TIME graph that does not occur at process p. One
implication of Theorem 2.4 is that the node following the p entry of V(A) is mutually concurrent
with A.

Rollback Vectors Wecan definerollback vectorsasthedual to timestamp vectors. Therollback
vector for anode A isthe vector R(A) consisting of the minimal node at each process that follows
or equals A. That is, let B bethe process p entry =, R(A). Then A — B in M, and each node ('
at each process p satisfies the statement:

A—=CinM =— B —=Cinr,M

(Again, let B’ be the maximal node that B representsin the p timeline, and let C’ be the minimal
that C' that C' represents.)

Just as timestamp vectors describe the maximal history cone of an node, rollback vectors
describe the minimal future cone. The term “rollback vector” originatesin thisfact: if A wereto
be instantaneously undone, R(A) describes the frontier of the region to be rolled back. The dual
of Theorem 2.4 holdsfor rollback vectors.

Precedence of Vectors Thelinear order on individual timelinesinduces a natural relation on
vectors: wesay that V < W when r, V. — =, W for each process p, but V' # W.

32

The Timeslice Lattice Vectors of nodes, one per process, induce some natural entry-wise
operations—one of which we have already done. For vectors X and Y, definetheir meet X MY
to be the vector obtained by taking, for each process p, the minimal p entry from X and Y. Define
thejoin X U Y symmetrically by taking the entry-wise maximum.

We know that timeslices from Type 1 parallel pairs are consistent cuts, and thus have a vector
structure. In Type 2 parallel pairs, the meet and join operations preserve this property.

Theorem 2.5 Suppose X and Y are consistent cutsin a Type 2 paralel pair. Then
X MY and X UY areboth consistent cuts.

Proof Suppose”Z = X MY isnot atimedice. Then Z must equal neither X nor Y. There must
exist processes p and ¢ such that X contributes the process p entry of 7 and Y contributes the ¢
entry, but these entriesare not mutually concurrent. Let A, B bethep entriesof X, Y (respectively),
and C, D bethe ¢ entries. By hypothesis, A — B but D — (. If A and D are not concurrent,
then either A — (C (so X isnot atimedice) or D — B (so Y isnot atimedlice).

The case for joinissymmetric. [

Entry-wise precedence < partially orders consistent cuts; in thisorder, X LI Y istheleast con-
sistent cut dominating consistent cuts X and Y and X 1M Y isthe greatest consistent cut dominated
by X and Y. These observations, along with Theorem 2.5, suffice to establish that timedicesform
alattice: anonempty, partially-ordered set, such that each pair of elements has aleast upper bound
and greatest lower bound in the set [DaPro0].

Theorem 2.6 Timedicesin Type 2 parallel pairsform alattice.

Adjusted Vectors An easy variation of Theorem 2.6 is that the set of timedlices containing
some specified node also forms a lattice (since meet and join will preserve this membership). The
bounds on thislattice derive directly from timestamp and rollback vectors.

Let A be anon-extremal node at process p in agraph from aType 1 parallel pair. Theorem 2.4
tellsusthat for each ¢ # p, aminimal acyclic node existsin the ¢ timeline following the ¢ entry of
V(A). Define the adjusted timestamp vector V*(A) by replacing each non-p entry in V(A) by this
“successor.” Similarly define the adjusted rollback vector R™(A) by replacing each non-p entry
with its “ predecessor”: the maximal acyclic node preceding the R(A) entry.

For acyclic Type 2 models, this construction is stated more simply: if A occurs at p, obtain
V*(A) by replacing each each non-p entry of V(A) by itsimmediate successor, and obtain R™(A)
by replacing each non-p entry of R(A) by its immediate successor.

33

Theorem 2.7 Let (M, M’) beaType 1 parallel pair. Let A bean acyclic nodefrom
an M graph. Let {X1, ..., X; } betheset of al timedlices containing A. Then

VA5(A) = XiNXon..nX,

R (A) = X3UXoU...UX,

Proof From Theorem 2.4, A is either concurrent with or equals each element in its adjusted
vector. From Corollary 2.3, timeslices exist containing A and each of these elements. Thus the
bound can be achieved. By definition, no element from V(A) or R(A) except A can be in a
timedice with A. Further, no cyclic node can be in a timedice with A. Thus, these bounds are
tight. O

2.4. Clocks for Distributed Time

Section 2.4.1 sketches some clock primitives for time models. Section 2.4.2 sketches some clock
primitives for parallel pairs. Section 2.4.3 considers issues of when clocks have sufficient infor-
mation to answer these queries. Section 2.4.4 discusses how timestamp vectorsform abasisfor an
implementation of these primitives.

An Implicit Parameter The behavior of clock primitives will all be specified in terms of
the ground-level computation graph current at the time of execution. We denote this graph by
CUR_GRAPH. We do not include this graph as an explicit parameter since the processes that will
invoke these primitiveswill not have explicit access to this graph.

2.4.1. Primitives for Time Models

Supposetime model M acts on ground-level computation graphs. We define the most fundamental
clock primitive:

e PRECEDES A, B,M) returnstrueiff A and B are nodesin the graph M(CUR_GRAPH) and
an edge in this graph connects A to B.

PRECEDES allows us to implement two other primitives:

e CONCURRENT(A, B,M) returnstrueiff A and B are nodesin graph M (CUR_GRAPH), and
inthis graph, A and B are concurrent.

CONCURRENT(A, B,M) =
—~PRECEDES(A, B,M) A —PRECEDES B, A,M)

34

e ACYCLIC(A, M) returnstrueiff node A isacyclicin M(CUR_GRAPH).

ACYCLIC(A,M) = -PRECEDES A, A, M)

This specification raises some questions. Are the primitives well-defined? How do processes
provide these parameters? The remainder of this section considers these issues.

Well-defined Answers Suppose system computation extends the current ground-level com-
putation graphfroma too’. If A— Bina,will A— Bind?If A -/~ Bina,will A - B
in o/? The monotonicity definitionsin Section 2.2.5 provide some answers:

o If thetime model M is strongly monotonic, then the PRECEDES primitive is well-defined.

e If thetime model M is only weakly monotonic, then the PRECEDES primitive still behaves
reasonably, with the exception of occasionally changing from false to true as computation
progresses.

We make the implicit assumption that the models we define primitivesfor are strongly monotonic.
However, we note that the weakly monotonic case can also be made to work once we handle the
problem of convergence: knowing when a precedence answer become stable.

Node Names Processes using these primitives must specify nodes as parameters. Specifying
these primitives begged the question of how processes themselves should refer to nodes. We
assume that nodesin a computation have unigue names. Whether names should be mereidentifiers
(e.g., “node 73 at process 12”) or more complete descriptions (e.g., “node 73 at process 12: state
change from ¢3 to ¢7”) is another issue. This naming convention carries an implicit assumption:
from the information in a node name, one may extract the process at which the node occurred.

Shifting Models We use these simple primitives to ask about precedence in a model M.
However, a natural extension is to ask about other types of precedence using other models. For
example, in a paralel pair (M, M'), we can ask about individual steps at processes using M’, or
about precedence at process p using 7, M'. The format of PRECEDES and CONCURRENT already
grantsthisability: we use the model parameter to specify the appropriate model. However, shifting
nodes between levelsin aparallel pair can be tricky, because a node from a parallel pair exists on
threelevels:

e asanodein the global graph;
e asthe set of nodesit correspondsto in the digoint union of the local graphs;

e asthe set of nodes, if any, it corresponds to in each process graph.

35

In genera, shifting levels requires some careto avoid ambiguity. For Type 2 parallel pairs such
as (PARTIAL _ORDER_TIME, TIMELINES), this multiplicity is smple: each node in the global partial
order represents exactly one node at one process, except for 1. and T.

2.4.2. Primitives for Pairs

We define some additional primitivesfor parallel pairsand nonlinear pairs. We assume that our pair
is Type 3: both strongly monotonic and Type 2. (Strong monotonicity assures us that precedence
relations are well-defined; Type 2 provides convenient node structure.)

A Primitive for “Now” First, processes need access the name of their current node. We specify
aprimitive:

e CUR_NODE(p, (M, M')) returns the name of the current process p node in the graph
M'(CUR_GRAPH).

We alow only process p to ask CUR_NODE(p, (M, M')).

Vector Operations Processes need to perform vector operationsin nonlinear pairs. We specify
two primitives:

o MAX(V, W, (M, M’)) is defined for vectors V- and 1" of nodes from M(CUR_GRAPH), and
returns the entry-wise maximum (using M’ to sort entries).

o COMPARE(V, W, (M, M')) isdefined for vectors V and 1" of nodes from M (CUR_GRAPH),
andistrueiff V < W (using M’ to sort entries).

Meta-Primitive We want to define enumerative primitives for our clock suite. We begin by
defining two “meta-primitives’ asbuilding blocks. Let A be avariable representing an unspecified
node, and ¢ be a predicate on A. We specify two meta-primitives:

e LIST(A,®(A),) returns the set of nodes in graph 3 that, when substituted for A, satisfy
O(A).

e NODE(A, ®(A),3) returns the single node A from § satisfying ®(A) (and is undefined
otherwise).

These meta-primitives themselves are off-limitsfor processes.

36

Primitives that Enumerate We use LIST and NODE to build clock primitives that enumerate
nodes, rather than merely providing Boolean answers. These primitives apply to Type 3 parallel
pairsonly. (Recall that in a Type 2 parallel pair (M, M'), we identify nodesin M with nodes in
M’.) We specify three primitives:
e NEXT(p, A, (M, M’)) returnsthe M node that follows node A in the process p timeline.
NEXT(p, A,(M,M)) =
NODE(B, PRECEDES A, B, 7, M'), 7, M'(CUR_GRAPH))

e PREVIOUS(p, A, (M, M')) returns the M event that precedes node A in the process p time-

line.
PREVIOUSp, A,(M,M")) =

NODE(B, PRECEDES B, A, 7, M'), 7, M'(CUR_GRAPH))

e LIST_CONCURRENT(p, A, (M, M')) returns the acyclic M nodes at process p that are con-
current with event A.

LIST_CONCURRENT(p, 4, (M, M)) =

LIST(B, CONCURRENT(A, B, M) A ACYCLIC(B,M), 7, M'(CUR_GRAPH))

2.4.3. Knowable Pursuits

Section 2.4.1 considered when thetemporal relationthat aclock primitiveexaminesiswell-defined.
However, we have not examined when when aprocess executing of aclock primitiveinanunfolding
computation will have sufficient information to obtain this well-defined answer. For example:

¢ When should the clock at process p be expected to handle queries about a node A?

e What precedence relations should the clock at p be expected to know about?

To answer these questions, we informally consider an “Elephant-Pig Paradigm”: processes
never forget anything, and always piggyback each link in a precedence path with compl ete knowl-
edge. Although this paradigm would not be met by real implementations, it serves to a starting
point. Supposeweuse parallel pair (M, M’) to describe computation, and node C' occursat process
p. We specify some clock guidelines:

o If A— CinM, then process p at node C' may ask about A.

e If A and B both precede C' in M, then process p at node C' may ask about the relation
between A and C'.

37

For our models, flow-support reasonably approximates the Elephant-Pig Paradigm. If we
restrict the knowability questions to a parallel pair (M, M') is also flow-supported (e.g., (M, M)
isaType 4 paralel pair), this sketch provides some answers:

e Process ¢ at node C' € M(CUR_GRAPH) will get an answer from the queries
PRECEDES(A, B,M’)
PRECEDES A, B, M)
iff B — ' in M(CUR_GRAPH).
e Process g at node C' € M(CUR_GRAPH) will get an answer from
NEXT(p, A, (M, M'))
iff this node exists, and precedes or equals C' in M(CUR_GRAPH).
e Process g at node C' € M(CUR_GRAPH) will get an answer from
PREVIOUS(p, B, (M, M)
iff B — ' in M(CUR_GRAPH).

¢ Redlidticaly, it seemsunreasonablefor aprocessto know everythinginitspast. Consequently,
we restrict LIST_CONCURRENT to examine local nodes only. Only process p can query
LIST_CONCURRENT(p, A, (M, M')), only for A preceding the query node.

2.4.4. An Implementation

Vector clocks provide a natural approach for tracking temporal precedence in paralel pairs.
Historically, research in partial order time includes vector-based clock implementations [StYe85,
Fi88, Fi91, Ma87, KeK089, Ma39]. Indeed, the term “vector time” has surfaced for partial order
time, although we feel thisis a misnomer as it confuses an implementation with the underlying
structure. (However, these particular implementations do permit extra elegance in some applica-
tions.)

The vector relation on timestamp vectors follows the temporal relation on the events.

Theorem 2.8 Any two nodes A and B from a Type 1 paralel pair. satisfy the
statement:

V(A)<V(B) < (A— B A B -~ A)

38

Proof Each entry of a timestamp vector for a given event precedes or equals that event. If
A — B then, then the p entry of V(A) precedes or equals B, and thus precedes or equals the
maximal node at p preceding B. Conversely, suppose V(A) < V(B) and A occurs at process q.
Then A precedes or equals the ¢ entry of V(A), which precedes or equals the ¢ entry of V(B),
which precedesor equals 5. [

(Infact, thistheoremholdsfor parallel pairsmoregeneral than Type 1. Only transitive bounding
isrequired.)

Strong monotonicity implies that the timestamp vector for an event can actually be defined at
some point in the computation. Flow-completeness implies that the timestamp vector for an event
can actually be defined when the event occurs. Consequently, to implement clocks for Type 4
parallel pairs using timestamp vectors, we just have each process maintain a local counter and a
“current” timestamp vector. When a process sends a message, it piggybacks the timestamp vector
of the send; when a process receives a message, it updates its current vector to be the entry-wise
maximum. Timestamp vectors allow direct implementation of the PRECEDES and CONCURRENT
primitives, and, along with some facility for remembering history and event descriptions, alows
implementation of the remainder of the primitives.

Timestamp vectors al so function as clocks for more general typesof paralel pairs, such asthose
lacking flow-support, and those whose process timelines are themselves partial orders. Theimple-
mentation becomes somewhat more complicated in these scenarios, however. For example, non-
flow-supported models suffer from an information gap: when event A occurs at process p, process
p may not have sufficient informationto sort A. The answer to the query PRECEDES(M, A, B, «)
depends on when the query is made—and we need atime model M that refines to M, to capture
this parameter. (This scenario is an example of parameterized clocks.) Alternatively, when a
process timeline isitself a partial order, we need to distribute information so that other processes
can perform the vector clock algorithm—sorting two events at process p is no longer a matter of
comparing two scalars. (Chapter 4 and Chapter 5 discuss these issuesin more detail)

In principle, rollback vectors also function as clocks (the dua to Theorem 2.8 holds), but
information gaps makes implementation impractical.

2.5. Example Applications

2.5.1. Orphan Detection

An immediate application of distributed time is accurate orphan detection. When an event is
aborted, any event that could have been influenced by the aborted event is an orphan and should
be undone.

39

Tracking this dependence in an asynchronous distributed system is difficult. For example,
using real time to label as an orphan any event with a timestamp greater than the aborted event
will generate false positives, and not extend to work in environments lacking synchronized real
time clocks. Using atotal order consistent with the underlying computation also generates false
positives—and fails to extend to scenarios such as rollback recovery, in which the final (replayed)
instance of an event may actually occur later than an event it influenced.

Thetools of distributed time solve these problems by allowing us to talk about time as a partial
order, and by allowing us to move transparently from the partial order representing the physical
computation to amore abstract partial order that represents a virtual computation.

2.5.2. Immediate Ordered Service

The problem of immediate ordered service consists of servers processing requests from clientsin
an asynchronous distributed system. Each server has alist of outstanding requests. How can the
server choose the “earliest” entry to process without necessitating additional communication and
discussion?

This problem can be solved by applying apartial order time model to the computation, and hav-
ing servers use partial order clocksto sort the incoming requests. The immediate response time of
vector clocks makes that implementation particularly attractive—especially in a distributed, asyn-
chronous, and frequently disconnected environment. (Indeed, the published solution [KeK089] to
this problem is one of the independent discoveries of the vector clock mechanism.)

2.6. Comparison to our Earlier Publication

We presented much of thismaterial inan earlier publication[Sm93]. That version wasusually more
detailed, but was a'so more preliminary. This section briefly discusses some of the differences.

When defining process automata, the earlier publication alowed processes to know their input
gueue was nonempty, but proceed without receiving any message. That approach unintentially
permitted anonymous influence: process p may act on the knowledge that a message has arrived
from process ¢, but our time model s would not establish a precedence path from ¢ to p. Therevised
message rule in this thesis prohibitsthis scenario.

When devel oping time models, the earlier publication primarily took the event-based approach.
This approach created problems with view-completeness and complicated discussion of certain
application problems. This thesis avoids these problems by including both events and states as
nodes in computation graphs. In this respect, the construction of PARTIAL _ORDER_TIME in this
thesis differsfrom the POT model of the earlier publication. (In particular, PARTIAL _ORDER_TIME
ensures that a state node separates any two event nodes.)

40

When defining propertiesof timemodels, the earlier publication did not formally examineissues
of information flow. The definitions of flow-supported, flow-virtual, and monotonicity appear for
thefirst timein thisthesis.

Chapters 7 and 8 of the earlier publication gives a much fuller discussion of parallel pairs and
factoring modelsthan Section 2.2.6 of thisthesis presents. However, the earlier publication did not
explore nonlinear pairs, and took a different approach to examining the taxonomy of pairs. The
definitions of Type 1 through Type 4 appear appear for thefirst timein thisthesis.

The earlier publication providesamoredetail ed derivation of thetimedliceresults. Theorem 2.2
in this thesis reflects Theorems 13.6 through 13.8 of the earlier report.

Theorem 2.6 inthisthesis considersonly timedicesfrom Type 2 parallel pairs, athough we can
show that consistent cutsin general parallel pairsform lattices, asdo timedlices from any transitive
graph. The general case is difficult due to two facts:

e Some consistent cuts may contain nodes that touch more than one process, but not all of
them.
e Some timeslices may not be consistent cuts.
In particular, the definitionshere of the M and LI operationsand the < relation work correctly for

the well-behaved vector-like cuts in independent consistent parallel pairs. More general models
require more careful definitions. Chapter 9 of the earlier publication provides the full details.

41

42

Chapter 3

Distributed Snapshots

3.1. Overview

The distributed snapshot problem provides a straightforward application of the distributed time
framework. In an asynchronous distributed system, what one process perceives about the rest of
system is aways out-of-date. This limitation complicates the problem of capturing a snapshot: a
mosai ¢ depicting the global state of the system at some instant.

In real life, we think of time as a linear sequence of moments. Consequently, we find it only
natural to think of computations as linear sequences of global states. Barring anything unusual,
thislinear model actually describes the behavior of the system. Unfortunately, the asynchrony and
the distribution in the system make it difficult for processes within a system to obtain global states.
For example, suppose process p at time ¢ wants to take a snapshot of of the global state of the
system at time ¢, or even at some unspecified time closeto ¢. Although process p needs knowledge
of the other processes in order to put together this picture, any knowledge it may obtain will be
stale, because information travels at afinite speed. Further, the unpredictable message delays mean
process p cannot even know how stale this knowledgeis.

The Traditional Solution In their foundational paper on snapshots, Chandy and Lamport
[ChLa85] present an elegant marker-pushing protocol that works despite this limitation.! A
process initiating the protocol receives an approximately current snapshot with a counter-intuitive
correctness property: while this snapshot may not necessarily describe the state of the system at
any single instant, it describes a consistent state of the system.

That is, suppose process p initiates a snapshot protocol at time ¢y, and at time ¢; receives a
snapshot: atuple X describing the local state at each process. There exists awell-defined history
function H taking each ¢ in the interval [to, 4] to its global state H(¢): the tuple consisting of
the local process states at ¢. Intuition suggests that the snapshot X ought to be the value of H at
some instant in thisinterval. Asynchrony causes thisintuition to fail. Lacking perfect knowledge,
process p cannot obtain the /7 values; lacking real time clocks, process p cannot even obtain the

1Their system model—| ossl ess FIFO message channel s—somewhat constrains the asynchrony.

t values. A process's only sense of time derives from the messages the process receives and the
actionsit takes.

Here lies the rub: many valid histories H' exist with H(to) = H'(to), H(t1) = H'(t1) and
where each process perceives the same temporal relations. The global state X may not necessarily
be an intermediate value from the history that actually occurred, but it will be anintermediate value
from an equivalent? history.

What is more, this is the best we can do. A consistent global state is consistent with the
processes observations. Hence a snapshot recording a consistent global state is the most accurate
picture a process can obtain: anything more accurate would require more detailed observations—
which would change the computation.

Even though it may never have occurred, aconsistent system state still says useful things about
the computation in progress. For example, if property ¢ isstable—it remainstrue once it becomes
true—then examining a past consistent system state for ® may suffice to determine if ¢ holds at
the current instant.

Subsequent Research Subsequent research in snapshots explored variations on marker-
pushing protocols [SpKe86, LaYa87, Ve89, NeTo90, Ma93], characterized the state lattice that
arisesfrom dices across partial order time[Ma89, Jo89, JoZw90], and modified the message deliv-
ery model by relaxing the FIFO requirement, and by adding variousflushing primitives. Work also
progressed in developing applications of distributed snapshots in deadlock detection [Ma87], in
checkpointing [Jo89, JoZw90, Jo93] and in distributed debugging [Fi89, Sp89], including efforts
to use timestamp vectorsto capture consistent states with specific properties [CoMa9l, MaNe91,
MaSa9l, ToGa93, Gawad4]. (Taylor’s work [Ta89, CrTa90] uses a more deterministic notion of
snapshot—processes must know at the time a state occurs that that state is part of a snapshot—and
thus her results do not apply here.)

Using Distributed Time The snapshot problem demonstratesthat the standard way of thinking
about computation—as a linear progression of system states—does not work in an asynchronous
distributed system. The unsuitability of linear time makes the snapshot problem an attractive
demonstration area for the distributed time framework.

In Chapter 2 we phrased global states in terms of timeslices from a computation graph, and
specified clocks for these temporal relations. This framework allows straightforward snapshot

2This phenomenon is seductively similar to particle-wave duality. Processes may construct a set of possible paths for
the computation. Although the computation takes one path in particular, processes can never know which one: each
snapshot causes the set to “jump” to one value, not necessarily thereal one. Manthey [MaM 083, Ma90a, Ma90b] has
explored the use of computational abstractionsto model physics, and compiled alist of physical phenomenathat arise
as side-effects of computational behavior. The snapshot problem suggests an interesting extension to this research:
exploring what physical phenomena may arise as side-effects of temporal behavior.

44

protocols: processes use their distributed time clocks to assemble timedlices. This approach offers
three significant advantages:

e Flexibility Giving processesthe ability to sort events and statesintermsof thelogical time
model permits snapshot protocols that are much more flexible than the traditional marker-
pushing protocols. For example, we can take multiple snapshots and snapshots containing
an arbitrary past event.

e Orthogonality Between Protocols and Clocks By encapsulating the problems of
tracking timein aternativemodel sinto clocks for these model's, we separate theimplemented
from the implementations. This orthogonality allows usto modify clock protocols—perhaps
due to changing system environments or efficiency goals—without modifying the higher
level application protocols. For example, we can transparently add security and privacy to
these snapshot protocols by using more secure clocks. (Chapters 5 and 6 consider these
issues.)

e Orthogonality Between Protocols and Time Models We define global states and
snapshot protocols relative to a time model. This model encapsulates the logical timing
issues: physical reality may determine some linear order, but we pretend the model describes
what actually happens. However our notion of what actually happens may change. For
example:

— We may want to abstract further than this level—perhaps by pretending only global
states with certain properties occur.

— Wemay want toincrease the separation between thislevel and physical reality—perhaps
by alowing for rollback with modified replay.

Using the distributed time framework allows transparent alteration of the level of abstraction
in a snapshot protocol by using more abstract time models. (For example, suppose a process
rollsback and performsdifferent computation. At least threevirtual computations may arise:
the failed computation, the failure-free virtual computation, and the recovery computation
itself. The distributed time framework allows us to use the same protocol to take snapshots
of all threelevels. Chapter 4 discusses these issues further.)

Figure 3.1 sketches this approach.

This Section Section 3.2 defines the snapshot problem in terms of distributed time, sketches
a simple protocol to find snapshots containing any arbitrary event or state (even without FIFO
messages), and uses some of our theoretical results to improve this basic protocol. Section 3.3
considers the implications of using basic snapshot protocols with more abstract time models, and
shows two examples. Section 3.4 explores some advanced issues.

45

Timeslices 4_, Snapshot

Protocols
(application)
(time structure)
Time Models <—> Clocks

(theory) 5 (practice)

Figure 3.1 Distributed time simplifies protocol design. In the snapshot appli-
cation, we can describe the target in terms of distributed time: snapshots are
timedices, instants of logical simultaneity in the temporal relations expressed by a
time model. Clocks for these time models permit thinking directly in terms of these
relations, and thus provide the necessary primitives for snapshot protocols.

3.2. The Basic Problem

This section uses distributed time to examine the basi c problem of taking a snapshot. Section 3.2.1
builds a basic snapshot protocol. Section 3.2.2 uses vector clocks and the lattice structure of
timedlices to smplify this protocol.

3.2.1. Building a Basic Protocol

Informally, we think of a global state as what is happening everywhere at some moment in rea
time. However, we do not want a description of everything happening everywhere (where would
we writeit all down?) but rather alist of convenient abstractions. The restrictions of distributed
asynchrony confine the basic snapshot protocol to capturing what is happening at some moment in
time in some computation consistent with what processes observe. Thus for snapshot applications,
awell-constructed time model should produce graphs that have two properties:

¢ the nodes express the desired abstractions, and

¢ thetemporal precedence expresses only the observable orderings.

46

The PARTIAL _ORDER _TIME model built in Chapter 2 has these properties.

When a process takes a snapshot, it wants to find a global state from a computation consi stent
with what it and the other processes are observing. By Theorem 2.2, these consistent global states
are exactly the timedlices from the global partial order.

The Round Robin Protocol An interesting consequence of Corollary 2.3 is that for Type 2
(consistent and independent) parallel pairs, any set of mutually concurrent nodes—even asingleton—
extends to a consistent cut. This means that the following naive protocol suffices for a process p
to take a snapshot. Let (M, M’') be a Type 3 (consistent, independent, and strongly monotonic)
parallel pair. The protocol assumes the processes are organized into a directed cycle, and performs
the following steps:

1. Process P; chooses an acyclic node A; and sends { A, } asa partia timediceto F.

2. For each: with1 < ¢ < n, process P, receives a partia timedice from P;_; and appends a
local acyclic node mutually concurrent with each node in thetimedlice. If 7 < n, process P;
sendsthe new partial timediceonto P, ;. If ¢« = n, process P,, sends the compl eted snapshot
back to P;.

Figure 3.2 presents a more compl ete description. Processes use LIST_CONCURRENT to enumerate
nodes from their own timelines (consistent with the knowledge restriction from Section 2.4.3).
Corollary 2.3 guarantees that U; will be non-empty.

With modification, the Round Robin Protocol extends to more general parallel pairs. For
example, if the LIST_CONCURRENT call were guaranteed to be answerable, we could relax the
(M, M) requirement to Type 1 (consistent). If we rewrote the protocol to allow missing entries
fromthe S; and to allow some U; to be empty, we could even dispense with consistency requirement.

Unlike the traditional protocol, the Round Robin Protocol does not require FIFO message
delivery, is offline (in that the initiating process may specify any arbitrary seed node), and allows
each process some leeway in choosing what node to include in the snapshot.

3.2.2. Shortcuts

The Round Robin Protocol is simple and clear; each process receives a partial timedlice, then
finds and appends a local node mutually concurrent with that timeslice. The protocol is aso
fairly inefficient; the multiple LIST_CONCURRENT calls followed by the set intersection take time,
and n rounds of communication must take place before the initiating process receives the desired
snapshot.

However, examining the Round Robin Protocol in terms of vector clocks reveals shortcuts that
improve efficiency.

47

[* process P initiates protocol */
procedure INITIATE

/* find acyclic node to seed the snapshot */
repeat
CHOOSE A; # L

until ACYCLIC(A1, M)

[* create partial timedlice S; and send it off */
S]_H{Al}
SEND S;to P

/[* for each ¢ > 1, process F; recelves a set S;_; and cooperates */
procedure COOPERATE

/* find the local nodes that are concurrent with each nodein S;_1 */
for j=1to:—1
Aj« process P; entry of S;_1
T;+LIST_CONCURRENT(P;, A;, (M, M"))
/* find the intersection */
Ui Mcj<i T}
[* extend the partial timeslice */
CHOQOSE A; € U;
SZ'HSZ'_]_ U {AZ}
if :<n
[* if incomplete, send the partial timedlice to the next process */
then SEND S; to Pi-l-l

* if complete, send the snapshot back to P; */
else SEND S; to P,

Figure 3.2 Inthe Round Robin Protocol for distributed snapshots, we assume the
processes are organized into a cycle Py, ..., P,. Process P initiates the protocol by
choosing a local node that is acyclic, and passing a partial timeslice on to . For
1 > 1, process P, receives a partial timeslice and cooperates by extending it, and
passing it on.

48

The Reduced Round Robin Protocol Theorem 2.4 providesaway to combinethetimestamp
vectors for partia timedlices, and to find nodes with which to extend the partial timedice. This
result allows usto reduce both the messages and the computation in the Round Robin Protocol. Let
(M, M’) beaType 3 (consistent, independent, and strongly monotonic) parallel pair. The protocol
assumes the processes are organized into a directed cycle, and performsthe following steps:

1. Process P; chooses an acyclic node A; and sends the vector V(A1) to P.

2. For each ¢ with 1 < 7 < n, process P; receives a vector from P,_; and replaces the : entry
with the next acyclic node A;. P; them maximizes this vector against the timestamp vector
for A;. If ¢ < n, process P; sends the new vector onto P, ;1. If ¢« = n, process P, sendsthe
completed snapshot back to P;.

Figure 3.3 presents a more complete description.

This protocol improveson the Round Robin Protocol by encoding the partial timedice S; asthe
first 2 entries of vector V;, and using the remaining entries of the vector to mark the upper bound of
the set of nodes preceding S;.

The Completely Reduced Round Robin Protocol Some convenient properties of vector
clocks made the Reduced Robin Protocol possible. As Chapter 2 explained, these properties have
asolid theoretical foundation:

e Timedicesform alattice.

e Thetimestamp vector and rollback vector of a node delineate the bounds of the sublattice of
timeslices containing that node.

Theorem 2.7 tellsusthat if aprocess wantsto know a snapshot containing anode, then the adjusted
timestamp vector of that node suffices. Thuswe can reduce the Round Robin Protocol even further.
Let (M, M’) be a Type 3 (consistent, independent, and strongly monoctonic) parallel pair. Our
completely reduced protocol performs the following step:

e For aprocess p to find a snapshot containing node A at ¢, process p independently asks each
processr # ¢ for the value NEXT(r, 7,V(A), (M, M’)).

This protocol dispenses with the assumption that processes are organized into a cycle.

In general, concurrence is not transitive—to find the next element of a partia timedice, a
process must check every element. But snapshots from the adjusted vectors have the advantage of
being canonical, in the sense that the identity of the vector (e.g., “the adjusted timestamp vector of
A") is sufficient to determine membership. Theinitiating process still must query other processes,
but these queries may now be independent rather than sequential.

49

[* process P initiates protocol */
procedure INITIATE

/* find acyclic node to seed the snapshot */
repeat
CHOOSE A; # L

until ACYCLIC(A3, M)

/* send off a vector */
Vi<V(A1)
SEND V3 to P

[* for each ¢ > 1, process F; receives a vector V;_; and cooperates */
procedure COOPERATE

[* advance P; entry to next acyclic node */

Aj—mpViig

repeat
A;«NEXT(P;, A;,(M;M"))

until ACYCLIC(A;, M)

[* obtain new vector */

Vie—MAX(V;_1,V(A), (M, M"))

if 1<n
* if incomplete, send the new vector to next process */
then SEND V: to Pi-l-l

* if complete, send the snapshot back to P; */
else SEND V; to P,

Figure 3.3 In the Reduced Round Robin Protocol for distributed snapshots, we
assume the processes are organized into a cycle Py, ..., P,. Process P initiates
the protocol by choosing a local node that is acyclic, and its timestamp vector to
P,. For each ¢ > 1, process F; receives a vector whose first : — 1 entries comprise
a partial timeslice, and whose remaining entries are the maximal nodes preceding
this partial timeslice. Process P, cooperates by extending the partial timeslice,
updating its vector encoding, and passing it on. The vector maximization step
cannot affect the first ; entries, since these form a partial timeslice.

50

The most straightforward way to assemble an adjusted vector takes 2logn communication
steps—use a binary tree to send out the requests, and another to collect them. However, several
natural optimizations suggest themselves. For example, if A is sufficiently far in the past, then
process p may already know some values. Also, various processes may know the components for
other processes.

Theorem 2.7 also gives us ways to collect snapshots without actually having access to clocks.
For example, process p could obtain V*(A) (the adjusted timestamp vector of A) by searching
backwards along the paths of messages arriving before A. Infact, the traditional snapshot protocol
usesessentially thistechnique: initiate broadcast at node B, and obtain R*(B)) (theadjusted rollback
vector of B).

3.3. Snapshots from Higher-level Models

Both the Round Robin variants and the traditional snapshot protocol obtain a single snapshot. A
single snapshot is satisfactory from alinear view: the question of “what is happening right now”
should only have asingle answer. But distributed asynchrony gives multiple correct answers. This
fact made Chandy and Lamport’s work appear counter-intuitive, and helps motivate distributed
time theory.

Many global states may contain some specific node from process p. However, process p
may need access to states different from the one that particular run of a single-snapshot protocol
provides. Process p hasonly a couple of approaches:

e The desired states may be exactly the timedlices in some higher-level time model supported
by clock primitives. In this case, taking a snapshot in this alternate model suffices.

e Otherwise, process p needs either to extend its snapshot protocol to handle search-and-
backtrack, or to find an efficient way to collect sets of global states (so it can perform the
search locally).

This section focuses on this general snapshot problem (finding a global state satisfying some
arbitrary predicate ®) by taking snapshots from higher-level models. Section 3.3.1 outlines an
easy example: when snapshots satisfying ® are exactly the timeslices from a higher-level model.
Section 3.3.2 presents a more complicated example: capturing alarge class of snapshots by cap-
turing a single snapshot from a higher-level model.

51

3.3.1. The Easier Case

Section 2.3.1 showed that if atime model is doing its job, then its timedlices correspond exactly
to the global statesin the underlying computations. This correspondence assures a process that by
obtaining one of these timedlices, it istaking a snapshot of a global state.

The Special Timeslice Condition Suppose that a process wants snapshots of global states
that additionally satisfy some arbitrary predicate . In some sense, the process wants to pretend
the only moments of smultaneity that exist are onesthat satisfy . It would be convenient if atime
model would express this pretense by admitting only the interesting global states as timedlices. To
thisend, we revise the earlier Timedice Condition.

Supposetime model M on ground-level graphsgeneratesthe set G, and predicate ® on specifies
which global states are of interest. Model M satisfies the Special Timeslice Condition for @ iff for
each 3 € G, M satisfies these requirements:

1. For each set X of nodesin 3, the following are equivalent statements:

e X minimally represents a global state Y satisfying ® in some ground-level graph «
with M(«a) = §.
e X isatimedicein 3.

2. Each ground-level graph o with 3 = M(«) and each global state Y in o with ®(Y") satisfy
the statement:

o if (M, a)(A)NY # @ for somenode A, then sometimeslicein 3 minimally represents
Y.

We build time models by specifying nodes and precedence; timeslices follow from this basic
construction. Hencethearbitrary predicate ® must possess afair degree of structure (and the model
builder a fair degree of insight) in order to lead to atime model satisfying the Special Timedlice
Condition. For this approach to work, the predicate must decompose to incomparability under
some nicely behaved precedence relation.

Example: No Messages In Transit Asan example, suppose a process wanted only global
stateswhere no messages areintransit. No send event preceding asnapshot X hasitsreceive event
following X. Whether send and receive events themsel ves ought to be permitted to be members of
such snapshots is another issue: if process p isin the very act of sending or receiving a message,
isthat message in transit or not? We choose the cleanest approach: we permit the node before the
send or after the receive, but not the transitional events themselves.

InthePARTIAL _ORDER_TIME model, aconsistent cut X with thisno-transit property isgenuinely
acut of the PARTIAL _ORDER_TIME graph: any path from L to T must touch anodein X. (Other

52

consistent cuts will not partition the graph, since message edges connect the past of the cut to the
future of the cut.)

If process p never wantsto see a send event having occurred without al so seeing the correspond-
ing receive event, it essentially wants to pretend that corresponding send and receive events occur
simultaneously. We formalizethis pretense by defining the STRONG model, that adds an edge from
each receive event to its send event. The STRONG model also must handle the case of unreceived
messages. We take the approach of adding an edge from T to the send event of each unreceived
message.® Wethen mergethe atomscyclic with T into T. We definethe STRONG_ PARTIAL _ORDER
model to be the composition:

STRONG_PARTIAL _ORDER = STRONG o PARTIAL _ORDER_TIME

The new STRONG _PARTIAL _ORDER model exhibits much of the same theoretical structure as
its original version. For example, (STRONG_PARTIAL - ORDER, TIMELINES) is still a consistent and
independent parallel pair, so Theorem 2.1, Corollary 2.3, Theorem 2.4, Theorem 2.5, Theorem 2.6,
and Theorem 2.7 al till hold.

Conveniently, the STRONG model prohibits send and receive events from STRONG timeslices,
since these events are cyclic. This model thus obtains the desired result:

Theorem 3.1 The STRONG_PARTIAL _ORDER model satisfies the Special Timedlice
Condition for global states with no messages in transit.

Proof Supposemessage M fromptogissentat S andrecelvedat 2. INSTRONG_PARTIAL _ ORDER,
any node preceding R precedes any node following S. If message M issent by process p at S but
isunreceived, then al nodesfollowing S in PARTIAL _ORDER_TIME are cyclic, and prohibited from
timedices. [

Cycles of nodes become atomic units—if timedlices define perceivable moments, then cyclic
sets can never be perceived as only partially complete. This observation suggests that transaction
behavior may fit nicely into the framework of distributed time. (Section 7.2 discusses this topic
further.)

Suppose the clock primitives for the global order extend to the STRONG version. A process
may obtain a snapshot guaranteed to be a global state with neither send nor receive, nor message
in transit, smply by carrying out a partial order time snapshot protocol, modified by substituting
clock primitivesfor the new model.

Unfortunately, the cyclic STRONG_PARTIAL _ORDER model no longer satisfies the convenient
information properties of Section 2.4.3. For example, suppose process p executes a send event S

3According to thisfix, all messages are received, only some messages are not received until the end of time.

53

of amessage that is later received by process ¢ in receive event . Process p at S may know that
R — 5 iIn STRONG _PARTIAL _ ORDER—however, process p may not know anything else about £.

Moreprecisely, (STRONG_PARTIAL - ORDER, TIMELINES) isneither strongly monotonic nor flow-
supported (although it at least offers the advantage that processes can know that unmatched send
events exist, so at least convergence can actually be determined). Specifying and implementing
clocks for such cyclic models becomes rather tricky. In our origina scheme, the PRECEDES
primitive has two answers. However, the query “does A precede B in STRONG_ PARTIAL _ ORDER?’
admits athird answer: “not enough information yet.”

The proper answer to the new query depends on when it is asked. Consequently, we need
a third time model to express the degree of information flow for clock primitives* This model
should fit between the original partia order and its composition with STRONG; the abstraction
hierarchy framework from distributed time theory provides the necessary machinery. This concept
of parameterized clocks also extendsto handle the case when various circumstances (such asfaults
or malice) prevent the convenient information assumptions in well-behaved partial order models
from holding.

3.3.2. A Harder Case

Theorem 2.7 tells us that the adjusted timestamp vector of anodeisatimedice. One might conjec-
ture that any nontrivial timedlice is the adjusted vector of one of its nodes. In fact, this conjecture
is false—Figure 3.4 shows a counter-example. However, we can still establish something rather
interesting: that adjusted vectors uniquely describe any nontrivial timedlice, and that we can obtain
these descriptions by taking timeslices from higher-level time models.

For the snapshot problem, these results have two implications:

e A process might obtain snapshot X, but determine that a different one is necessary. The
descriptions give away of quickly specifying and obtaining a new one.

e A process can obtain agroup of related snapshots by taking a single snapshot in the higher-
level model.

(Charron-Bost [CB89] establishes arelated result: in partial orders, a bijection exists between
antichains (i.e., partial timeslices) and past-closed graph prefixes. Besides being developed in
a different framework, our results are distinct because past-closed graph prefixes do not map
injectively to timedlices.)

4Section 6.2 explores these issues further.

54

V*(B)

V*(A) X

Figure 3.4 Not all timeslices are adjusted vectors. Timeslice X = {A, B} equals
neither V*(A) nor V*(B). This example disproves the conjecture that Theorem 2.7
might describe all timeslices.

The Description Let (M, M’') be a Type 2 parallel pair (consistent and independent) that is
also acyclic. Let Y beanon-trivial partial timedlice: a non-empty set of non-extremal nodes that
are mutually concurrent. Let X be anon-trivial timeslice from M. A generating subset of X isa
Y C X satisfying the equation:

A minimal generating subset of X isagenerating subset of X', with the additional property that no
proper subset is a generating subset of X.

The remainder of this section establishes two key results:

1. Each timedlice X has a unique minimal generating subset.

2. A set Y isaminimal generating subset of atimedlice iff Y isanon-trivia partial timedlice
in a higher-level model.

The Blocking Model Establishing these results hinges on drawing edges from a node A to
node B when, inthe transitive global order, the local predecessor of A precedes B. We can express
thisenhancement itself asamodel, BLOCKED. The BLOCKED model operates on agraph by copying
it, and for each cross-process edge from node A to node B, adding another edge the local successor
of A to B. The name of the BLOCKED model derives from its function (which we will demonstrate
shortly). If A — B in BLOCKED o M, then the presence of B inan M timeslice X blocks node A
from being part of the minimal generating subset for X.

55

Results When an acyclic parallel pair (M, M’) is Type2 (that is, consistent and indepen-
dent), then (BLOCKED o M, BLOCKED o M) isa parallel pair that is still independent, transitively-
bounded, and acyclic. However, this new paralel pair may not necessarily be view-complete.
Consider agraph from the PARTIAL _ORDER_TIME model. Suppose at process p, only asingle state
node A separates a send node .S from a subsequent message node 5. The BLOCKED model will
dide the S — R message edge up to A — R, and the edge from A to B may not necessarily
have an externally equivaent node.

Precedence in BLOCKED expresses when the presence of one node in a timedice forces the
presence of another.

Theorem 3.2 Suppose (M, M) is an acyclic Type 2 (consistent and independent)
parallel pair. If non-extremal distinct A and B satisfy A «/— B in M, then

A—> BINBLOCKEDo M <+ A € V*(B)

Proof Let A’ bethe node immediately preceding A.

Suppose A — B in BLOCKED o M. Since A —/~ B in M, the precedence path from A to B
must have been created by BLOCKED moving ahead the in-node of amessage edge. Thiscould only
have made a difference when A’ — B in M. Thus A’ € V(B), hence A € V*(B).

Conversely, suppose A € V*(B). Thenin M, A’ — B but A —/~ B. Thus A’ must be the
send event of amessage that isreceived, so BLOCKED will copy and shift this message edge, giving
A — BINnBLOCKED o M. [

To obtain our main results, we first establish a condition on generating subsets.

Theorem 3.3 Suppose (M, M) is an acyclic Type 2 (consistent and independent)
parallel pair. Let X beanon-trivial timedice from M. Any generating subset Y of X
satisfies the statement:

VAeX dBc¢Y A— BIinBLOCKEDo M
Proof Suppose the condition failsfor A € X. Then A ¢ Y, and (from Theorem 3.2), for no

C e€YisA e V(). Thus Aisnotinthejoin of the adjusted timestamp vectorsof Y/, so Y isnot
agenerating subset. [

We then construct a generating subset for agiven timedice.

Theorem 3.4 Suppose (M, M) is an acyclic Type 2 (consistent and independent)
parallel pair. Let X beanon-trivial timedicefromM. Let Y betheset of BLOCKED o M
sinksin X.

Y = {AeX : VBe X, A—/ BinBLOCKED o M}

56

Then Y isagenerating subset of X.

Proof Let Z bethejoin of the M adjusted timestamp vectors of nodesin Y. For each process p,
let A, and B, bethep entriesof X and 7, respectively. We establish that A, = B, by considering
the two cases:

1. Suppose A, € Y. Let C be another node in Y, let C, be the p entry in its M adjusted
timestamp vector. If A, = C, then (by Theorem 3.2), A, — C in BLOCKED o M, violating
the congtruction of Y. If A, — C, inM but A, # C,, then A, — ' in M, violating the
fact that X isatimedice. Thus A, properly followsfromeach C,, s0 A, = B,.

2. Suppose Ap ¢ Y. By congtruction of Y, there exists a C' € Y such that A, — C' in
BLOCKED o M. Since A, and C' are both members of timeslice X, Theorem 3.2 gives that
A, eV (C). If D # CinY hasV*(D) dominating V*(C') &t p, then A, precedes or equals
the p entry of V(D). Thus A, — D in M, violating the fact that X is atimesice. Thus
A, = B,.

We use the condition from Theorem 3.3 to show that the generating subset from Theorem 3.4
isunique and minimal.

Theorem 3.5 Suppose (M, M) is an acyclic Type 2 (consistent and independent)
parallel pair. Any non-trivial timeslice from M has a unique minimal generating
subset.

Proof Let X beanon-trivial timesicefromM. Let Y bethe generating subset from Theorem 3.4.
Theorem 3.3 providestwo facts:

1. Any generating subset Y’ of X hasY C Y.

2. Any proper subset of ¥ cannot be a generating subset of X.
Hence Y isthe unigue minimal generating subset. [

Finally, we show that being a unique minimal generating subset is equivalent to being a partial
timeslices under BLOCKED.

Theorem 3.6 Suppose (M, M) is an acyclic Type 2 (consistent and independent)
parallel pair. Let Y beaset of non-extremal nodes. Y isthe unique minimal generating
subset of atimedicein M iff Y isapartial timedicein BLOCKED o M.

57

Proof Apply Theorem 3.5. The unique minimal generating subset of a timedice X is partial
timedlice in BLOCKED o M. Any not-trivial partial timeslice Y from BLOCKED o M is the unique
minimal generating set of

Implications Suppose (M, M’) isan acyclic Type 2 (consistent and independent) parallel pair.
A timeslice containing & nodes in BLOCKED o M is a shorthand representation of 2* timeslices
in M. If the clock primitives extend to handle queries about BLOCKED o M, then process p can
capture alarge class of snapshotsin M by asking for asingle onein BLOCKED o M. Naturally, we
can establish dual resultsfor adjusted rollback vectors.

3.4. Further Issues

To find out the state of the system, a process takes a snapshot. The fact that the snapshot does not
necessarily describe areal state creates some complications. Section 3.4.1 considers the problem
of resolving the parallax between inconsistent states, and Section 3.4.2 considers some areas for
futurework.

3.4.1. Resolving Parallax

The fact that standard snapshot protocols only guarantee consistent global states allows some
potentially difficult parallax situations: two snapshots taken in the same computation may not
mesh. Process p may take snapshot X'; process ¢ may take snapshot Y. The global states X and Y
will each be genuine global states in some physical computation underlying the unfolding partial
order—but they might not both appear in the same physical computation. For example, perhaps
there exists a pair of nodes such that at instant X', one lies in the future and one in the past, but at
instant Y the positions are reversed. Figure 3.5 sketches a simple example.

Distributed time theory gives us away to understand parallax; distributed time primitivesform
the basis for a simple protocol to resolve parallax.

Why Does Parallax Occur? Timedlicesinacomputation graph form a sublattice of a divided
hypercube in £ dimensions, where % is the number of messages. We obtain this hypercube by
drawing nodes at each point with coordinates from the set {0, 1, 2}, and drawing an edge from
node N; to node N, when they differ in exactly one coordinate, and the N, value there is one

58

X Y

Figure 3.5 Parallax occurs when snapshots appear to be inconsistent. Consider
the positions of nodes A and B with respect to timeslices X = V*(4’) and
Y = V*(B’). Both timeslices represent logically simultaneous instants. Howeuver,
at instant X, A has occurred but B has not, while at instant Y, B has occurred but
A has not.

greater than the N; value. Each dimension represents a message M, and the coordinate values
represent that message’s status. unsent, en route, or received.

Under the smplifying assumption that no two message events occur simultaneously, each
source-sink traversal of this graph correspondsto areal timetrace of a computation generating this

graph.

Timeslice precedence captures computation paths. Any timeslicefollowsor equalsthe minimal
timedlice and precedes or equalsthe final; timeslices X and Y satisfy X' < Y when a computation
path exists from X to Y. In generd, the timedice lattice is not a straightline graph; timedice
precedence is anot atotal order. Parallax follows from the existence of timedlices that are “con-
current,” in the sense that they are incomparable under the < order. (This structure on timeslices
is reminiscent of the time model structure on nodes.)

Resolving the Inconsistency Once again, lattices come to the rescue. Suppose X and Y
aretimedlicesin aview-complete, transitively bounded graph. We already know that X and Y are
consistent cuts. We can directly establish that the set of al timedices 7 suchthat 7 C X UY
formsafinitelattice: thisset isclosed under M and L.

To smplify presentation, we assume without loss of generality that X properly dominates Y
at each process. (In the genera case, we would take the join and meet of the two timedlices, and
restrict our attention the processes where the values differ.)

Clock primitives provide a basis for constructing a ssimple graph that expresses the sublattice
of timedlices contained in the set X U Y. Construct the graph by creating one node for each
process, and drawing an edge from process p to processg # p when 7, X — =, Y. If therearen

59

processes, this construction takes O(n?) operations; access to vector operations and vector clocks
can bring this down to linear.

The graph G concisely expresses the sublattice. To obtain a timedice 7, a process follows
these steps:

1. Chooseanodepind.
2. Select either 7, X or 7, Y for Z.

(& If 7, X, then for each node ¢ that (transitively) follows p, select =, X.
(b) If =, Y, then for each node ¢ that (transitively) precedes p, select 7, Y.

Delete the nodes for which we just selected values.

3. Repeat until all entriesof 7 are chosen.

3.4.2. Future Work

Fully generalizing the protocols and primitives requires confronting unresolved obstacles—and
also suggests interesting new structures. These issues provide topics for further research.

Convergence and Knowability The snapshot protocols of Section 3.2 implicitly assume that
agiven process has sufficient information to decide clock queries. As Section 2.4.3 discusses, this
implicit assumption may fail. We present three such scenarios:

e cyclic models;
¢ clock implementation where faults or malice or efficiency prevent complete knowledge; and

e snapshot queries about recent nodes.

These scenarios require more active consideration of convergence: when information about the
past of a node catches up with the future of a node. These scenarios aso require a more detailed
exploration of the knowability issues of Section 2.4.3.

Observation Effects Consider again asnapshot protocol that assumes all processes have heard
of node A. If aprecedence path does not exist from node A to process ¢, should the arrival of the
snapshot query establish one? That is, how should the act of examining the computation interact
with the computation itself?

60

Suppose a process p uses a snapshot protocol determinesif aglobal state satisfying a particular
property exists. Process p obtains its result at node A. What should happen to process p if this
guery fails—but later another process rolls back and changes history? If a suitable timedlice now
exists, the answer process p received isincorrect, so node A now depends on incorrect data. The
need to express this dependence suggests that, for time models expressing perception, every node
examined in asnapshot search should precede the response node. 1sthis synchronization desirable?
Should we use the abstraction hierarchy techniques of distributed timeto capture thisinfluencein a
higher-level model? What should happen in snapshot protocols where the existence of a snapshot
does not change, but the actual snapshot returned does?

Global States and Guaranteed Pasts The abstract computation graph describing a com-
putation induces a lattice of timedlices. The actual physical computation that occurs determines
which path through this | attice the system actually takes. The limitations of distributed asynchrony
prevent the system from ever finding out which path thisis; as a consequence, taking a snapshot to
determine some property of the computational path is difficult in the general case.

Recent work in global state detection (e.g., [CoMa91, MaNe9l, MaSadl, ToGa93, Gawad4])
has explored this area, both by explictly searching the timedlice lattice and by defining classes of
predicates (in particular, by relaxing the stability requirement) that may be examined by snapshot
techniques. Integrating this work into our framework would be an interesting area for future
research.

Another research direction comes from the observation that although a process p cannot find a
recent global state guaranteed to have occurred, it may have someusefor aconciseset { X, ..., X}
of recent global states, such that one of them definitely occurred. In the genera case, these sets
will be minimal graph-cuts of the timedlice lattice. With some simplifying assumptions, these sets
have a more familiar form: a“maximal set of X; such that no X; < X,”—that is, atimedlice of
timedices. Can we directly generalize distributed time to build higher-level time models whose
nodes represent timedlicesin lower-level time models?

61

62

Chapter 4

Optimistic Rollback Recovery

4.1. Overview

4.1.1. The Basic Problem

The problem of rollback arises when a process p in a distributed computation rolls back® to a
previous state. This problem typically appears when providing fault tolerance for distributed
computation: physical failure of process p might force p to roll back, since the most recent state of
p that can be recreated may not necessarily be the state p held when it failed. Some applications
might also permit rollback in non-failure scenarios; for example, process p might roll back its
computation if p discovers that critical input data was corrupted. For clarity of presentation, this
chapter assumesthat rollback occurs because of processfailure; however, our techniques also apply
to the more general case.

Failure and Recovery Supposeprocess p failsand recoversby restartingitself from an earlier,
saved state. All activity by process p sinceit first passed through this restored state has been lost.
(Figure4.lillustratesthisscenario.) If theoriginal execution of thislost activity affected no process
other than p, then the loss of this activity can affect no process other than p. For example, suppose
the lost activity had been entirely internal to p, or had included only the receipt of messages (if
messages are not acknowledged and could aso be lost for other reasons). In this case, the rest of
the system may proceed without ever knowing about process p’s failure and recovery.

Dependence However, suppose the lost activity at process p included the send event of a
message that was received by process ¢q. Then the state of process ¢ depends on activity at process
p that led up to the sending of that message, but some of this activity—including the send event
itself—has been rolled back due to the failure. Process ¢ has received a message that, in process
p’'sview after recovery, was never sent. The computation at process ¢ after this receive event must

1“Rollback” isthe noun; “roll back” isthe verb phrase.

also be rolled back in order to restore the system to a consistent state. (Figure 4.2 illustrates this
scenario.)

Transitive Dependence Distribution and asynchrony may make the situation even more com-
plicated. For example, suppose process ¢ receives a message from process p, but p then rolls back
its send event. However, before learning of process p’s rollback, process ¢ sends a message to
another process. Then process r depends on computation that has been rolled back—even though
process » may not have directly received a message from p. (Figure 4.3 illustrates this scenario.)

Orphans Inrollback recovery, an orphanisan event or state? that causally dependson (or equals)
computation that has been rolled back. This terminology and the use of PARTIAL _ ORDER_TIME to
express potential causality smplifiesthe above discussion. In Figure4.1, nodes A, through As are
orphans, since they depend on prior computation that has been rolled back. Figures 4.2 and 4.3
show orphans at other processes. the rollback in Figure 4.2 causes nodes B3 and B, to become
orphans; the rollback in Figure 4.3 causes nodes ('3 and (4 to become orphans, along with nodes
B3 through Be.

4.1.2. Further Issues

Delayed Messages Rollback can also giverise to some pathological scenarios. For example,
the lost activity at process p may include the send event of a message to process ¢ that, due to
network delays, does not arrive at ¢ until after p has rolled back and the system appears to have
recovered. Accepting this message may cause process g to become an orphan, as Figure 4.4 shows.
However, addressing this problem by blindly discarding all messages sent before rollback may
lead to discarding valid messages, as Figure 4.5 shows.

failure

O
..
I'm rolling back

Figure 4.1 The problem of rollback arises when a process fails and restarts from
an earlier state. Here, process p fails; it recovers at state Ag by restarting from the
state from A;. A large “X” marks each node that has been rolled back.

2The literature sometimes extends the notion of orphan to include processes (whose current state is an orphan) and
messages (whose send events are orphans).

64

failure

Figure 4.2 The problem of rollback becomes complicated when another process
depends on events and states that the failed process has rolled back. Here,
process p has failed and restored state A;. However, process ¢ at B3 has received
a message whose send event has been rolled back. Hence, B; and B, depend on
computation that has no longer happened. Consequently, B; and B, should also
be rolled back.

failure

p: >
O
..
I'm rolling back
B, Bs
>

Figure 4.3 Transitive dependence further complicates rollback. Process p has
failed and rolled back. Process r depends on computation at process ¢ that in turn
depends computation that process p has rolled back. Thus, the failure at process
p makes it necessary for process r to roll back, even though process r has never
received any message directly from process p.

65

Rollback with Modified Replay After aprocess p rolls back and restores some earlier state
A, it hasanumber of options. Process p could re-execute the same computation beginning at state
A that it originally executed. Alternatively, process p could intentionally execute a computation
beginning at state A that differs at some point from its original execution; this approach is termed
rollback with modified replay. For example, perhaps process p atersits activity in order to avoid
the conditions that led to the failure, or perhaps process p rolled back explicitly to take another
course of action (rather than to recover from failure).

Concurrent Rollbacks The possibility that rollback may occur asynchronoudly raises some
guestions.

e Multiple processes could initiate rollback concurrently—perhaps to recover from the same
failure, or perhaps to recover from different failures. Can the recoveries be merged? If not,
which recovery is performed first? Do the others till need to be performed?

e A process might fail and initiate rollback before recovery from some earlier rollback at
another process is complete. Can these two recoveries proceed concurrently?

4.1.3. Rollback Recovery Protocols

Beyond recovering the system when one or more processes fail, rollback recovery protocols have
severa implicit goals:

e minimizing the computation lost due to failure (e.g., the interval from the original execution
of the restored state to the failure);

apparent

failure recovery

AL A A A A A

p: —»() >

Figure 4.4 Successful recovery protocols need to consider delayed messages.
Believing the system is recovered and blindly accepting this message will cause
process ¢ to become an orphan.

66

apparent
recovery

failure

Figure 4.5 Fixing the problem of Figure 4.4 by discarding all messages sent
before rollback can lead to discarding valid messages. Here, process ¢ should
accept the delayed message—even though the message was sent by process p
before recovery.

e Minimizing the computation wasted due to rollback (e.g., the number of surviving processes
that must be rolled back, the number of times they must roll back, the delay before which
they begin their rollbacks, and the amount of rolled-back computation that did not depend
on computation lost due to the failure); and

e minimizing the overhead of the recovery protocol during failure-free execution.

Checkpointing One approach to recovery is based on checkpointing: processes periodically
checkpoint their local state to stable storage. Rollback recovery protocols based on checkpointing
(e.g., [BhLi88, BCS84, Ci89, EJZ92, KoTo87, LeBh88, LNP9Q]) organize local checkpointsinto
system-wide global checkpoints, and recover from failure by rolling back all processes to one
of these recovery lines. Protocols use varying degrees of synchronization in establishing global
checkpoints. Using too little synchronization permits pathological scenarioswhere asingle failure
could lead to the domino effect [Ra75, Ru80] in which all processes are forced to roll back to
their initial states regardless of the amount of progress made before the failure. Careful use of
synchronization avoids the domino effect. Nevertheless, checkpointing-based recovery wastes
computation by rolling back beyond the theoretical minimum. Processes that have dependence on
thefailuremust (ingeneral) roll back computation that occurred bef ore dependence was established;
processes that have no dependence may also need to discard their progress and roll back.

Message Logging and Replay Another approach to recovery is based on message logging
and replay. Processes log their received messages and occasionally checkpoint their local state.
Consequently, processes may recreate any past state—not just the ones saved as checkpoints—by
restoring an earlier checkpoint and replaying the received messages from the log. This approach
offerstwo significant advantages:

67

e Logging a message is cheaper than recording a checkpoint.

e Message logging reduces wasted computation, since surviving processes only roll back
computation that depends on the computation lost to failure.

Pessimistic rollback protocols (e.g., [BBG83, BBGH89, EIZw92, JoZw87, PoPr83]) syn-
chronize message logging with the underlying computation. For example, a process may not
proceed beyond the receipt of amessage until that message is successfully logged to stable storage.
Pessimistic protocols simplify recovery, since a surviving process never depends on computation
lost due to processfailure. However, the logging synchronization needed by pessimistic protocols
leads to decreased performance [Jo89].

Optimistic rollback protocols (e.g., [Jo89, JoZw90, Jo93, PeKe93, SiWwe89, StYe85, Zw88))
buffer received messages in volatile storage, and asynchronously log them to stable storage. A
process may proceed beyond the receipt of a message before the message is successfully logged.
These protocols optimistically bet that a process will not fail before the logging of its received
messages is complete. However, a failure at a process that has not finished logging may create
orphans at other processes. Consequently, optimism complicates recovery, since protocols must
be able to detect and eliminate orphans throughout the system. However, optimistic protocols are
cheaper during failure-free operation.

4.1.4. Asynchronous Optimistic Rollback Recovery

This chapter uses the framework of distributed time to consider optimistic rollback recovery.
Optimistic protocols already have low failure-free overhead. Our tools for time abstraction allow
us to improve on previous work by simplifying the task of recovery.

Most optimistic rollback rollback protocols require synchronization in recovery. However, the
more decentralized a distributed protocol is, the better its potential for exploiting the advantages of
distribution (e.g., concurrency) and being robust against the disadvantages (e.g., asynchrony and
unreliable networks). Strom and Yemini [StYe85] initiated the area of optimistic rollback recovery
and presented the most asynchronous protocol prior to ours.

Strom and Yemini Inthe Strom and Yemini protocol, processes use timestamp vectorsto track
dependency. When a process rolls back, it begins a new incarnation and sends announcements to
the other processes. (These announcement messages are not part of the failure-free computation,
and thus do not carry dependency.) When a process receives a rollback announcement, it uses
its timestamp vector to determine if it is currently an orphan; if so, this process rolls back to its
maximal non-orphan state by restoring an old checkpoint and replaying its received messages until
amessage is reached whose send event isan orphan. A process receiving arollback announcement
also saves the incarnation start information from the announcement for use in subsequent vector
sorting; delayed announcements may require non-faulty processes to block.

68

Strom and Yemini do not require processes to synchronize during recovery. This asynchrony
offers several advantages:

e processes can recover without the delay of synchronization;
e recovery from concurrent failures can proceed concurrently; and

e onceinitiated, recovery can sometimes proceed despite network partitions.

However, the Strom and Yemini protocol has asignificant disadvantage: asingle failureat one
process may lead to ©(2") rollbacks (where n is the number of processes in the system). This
behavior occurs because an orphan state at a surviving process » may depend on the lost computa-
tion through multiple paths: directly from the failed process, and indirectly through intermediate
processes. Even with itsassumption of FIFO message ordering, Strom and Yemini’s protocol may
generate failure announcements in such away that process r rolls back in response to the rollbacks
of intermediate processes, and then in response to the rollback of the failed process. Figure 4.6
showsasimple scenario inwhich processr rollsback twicein responseto asinglefailureat process
p; Section 4.3.6 presents an inductive construction showing an exponential number of rollbacks.

Distributed Time The framework of distributed time allows us to talk about time abstraction
on multiple levels:

e We can use one level of partial order time to describe potential causality in the failed com-
putation.

e We can use another level of partial order timeto describe potential knowledgein the recovery
computation.

Using timestamp vectors for both levels alows us to build an orphan test exploiting all potential
information. This ability directly leads to an optimistic recovery protocol that provides completely
asynchronous recovery but requires surviving processes to roll back at most once in response to
thefailure of any process. (Figure4.7 provides arough sketch.)

Our new recovery protocol improves on Strom and Yemini’s work by reducing the worst case
from exponential to constant, and improves on other optimistic recovery protocols by requiring no
synchronization during recovery. Our protocol aso provides additional flexibility: messages need
not be FIFO, and no extra messages need to be transmitted. Further, developing our protocol in
the framework of distributed time allows transparent integration with other applications based on
partial order time, and transparent protection against clock-based security and privacy attacks. Like
other optimistic approaches, our protocol does not require any processto roll back computation that
does not depend on lost computation at the failed process. Table 11 presents a table comparing our
protocol to three principal optimistic rollback protocols, and to a sample checkpointing protocol.
(Section 4.3.6 provides afuller discussion of these protocols.)

69

This Chapter Section 4.2 discusses the relevance of distributed time to rollback recovery.
Section 4.3 presents our new protocol. Finally, Section 4.4 uses distributed timeto derive ageneral
framework for rollback problems and recovery protocols. (Chapter 5 and Chapter 6 will explore
the security issues.)

We presented a preliminary version of our new protocol in an earlier publication [SIT94].

4.1.5. Assumptions

Recoverability Section 4.1.1 and the remainder of this chapter implicitly assume complete
recoverability: each state at every non-faulty process can be recovered.

failure

p: >

"I've rolled

back A"

By
q 20,
P, "I've roIIe"d
back Bg

G G Cs Cy Cs t6 ¢ e

Figure 4.6 The Strom and Yemini protocol may cause surviving processes to roll
back multiple times in response to a single failure. This diagram shows how one
failure at process p causes process r to roll back twice. Process p fails and rolls
back A, through As. This failure makes process ¢ an orphan (since ¢ depends on
the lost computation via path P;) and also makes process r an orphan (directly
through path P, and indirectly through paths P, and P3). When process ¢ receives
p'S announcement about A,, ¢ rolls back to its most recent state that does not
depend on A,. Unfortunately, ¢’'s announcement may arrive at process r before
p's announcement does. When process r receives ¢'s announcement about B3, r
rolls back to its most recent state that does not depend on Bs. Process r does not
know that its restored state is still an orphan until after the delayed p announcement
arrives (at Cg).

70

failure

Figure 4.7 Using two levels of partial order time allows asynchronous recovery
while avoiding the problem of multiple rollbacks. This diagram roughly sketches
the principles involved in our new protocol. Solid arrows indicate both poten-
tial causality in the failed computation and potential knowledge in the recovery
computation. Dashed arrows indicate only potential knowledge in the recovery
computation. As in Figure 4.6, process p fails and rolls back A, through As. Thus
Ag logically succeeds A; rather than As; hence the dashed edge from As to Ag
and the solid edge from A; to As. Process p sends an announcement to process
¢; since this announcement is not part of the underlying computation, we use a
dashed edge. Process ¢ rolls back, and sends an announcement that process r
receives at Cs. Via dependence path Py, C; depends on lost A, and is an orphan.
However, via knowledge path P, process r at (s is potentially aware that A, has
been lost. Comparing timestamp vectors across partial orders allows process r at
(s to determine that (' is an orphan. Thus, unlike Figure 4.6, process r rolls back
far enough the first time.

71

Strom and Koo and Johnson Peterson Distributed
Yemini Toeug and and Kearns Time
Zwaenepoel Protocol
Assumptions FIFO FIFO None None None
Asynchronous .
recovery? Partially No No No Yes
Concurrent
recovery? Yes No No No Yes
Maximum
rollbacks at one 0(2") 1 L . .
process from
onefailure?
Entriesin
timestamps O(n) 0(1) 0(1) O(n) O(n)
Table Il The distributed time protocol for rollback recovery compares favorably to

previous work in many aspects. Its principal drawback is timestamp size, since the
protocol requires vector clocks for two levels of partial order time.

As we have discussed, optimistic recovery protocolstypically provide complete recoverability
of states at non-faulty processes by asynchronoudly taking local checkpoints at each process, and
by asynchronoudly logging the messages each process receives. To restore a state A, a process p
rolls back to its most recent checkpointed state preceding or equaling A, and then re-executes its
computation (replaying received messages from its log) until it reaches state A. This approach
requires that process execution be piecewise deterministic (that is, deterministic between message
receive events). When a process fails, it may lose recent logging information, since logging
proceeds asynchronously with the underlying computation. (This fact distinguishes optimistic
recovery from pessimistic recovery.)

This logging and replay approach can be extended to nondeterministic execution by having
processes treat nondeterministic influences as incoming messages [EIZw92, Jo93]. For example,
if aprocess state enables a transition to multiple states, the process might asynchronously log the
index of the choice that ismade. Our automatamodel of Section 2.2.1 permitseach state transition
at a process to be non-deterministic. The extended logging-and-replay approach would provide
complete recoverability for our model, and for the protocols presented in this chapter. With some
modifications, the smpler piecewise deterministic model (with its ssimpler logging scheme) also
suffices. Section 4.3.5 discusses these modifications.

Commitability Theexamplesin Section4.1.1 also implicitly assume that any state or event can
be rolled back. Achieving this assumption in practice is difficult. Rolling back arbitrary nodes

72

may be impossible: for example, interaction with the outside world may lead to activity (e.g.,
launching amissile) that cannot easily be undone. Providing the ability to roll back arbitrary nodes
may be expensive, since processes can then never throw out any checkpointsor log data. Rollback
recovery for fault tolerance requiresonly keeping sufficient datato restore the maximal recoverable
system state; however, the question till arises of determining which datathisis.

Due to these problems, redlistic protocols also need to consider stability and commitability.
A state or event is stable when it has been successfully logged to stable storage; a state or event
is commitable when it will never be rolled back [JoZw90]. If rollback only occurs to recover
from process failure, then anode is commitable when every node in itstimestamp vector is stable.
When a stable node A becomes commitable at a process, the process will never need to recreate an
earlier node, and thus may discard all earlier log data (except that which is necessary to recreate
A). Furthermore, activity with potentially permanent side-effects may proceed safely. For space
efficiency, recovery protocols should alow processes to discard unnecessary data. For example,
in the Strom and Yemini protocol, each process maintains a vector indicating the logging status of
the other processes, and uses this vector to determine when node is commitable (and thus when
previous log data may be discarded).

For clarity of presentation, our protocols do not address the issue of commitability. However,
avector solution similar to Strom and Yemini’s easily incorporates into our framework.

Failure Detection and Reconfiguration Wealso do not consider mechanisms for processes
todetect failure, nor for selecting thephysical sitewhereafailed aprocessshouldrestart. (However,
since our framework provides tools for hierarchies of abstraction, it may ssimplify many issuesin
process/processor mapping.)

4.2. Rollback and Distributed Time

This section applies the framework of distributed time to the rollback problem. Section 4.2.1
discusses the relevance of distributed time. Section 4.2.2 introduces the idea that processes per-
forming rollback have two levels of consciousness—the system level of a process implements the
user level. Section 4.2.3 builds atime model for the computation performed by the system level
of processes; Section 4.2.4 builds atime model for the computation performed by the user level.
Section 4.2.5 introduces some notation for mapping between the system level and the user level.
Section 4.2.6 discusses the mechanics of retroactive change—how rollback protocols might alter
the computationin progress. Section 4.2.7 discusses how thefailure-freevirtual computation arises
from the user-level computation.

73

4.2.1. The Relevance of Distributed Time

Optimistic rollback recovery changes the history that user processes perceive. Distributed time
provides abstraction tools that apply on several levels:

e Dependence on Failure Optimistic rollback recovery permits orphans to exist at
processes other than the process that failed. If we have accurate timestamps from real time
and no prior failures have occurred, then we might try using real time to test for orphans:
anything that occurred after the failure. This test will detect al orphans, but has some
substantial flaws. First, using real time is wasteful—many states that did not depend on the
failure will be rolled back unnecessarily. Further, as Section 2.5.1 observed, this approach
easily breaks down in realistic scenarios:

— Not al processes may receive word of the failure ssimultaneously. Real time does not
distinguish between states that depend on the failed state, and states that occur after
recovery from dependence on the failed state.

— Suppose a failure occurs at process ¢ before recovery from a failure at process p is
complete. Real timeis not sufficiently articulate to express the resulting nuances. For
example, paerhapsthe current node at process - was an orphan due to both failures, but
process r rolled back in response to process p’s failure. Isthe current node at » still an
orphan dueto ¢’sfailure?

— Some state restoration mechanisms require a process to re-execute events. Such a
re-executed event may have a later timestamp than events that it influenced.

The nuances of dependence are better captured by a partial order time model (possibly, as
the last example illustrates, a flow-virtual model that does not follow directly from the real
timelines at processes).

e The Failure-Free Virtual Computation Recovery fromfailure changesthe underlying
computation. The failure-free virtual computation that appears to have happened after re-
covery iscompleteisalso expressed by apartial order—but thispartial order differsfromthe
one tracking dependency in the failed computation. For example, suppose we wanted to use
the results of Chapter 3 to take a snapshot from the logical past of the virtual computation,
or suppose we need to recover from a second failure. Applying protocols based on partial
order timeto the failure-free virtual computation requires access to this second partial order.

e The Recovery Computation The recovery computation is itself a distributed com-
putation, different from both the original failed computation and the failure-free virtual
computation. The recovery computation is expressed by a third partial order—one that
would be constructed by an external observer who did not know that the system was per-
forming arecovery algorithm. Reasoning about the progress of recovery (e.g., “who knows
about what rollbacks?’) and integrating the recovery computation with other applications
(e.g., snapshots) requires using the recovery partial order.

74

A Single Framework Distributed time provides the tools to represent computation at all the
levels of abstraction that arise when considering rollback recovery. The remainder of Section 4.2
will develop these levels of abstraction.

4.2.2. Bipartite Processes

The most straightforward representation of the state at a processis as a set of bits. However, our
distributed time theory introduces the abstraction that process clocks track temporal relations. A
firewall limits the interaction between a process and its clock to formal queries and responses.
Figure 4.8 illustrates this view.

Both the decision to roll back and the inability to directly control the state of the network
highlight the need for managing rollback at aprocess. Thisneed introducesasecond firewall inside
aprocess: inorder for asimple process of the form of Figure4.8 to exist inthe virtual computation,
it must have with it another process that handlesthe management. Figure4.9illustratesthisrevised
view: an implementing process supports the implemented process.

The implemented process—the state and action of the processabovethefirewall of Figure4.9—
isthe user level of that process. The state and action of the entire process is the systemlevel. The
management state is the portion of process state exclusively part of the system level.

Defining rollback requires the use of the Figure 4.8 view of a process. Implementing rollback
requiresthe use of the Figure 4.9 view. Multiplelevels of abstraction at a process mesh nicely with
multiple levels of abstraction and time (as the following sections discuss).

4.2.3. The System Computation

An external observer who did not know that failure and recovery was occurring would be oblivious
to the process structure of Figure 4.9. This observer’s point of view would provide no distinction
between the implemented process and the implementing process.

Process Clock

Figure 4.8 Encapsulating time services into a clock module revises our view of
process: we now now can think of the internal state of the process as separate
from the state of the process clock.

75

Implemented Process Clock

Implementing Process Clock

Figure 4.9 Managing the virtual existence required by rollback introduces another
firewall: between the implemented process and the implementing process.

We define
SYSTEM _PARTIAL _ORDER

to be the time model obtained by applying PARTIAL _ ORDER_TIME without distinguishing process
levels. (That is, we ignore the firewall between the implemented process and the implementing
process.) Similarly, we define

SYSTEM _TIMELINES

to be the model obtained by applying TIMELINES without distinguishing process levels.

We use the notation Vg(A) to indicate the timestamp vector of a node A a graph from
SYSTEM _PARTIAL _ORDER.

The pair of models (SYSTEM _PARTIAL _ORDER, SYSTEM _TIMELINES) forms a Type 3 parallel
pair—consistent, independent, and strongly monotonic. The possibility that process failure may
disrupt information flow preventsthe pair from being flow-supported, and thus from being Type 4.
Clocks for SYSTEM _PARTIAL - ORDER must be designed around this limitation. Section 4.3.4 con-
siders these issues.

4.2.4. The User Computation

In this section, we build a USER_PARTIAL _ORDER model to express the user-level computation
performed by the user levels of processes. This construction is a bit more complicated than the
construction in Section 4.2.3: we obtain the USER_PARTIAL _ORDER model as the composition of
an IMPLEMENT model with the SYSTEM _ PARTIAL _ ORDER model.

Implementation The system level of process computation implementsthe user level. Building
the user model requires defining this implementation.

In terms of our time models, a user process does four things:

76

¢ It holdsa state.
e It performsinternal computation.
¢ It sends a message.

o It receives amessage.
The system-level computation of a process implements these four things:

¢ A user state node consists of amaximal sequence of system-level state nodesand system-level
transition nodes that do not change the user state.

e A user internal computation transition occurs when the user state changes, due to an imple-
mented internal transition.

e A user send event consists of a change in user state along with the transfer of the message
to the management state (the virtual send); the system state subsequently sends the message
out as part of asystem message. (The potential exists here for the system process to suppress
the message.)

e A user receive event occurs when the system process receives a user message and decides to
pass it on to the user-level process. In the virtual receive, the management state changes (to
reflect the dequeuing of the message) and the user state changes (to reflect the receive).

The system-level computation at a process can aso perform rollback: a discontinuous change
in the user state.

Nodes The preceding discussion of how the system-level implementsthe user-level directly tells
what nodesthe IMPLEMENT model should produce when it isapplied to a SYSTEM _ PARTIAL _ORDER
graph, and what these nodes should represent. This mapping is described in the remainder of this
section, and isillustrated in Figure 4.10 through Figure 4.14.

Timelines as Trees With one exception, the logical ordering of user nodes follows from the
semantics of implementation—thusthe IMPLEMENT model draws directed edges between consecu-
tive user nodes, and draws a directed edge to each user receive event from the corresponding user
send event.

The exception is the rollback transition. Rollback requires a user process to restore an earlier
state and continue execution from there. Logically, the restored state node becomes a sibling® of

3Section 4.3.5 considers the implications of restoring the original node itself.

77

its original instance; unless rollback occurs again, subsequent user nodes form a linear sequence
extending from this restored state node.

This branching constitutes a departure from the linear timeline basis of parallel pairs. Thelive
history of auser node consists of its past in the transitive closure in its process timetree.

The User Model The IMPLEMENT model acts on SYSTEM _PARTIAL - ORDER graphs to abstract
away the implementation details of the user computation. Figure 4.10 sketches the production of
state nodes; Figure 4.11 sketches internal transitions; Figures 4.12 and 4.13 sketch the send and
receive events for user messages; and Figure 4.14 sketches the rollback transition. We define the
USER _PARTIAL _ ORDER model as a composition:

USER_PARTIAL_ORDER = |IMPLEMENT o SYSTEM _PARTIAL _ORDER

We define the TIMETREES model as USER_PARTIAL _ ORDER, |ess the message edges.

The models (USER_PARTIAL _ORDER, TIMETREES) form a Type4 (consistent, independent,
strongly monotonic and flow-supported) nonlinear pair: aparallel pair, less the requirement that
process graphs be linear.* Thiswill be the only nonlinear pair considered in this thesis.

Timestamp Pseudo-vectors Because nonlinear pairs do not place the nodes at a processin
a linear order, we cannot guarantee that any collection of nodes at a process has a minimal and
amaximal element. This uniqueness property is key to defining timestamp vectors and rollback
vectors for nodes—without it, the definitions collapse.

state
Ty

—()

—-O0—0—0—0—0—

state internal State
7U'2M 7U‘3M

Figure 4.10 Under the IMPLEMENT map, each USER_PARTIAL _ORDER State node
(top) represents a maximal sequence of SYSTEM _PARTIAL _ORDER nodes that have
no user state changes (bottom). Subscripts on the state labels distinguish the user
part of process state from the management part.

4Section 2.2.8 discussed nonlinear pairs.

78

state state internal state state
Tu.2y Tu2y 8u3m 8u3m

Figure 4.11 Under the IMPLEMENT map, each USER_PARTIAL _ORDER internal node
(top) represents a SYSTEM _PARTIAL _ORDER internal node that implements a user
state change (bottom).

state send State

4y Sy
QO >

—>Q—>Q>Q>./>.—>

State user State send State
4U16M send 5U17M 5U18M

Figure 4.12 To implement a USER_PARTIAL _ORDER send (top), the system process
lets the user process send the message virtually. The system process then takes
care of the details of actually sending the message (bottom).

state receive state
12, 13,

—Q ~O—

State receive State user State
124,15y, 124,16, receive 13,17y,

Figure 4.13 To implement a USER_PARTIAL ORDER receive (top), the system
process receives the message and forwards it to the user process (bottom).

79

state rollback state
7u:6Mm 20.m

Figure 4.14 A system process performs arollback transition by restoring an earlier
user state (bottom). The implemented user transition falls outside the normal rules
of transition of user state; thus the new user state is a logical sibling of its earlier
instance. We adopt convention that the restored user state node represents the
rollback transition. A large “X” marks each node that has been rolled back.

For a given node A in USER_PARTIAL _ORDER, We can till define a timestamp pseudo-vector
V'(A) as the TIMETREES-maxima of the live history of A. The timestamp pseudo-vector will not
necessarily be atrue vector, since it may contain multiple nodes from the same process (but from
different branches of the timetree). If atimestamp pseudo-vector V'(A) isin fact a vector, we use
the notation Vs (A).

(Section 4.2.7 will discuss further properties of timestamp pseudo-vectors, and will observe
why generalizing rollback vectorsto rollback pseudo-vectorsis difficult.)

4.2.5. Mapping Between the System and User Computation

We will need to map between the USER _ PARTIAL - ORDER and the SYSTEM _PARTIAL _ORDER levels
of abstraction. This section introduces some toolsfor this mapping. We show that user precedence
implies system precedence (of corresponding nodes); we introduce some shortcuts for graphical
notation; and we provide some clock primitives for processes to perform this mapping explicitly.

Precedence User precedence implies system precedence.
Theorem 4.1 Let 3 be a SYSTEM _PARTIAL _ORDER graph, and let ~ be the corre-

sponding USER_PARTIAL _ ORDER graph. Let A, By benodesin~. Any choiceof Ag
from (IMPLEMENT, 3)(A) and Bs from (IMPLEMENT, 3)(B) satisfy the statement:

AU—>BUin7 — A5—>B5in3

Proof Thisfollowsfrom the definition of IMPLEMENT. [

80

Graphical Shorthand Theorem 4.1 implies that, when we care about transitive precedence
and the node set is unambiguous, we may use the same drawing to represent relations from both
the SYSTEM _ PARTIAL _ ORDER model and the USER _ PARTIAL _ ORDER model. Figure 4.15 shows an
example. For these drawings, we adopt the convention of dashed arrows for system-only edges,
and solid arrows for edges that carry precedence in both the system and user models. System
precedence corresponds to any path; user precedence corresponds to paths composed of solid
edges only.

Usually, wecan build these combined diagramsshowing USER _ PARTIAL _ ORDER nodes. Potential
for ambiguity arises when we want to consider the system activity that a user node represents. We
are particularly interested in three areas:

¢ the send event for a system message (and the decision to send it);
¢ thereceive event for a system message (and subsequent processing); and

¢ thereceive event for auser message that a system process decides to discard (so the message
becomes a system-only message).

When relevant, we indicate the interesting sequence of SYSTEM _PARTIAL _ORDER nodes that a
USER_PARTIAL _ ORDER node represents by a“peapod” drawing (such as Figure 4.16). As system-
only edges, SYSTEM _PARTIAL - ORDER messages are indicated by dashed arrows. This convention
fails to digtinguish a system-only message from a rejected user message; where relevant, this
distinction will be made clear in discussion.

Primitives for Mapping Some of our protocols require processes themselves to map between
levels. We now specify some explicit primitives for this task. (Recall from Section 2.4 that
CUR_GRAPH returns the current ground-level computation graph.)

Processes need to map nodes back and forth. We define two primitives:

state state state
2y 2y

Figure 4.15 Since Theorem 4.1 shows that user precedence implies sys-
tem precedence, the same drawing can show both USER_PARTIAL _ORDER and
SYSTEM _PARTIAL _ORDER information. We use the convention that dashed edges
carry precedence in SYSTEM _PARTIAL _ORDER only. This sketch shows that, after
rollback, the restored state system-follows the aborted state.

81

State State State

p
M

Figure 4.16 When relevant, a “peapod” drawing reveals the implementation de-
tail of a user node. Suppose upon rollback, the system process here sends a
system-only message. We can indicate that in our combined drawing by expand-
ing the node for the restored state into a “peapod” indicating the subsequence
of interesting system nodes—rollback, state, send, and state—that this user node
represents. The dashed message arrow indicates the system-only message.

e USER(A) returnsthe user node representing system node A.
USER(A) = NODE(B, A € (IMPLEMENT, (3)(B),IMPLEMENT((3))
(Here, 3 = SYSTEM _PARTIAL _ORDER(CUR_GRAPH)).
e SYSTEM(A) returnsthe set of system nodes that user node A represents.
SYSTEM(A) = (IMPLEMENT, SYSTEM _PARTIAL _ ORDER(CUR_GRAPH) }(A)

Processes need to work with vectors on both levels. We define a primitive:

e USER_VECTOR(V) takessystemvector V' and mapseach entry A toitsuser versonUSER(A).

Finally, processes need to work with messages on both levels. We define three primitives:

e USER_MESSAGE_TEST(M) returnstrue iff system message M is also auser message.
e USER_MESSAGE(M) extracts the user message from system message M.

e SEND_EVENT(M, M) returns the send event in M associated with message M.

These primitives form part of our clock suite for processes. However, we aso use USER,

SYSTEM, and USER_VECTOR as informal shorthand for the operationsthey carry out.

4.2.6. Retroactive Change

Section 4.2.3 and Section 4.2.4 introduced two time models for optimistic rollback recovery.
Understanding how recovery leads to afailure-free virtual computation arising from these models

iscritical to defining and solving the rollback problem. This section explores these issues.

82

Failure-Free Computations Thegoa of rollback recovery isto establish afailure-freevirtual
computation. To facilitate this work, we define a failure-free trace to be a trace of a system
consisting of processes with implemented state only, that never fail. We define

FAILURE_FREE_PARTIAL _ORDER

to be the PARTIAL _ ORDER_TIME model applied to failure-freetraces.

Extracting Failure-Free Computations TheSYSTEM _PARTIAL - ORDER model constructsthe
standard partial order for the system-level computation, and the USER _PARTIAL - ORDER model
constructs the dependency partial order for the user nodes. In the terminology of distributed time,
we say that the SYSTEM _PARTIAL _ORDER model refinesto the USER _ PARTIAL - ORDER model.

SYSTEM _PARTIAL_ORDER > USER_PARTIAL _ORDER

The system-level computation determines the user-level computation.

However, if failure has actually occurred, then the USER_PARTIAL _ ORDER graph will not be
a FAILURE _FREE _PARTIAL _ORDER graph, because USER_PARTIAL _ORDER is constructed from the
TIMETREES process structures, showing al rolled-back computation. Furthermore, extracting a
FAILURE _FREE _ PARTIAL _ ORDER graph from USER _PARTIAL _ORDER leads to tricky situations:

e If recovery proceeds correctly but more than one process must roll back, then the graph from
the USER _PARTIAL _ ORDER model will generate a unique recovered failure-free computation,
but may generate multiple “older” computations.

e Consequently, designing correct recovery protocols (or even unambiguously specifying the
rollback problem) can bedifficult. A particular challengeisgetting adistributed collection of
processes to agree, based on knowledge of one failure and differing views on the unfolding
USER _ PARTIAL _ ORDER computation, on which failure-free computation to restore.

An Example Consider the SYSTEM _PARTIAL _ORDER computation described by Figure 4.17.
Process ¢ decides to roll back the send event B3, and establishes a copy B} of earlier state node
B,. Process ¢ sends a message to process p, who cooperates. Process ¢ performs modified replay,
and executes Bs instead.

This example provides a clear distinction between the old virtual user computation and the
new virtual user computation. Figure 4.18 shows the FAILURE _ FREE _PARTIAL _ ORDER computa-
tion before recovery; Figure 4.19 shows the FAILURE _FREE_PARTIAL - ORDER computation after
recovery.

|dentifying the recovery period in the USER_PARTIAL _ORDER computation of Figure 4.17 is
also straightforward. From areal-time perspective, recovery should begin at the real time ¢, that
process ¢ first rolls back, and end at the real time ¢ ; that process p rolls back. Distributed time lets

83

Figure 4.17 This combined drawing shows an example of rollback with modified
replay. After user state By, process ¢ decides to roll back node B3. Process ¢
restores a copy of state B, and informs process p, who cooperates and then pro-
ceeds with its own modified replay. The pair of timeline edges marked Y delineates
the transition from the old computation to the new computation.

A A, A A,

Figure 4.18 This graph shows the failure-free virtual computation
from Figure 4.17 before process ¢ initiates recovery.

Figure 4.19 This graph shows the failure-free virtual computation
from Figure 4.17 after rollback recovery is complete.

84

us draw even tighter boundaries: the pair of timeline edges Y in Figure 4.17 marks the transition
from the old computation to the new computation.

In thisexample, both process p and process ¢ perform rollback. The user computation at eachis
atree; Figure 4.20 shows the USER_PARTIAL - ORDER graph. Before process ¢ initiates rollback re-
covery, theuser computation consistsof A4, B4 andtheir pasts (theFAILURE _ FREE _ PARTIAL _ORDER
graph of Figure 4.18). After recovery, the user computation consists of to Ag, B and their pasts
(the FAILURE _ FREE _ PARTIAL _ ORDER graph of Figure 4.19). However, the USER _PARTIAL _ORDER
graph of Figure 4.20 also admits a third FAILURE _ FREE _PARTIAL _ ORDER graph: that determined
by A, B4 and their pasts. Figure 4.21 shows this computation, where message M is sent but never
received.

Scenarios exists where the computation of Figure 4.21 may be the correct virtual user computa-
tion arising from the USER _ PARTIAL _ ORDER graph of Figure 4.20. Suppose process ¢ decides that
itsinitial decision to roll back node 5, was incorrect, and wants to restore its earlier computation.
What computation should the system establish? The most straightforward answer isto return from
the recovered computation of Figure 4.19 to the older computation of Figure 4.18. However, the
computation of Figure 4.21 might be a more reasonable result: fewer nodes need to be rolled back,
and no extra messages need to be transmitted.

Questions Considering this example raises a number of questions:

e How do FAILURE_FREE _PARTIAL _ORDER computations arise from a USER_ PARTIAL _ ORDER
computation? When are FAILURE _ FREE _PARTIAL _ORDER computations incompatible? The

Figure 4.20 The SYSTEM _PARTIAL _ORDER computation of Figure 4.17 maps to this
USER _PARTIAL _ORDER graph. The recovery changed the current frontier from Ay, B,
to AG, Be.

85

Figure 4.21 The USER_PARTIAL _ORDER computation of Figure 4.20 admits a third
failure-free virtual computation: one where message M is sent but never received.

three virtual computations arising from Figure 4.20 each have subgraphs that are valid
FAILURE _FREE _PARTIAL _ ORDER graphs. Intuitively, we reduce these myriad graphsto three
distinct computations. Why these three? Why are they distinct?

e How should we specify rollback problems? When a process changes the computation in
progress by moving to another branch initsUSER_PARTIAL _ ORDER tree, what overall change
in the virtual user computation should result?

e How do we design recovery protocols? How should separate processes agree on the current
virtual user computation?

e How should we evaluate the performance of rollback protocols? Our discussion suggests
several somewhat independent parameters:

— how quickly recovery completes;

— how many processes are involved with recovery;

— how many nodes need to be rolled back;

— how many messages become “lost;” and

— how many system messages need to be sent as part of recovery.

What tradeoffs exist? Which parameters are most important?

In Section 4.2.7, we begin answering these questions.

4.2.7. Validity and Consistency

In this section, we define valid user nodes, and we show how valid nodes comprise consistent
virtual computations.

86

Validity ldentifying a system-wide virtual user computation begins by selecting user nodes at
individual processes. A user node is valid when (from its perspective) it is part of afailure-free
virtual computation. That is, user node A is valid when itslive history forms a past-closed prefix
of agraph generated by FAILURE _ FREE _PARTIAL _ ORDER.

Theorem 4.2 A user node A is valid iff its timestamp pseudo-vector V/(A) is a
vector.

Proof The pseudo-vector V' is a vector exactly when the past-closure of the live history of A
touches at most one branch in the timetree at each process. [

Consistency A set S of nodes in a USER_PARTIAL _ORDER graph is consistent iff the nodes
could all have been part of the same failure-free virtual computation. That is, the graph formed
by taking the nodes in S aong with their live histories forms a past-closed prefix of a graph from
FAILURE _FREE _ PARTIAL _ ORDER.

Timestamp pseudo-vectors provide a nice way to describe consistency.

Theorem 4.3 A set S of nodesin a USER_PARTIAL _ ORDER graph is consistent iff
each nodein S isvalid, and the TIMETREES-maximum of the timestamp vectors V(A)
(foral A € S) isavector.

Proof Let 3 be the USER_PARTIAL _ORDER graph, and 3’ be the subgraph obtained by taking S
and their past-closure. If S is consistent, then 5’ is avalid PARTIAL _ORDER_TIME graph, so each
node A € S must be valid, and for each p, the p entries of the timestamp vectors are orderable
within a single branch of the p timetree. If each A € S isvalid and their timestamp vectors join
to a vector, then the past-closure of S touches exactly one branch in each timetree, and so S is
consistent. [J

(That is, the timestamp vectors of consistent nodes form alattice.)

Consistency directly generalizesfrom validity: the singleton set { A} is consistent iff the node
Aisvalid. Congstency of sets aso buildsin anice way: a set S of valid nodes is consistent iff
each pair of nodesin S isconsistent.

Some straightforward approaches to describing consistency actually fail. For example:

e A set S is not necessarily consistent if the USER_PARTIAL _ORDER-maxima of its past
form a vector. (Figure 4.22 provides a counterexample.) Using TIMETREES rather than
USER _PARTIAL _ORDER ordering is important if one branch of a tree can develop a depen-
dence on another branch.

87

e A set S is not necessarily inconsistent even if it is not TIMETREES-dominated by a set of
consistent leaves. (Figure 4.23 provides a counterexample.) Thinking about computations
as arising from a set of process incarnations—maximal root-leaf branches—leads to this
incorrect description.

¢ While consistency of a set follows from pairwise consistency, evaluating whether a node A
at process p is consistent with anode B at process ¢ still requires system-wide data—nodes
A and B may be inconsistent because they depend on concurrent branches of the timetree at
athird process r. (The timestamp vectors provide the system-wide data.)

The timestamp pseudo-vector of avalid node A marksthelower bound of the events concurrent
and consistent with A—the adjusted timestamp vector of a valid node is the minimal consistent
timedlice containing that event. The asymmetry of timein USER _PARTIAL - ORDER makesit difficult
to define a similar “rollback pseudo-vector” having a similar property.

Generation A failure-free virtual computation arises from a USER_PARTIAL _ORDER graph
through consistency. A set of consistent nodes in the USER_PARTIAL _ORDER graph determines

p: —»Q () >

r _>‘ >. >

S

Figure 4.22 Even if the USER_PARTIAL _ORDER-maxima of the past of a set forms
a vector, the set itself may not be consistent. This graph shows a counterexample:
the past of the mutually concurrent vector S is not a valid prefix of a failure-free
virtual computation.

88

. —@ -O—+O>

S S’

Figure 4.23 Not being dominated by a consistent leaf vector does not imply in-
consistency. This graph shows a counterexample: the vector S is consistent, even
though the only dominating leaf-vector S’ is not consistent.

a past-closed prefix of a FAILURE _FREE _PARTIAL _ORDER graph—the nodes, along with their live
histories. When two consistent sets are distinct but have a consistent union, then these sets repre-
sent different intermediate versions of the same computation. The three virtual computations we
extracted from Figure 4.17 arise from the three maximal distinct consistent sets.

The goal of optimistic rollback recovery to restore consistency to the system computation: to
ensure that the current user nodes at the processes form a consistent set.

4.3. Asynchronous Optimistic Rollback Recovery Using
Distributed Time

Thedistributed timeframework developed in thisthesis providestool sfor reasoning about multiple
levels of time relations, for designing protocols in terms of these relations, and for considering
independently the inherent security and privacy risks. Section 4.3 uses this framework to build
a new optimistic rollback recovery protocol. The heart of the protocol is a smple procedure
for processes to determine exactly when a given state or event is an orphan. The design and
the correctness of this procedure follow directly from explicitly tracking both the partial order of
causal dependency and the partial order of rollback knowledge. This procedureis completein that
it reports no false negatives. It thus allows completely asynchronous recovery while al'so ensuring
that each process rolls back at most once to recover from any failure—and that processes that do
not depend on the failure need not roll back at al.

This protocol thus substantially improves on previous optimistic rollback recovery protocols.

89

Section 4.3.1 provides an overview of thiswork. Section 4.3.2 discusses the orphan detection
test. Section 4.3.3 presents the complete protocol. Section 4.3.6 comparesour protocol to previous
work.

4.3.1. Overview

Rollback recovery requires determining which states and events have been potentially influenced
by lost activity. Many existing protocols use some form of partial order time (either implicitly or
explicitly) to track this potential dependence. However, by dispensing with formal coordination,
asynchronousrollback recovery aso requiresthe ability to reason about and track potential knowl-
edge of failluresand restarts. This activity itself is an asynchronous distributed computation, and
is thus also trackable using partial order time. However, this partial order differs from the partial
order of events visible within the user’s computation. For rollback recovery, potential knowledge
at the system level is not the same as causal dependency at the user level. For example, suppose
process ¢ learnsthat its current state A dependson alost state. Process ¢ rollsback, and then enters
state B. Although a knowledge path exists from state A to state B, no causal dependency path
exists.

For effective implementation of asynchronous recovery, we need to move from viewing time
asalinear order to viewing it asa partial order, and we also need to move away from viewing time
asasinglelevel of abstraction. The framework of distributed time providesthese tools, and allows
us to build a new protocol that cleanly and elegantly solves the asynchronous recovery problem.
Distributed time enables us to define when a state can be known to depend on a lost state, and to
implement atest within the protocol that fully utilizes this potential knowledge.

Advantages Our new protocol isthefirst optimistic rollback protocol to implement completely
asynchronous recovery effectively. It also compares favorably in many other aspects. We discuss
some of the advantages:

e Complete Asynchrony A failed process can restart immediately. When a process
must roll back, it can roll back immediately and resume computation without additional
synchronization with other processes.

e Maximal Recovery Likeother optimistic rollback protocols, ours guaranteesthat a state
or event isrolled back iff it causally depends on the computation lost at failed processes.

e Minimal Rollbacks Our protocol also guarantees that a failure at process p causes a
process q to roll back at most once. Processes that do not depend on the failure will not roll
back at all.

e Speedy Recovery Suppose process ¢ must roll back because of afailure at process p.
Process ¢ will roll back as soon as any knowledge path is established from p’s rollback.

90

e Concurrent Recovery Recovery from a process failure occurs as information about
the failure propagates. Basing recovery on information flow rather than coordinated rounds
directly allows recovery from concurrent failures to proceed concurrently: the recoveries
merge and the protocol restores the maximum recoverable system state [Jo89]. (In particular,
two processesthat each need to roll back dueto twofailuresdo not need to react to thefailures
in the same order.)

e Toleration of Network Partitions Another side-effect of our asynchronous approach is
that once initiated, recovery can proceed despite a partitioned network. The only processes
that need to worry about recovery are those that may causaly depend on lost states. Since
each such process can recovery asynchronously, the processes on the same side of the network
as the failure can recover immediately. Processes on the other side that need to recover can
do so when the network is reunited. The remaining processes on either side may proceed
unhindered. (However, this work does not address the problem of detecting failure in a
partitioned network.)

e A Framework for Security and Privacy Tracking partial order time relations creates
security and privacy risks, since processes must share and trust private information. By
building our protocol in terms of distributed time, we can provide transparent protection
against theserisks.

Drawbacks Our new protocol does require timestamp information to be maintained, since
processes must track relations in both the user and system partial orders. Vector clock implemen-
tations for these modelsrequire one entry per process. For SYSTEM _ PARTIAL _ ORDER, these entries
can beapair of scalars. A straightforward implementation of USER_ PARTIAL _ORDER clockswould
require that the size of the entry for process p be proportional to the number of rollbacks process
p has performed. However, optimizations may substantially reduce this size. For example, Strom
and Yemini obtain constant size entries by transmitting the extra data incrementally (at the cost of
not always having sufficient data to make a comparison). Using similar implementationswill keep
timestamp sizein our protocol within afactor of two of Stromand Yemini. Section 4.3.4 considers
these issues in more detail.

4.3.2. Orphan Detection

In terms of our time models, an orphan is a user state A such that some rolled-back user state
B existswith B — A in the USER_PARTIAL _ORDER model. This section discusses the central
roll that orphans play in optimistic rollback recovery in general, and asynchronous approachesin
particular. This section then uses distributed time to define when a process can potentially know
that a state is an orphan, and then to build asimple test that achieves this potential.

91

Preliminaries We assume that processes enforce the invariant that their user state is always
valid, according to the definition in Section 4.2.7. (Section 4.3.3 will show this assumption is
easly satisfied.) We also assume that processes only restore states from their current live history.

We discuss our protocol in terms of distributed time, which describes computations as graphs.
Consequently, we sometimes informally identify a node in a computation graph with the state or
event it represents.

Discussing two levels of time sometimes make the use of Roman letters for node names
ambiguous. For example, is the node “A” a system-level node or a user-level node? Where a
simple name may be mideading, we adopt the convention of using subscripted Roman letters; e.g.,
“As” will be a system node, and “ B;;” will be a user node. We adopt a similar convention for
messages and vectors.

Why Orphan Testing is Crucial Suppose p is the process that actually failed. The system
process at p initiates recovery by restoring earlier user state and continuing user-level execution.
This action causes one or more live nodes at process p to become rolled-back. These rolled-back
nodes are orphans by definition. However, the rollback action at p may also cause nodes at other
processes to become orphans.

The key to optimistic rollback recovery isthe ability for processes to know when nodes have
become orphans. This has two aspects:

e Orphan Elimination When process ¢ learns that process p has failed, process ¢ must
determine if its current user state has become an orphan. If so, process ¢ must roll back—
preferably back to the most recent state that is now not an orphan. Processes thus need to
be able to test if their own user nodes are orphans. Figure 4.24 shows a detailed example of
this situation.

e Orphan Prevention The rollback at process p may have caused user node A;; a some
process r to become an orphan. However, suppose Ay was the send of a message to process
g. If the user process at ¢ accepts the message, then ¢ will become an orphan. Thus, to
prevent their current user nodes from becoming orphans, processes need to be able to test
if user events at other processes are orphans. Figure 4.25 shows a detailed example of this
situation.

Accurately testing for orphans is especialy critical for asynchronous recovery, with multiple
failures and minimal coordination.

Knowledge of Orphans Suppose the system process at ¢ isin node Bs. When could ¢ know
that a user node Ay is an orphan? We use distributed time to answer this question.

Inordertotest A/, thesystem processat ¢ must beawareof A;;. We must havethe precondition
that for some system node As in SYSTEM(Ay), As — Bs.

92

failure

p- i >
"I've rolled

"~ back"

"I've rolled
back"

Figure 4.24 Optimistic rollback recovery raises the challenge of orphan elimina-
tion: when processes learn of failure, they need to determine their most recent
node that is not an orphan. In this diagram, all named nodes are user nodes.
Process p fails and restarts, and informs process r, who restores a copy of the
state at (', and informs process ¢. When it learns of process r’s rollback, process
¢ must decide if and how far it should roll back. Process ¢ depends directly on
rolled back nodes at process r, so a naive analysis would suggest rolling back to
before Bs. In actuality, process ¢ should roll back to before B3, since that node has
a direct dependence on rolled-back node A4 at process p, whose failure triggered
the rollback at process r.

93

failure
A

Ag Ag Ay
p: W «-»p—». >
"I've rolled
w1 back
qg: >

Figure 4.25 Optimistic rollback recovery also raises the challenge of orphan pre-
vention: before formally receiving an arriving user message, a process should
determine if the send event is an orphan. Again, all named nodes are user nodes.
Process p fails and rolls back, and informs process r who rolls back and restores
a copy of the state at (. Process r then receives user message M from process
g. The send event of M is an orphan, since it user-follows from a rolled-back node
Ay at process p. Accepting this message would cause the user process at r to
become an orphan.

94

For Ay to be an orphan, a rolled-back user node 'y must exist with Cy — Ay, From
Theorem 4.1 and transitivity, C's — Bg for any system node C's in SYSTEM(Cy). A path of
potential information flow exists from the rolled-back C'; to the system process t ¢.

However, for the system process at ¢ to know that dependence on the rolled-back C;; makes
Ay anorphan, p must know that that C';; has been rolled back. If Dy isthe system node that rolled
back (', then we must have Ds — Bs aswell.

We summarize thisformally with the predicate ORPHAN(Ars, Bs), which is defined only when
As — Bg forsome Ags € SYSTEM(Ay).

ORPHAN(AU,Bs)Etrue <
1. Cy — Ay inthe USER_PARTIAL _ ORDER model
1 Cy, Ds such that 2. D¢ — Bgs inthe SYSTEM _PARTIAL _ ORDER model
3. Ds rollsback Cyy

The ORPHAN predicate does not captureall the orphansin the computation—ijust all the orphans
that a given system process may potentially know are orphans. If process p sends process ¢ a user
message but promptly rolls back without telling anyone, then process ¢ can not know that the send
is an orphan. In the SYSTEM _PARTIAL _ORDER model, the timestamp vector on a node Bs marks
the information horizon of that node. At node B, the system process cannot know about anything
beyond this horizon.

An Optimal Orphan Test Wecan use distributed timeto build atest that capturesthe ORPHAN
predicate exactly. First, we build a test that lets a system process determine if (to its current
potential information) a node has been rolled back. Then, we generalize this test to let a system
process determineif a given node depends on a node that has been rolled back.

Let Bs beasystemnodeat processg. Let Es bethep entry of Vg s(Bs), andlet By = USER(Es).
At Bs, process ¢ has no information that £;; isnot live.® Any F's rolling back £;; would system-
follow Ks; if ¢ could know about such an Fs, then s would not have been the p entry in

Vys(Bs).

Further, processq at Bs canknow of auser node C; at processp iff for someC's € SYSTEM(CY),
(s precedes Bs. Process ¢ at Bs can sort these user nodes at p into two groups:

e those that user-precede Ey; (the user version of the p entry of Vg(Bs)), and

e those that do not.

5By definition, node Ly isliveiff its process p has not rolled it back. A live node may be an orphan; knowing that
anodeisliveis not the same as knowing that it is not an orphan. For example, process s may have rolled back an
ancestor Gy of Ey. Process ¢ may perceive that p has not rolled back £y but s hasrolled back Gy, and consequently
the currently live node a p isan orphan.

95

Processq at Bs knowsthat each node in the second group has been rolled back. Process ¢ treats
each node in the first group as if it were live, since ¢ has no information otherwise. For example,
suppose (' isauser node that ¢ knows about at Bs. Consider the two cases:

o If C;y —= Iy, then either (77 has not been rolled back, or information about this rollback
(which would aso roll back ;) has not reached process ¢ at state Bs.

o If Cy — Fy, thenby Es, the system process at p hasrolled back Cy;. This rollback event
must precede or equal £ and thus Bs, so process ¢ knows about it.

Figure 4.26 sketches this scenario.

This reasoning shows how the system process at ¢ can determine if a specified node has been
rolled back (according to the information potentially available to ¢). Since an orphan is a node
that depends on a rolled-back node, this reasoning extends to allow ¢ to test for orphans. Let Ay
be a user state at process r that process ¢ knows about at Bs. Let p be an arbitrary process. Let
Es bethep entry of Vgs(Bs), and let £y = USER(Es). Let Cyy be the user-maximal user state at
process p with Cy — Ay.

2a 2
- -

Vsys (ES) Vsys (F. S)

Figure 4.26 The SYSTEM _PARTIAL _ORDER timestamp vector of a system process
determines what states it can know to have beenrolled back. Here, system process
g at Fs knows about user nodes Ay and By at process p, since they lie within the
system-horizon of Es. (That is, paths exists from all nodes in SYSTEM(A;;) and
SYSTEM(By) to Es.) At Es, process ¢ also knows that By has been rolled back,
since the rollback event (s also lies within the system-horizon of /5. However, at
Es process g believes Ay is still live, since the rollback event Dg that undoes it lies
beyond Vg(Es)—and thus outside the knowledge of 5. Process ¢ does not learn
that A5 has been rolled back until F.

96

If Cy — Fy, then process ¢ at Bs perceives no rollback at p that makes A an orphan. If this
relation holdsfor all processes p, than process ¢ cannot perceivethat Ay isan orphan; according to
¢’'s potential information at B, nothing that Ay, depends on has been rolled back. If thisrelation
failsfor any process, then process ¢ knows that A;; isan orphan.

Vector clocks permit an elegant statement of this test. For a vector Ws of system nodes,
USER_VECTOR(W3) is the vector of user nodes obtained by applying USER to each entry. Let
~<usr denotethe vector precedence relation under USER_ PARTIAL _ ORDER,; vectors Uy and Vi, satisfy
U =us Vv When for each p, the p entry of U, precedes or equals the p entry of V; in TIMETREES.

Define DT_ORPHAN_TEST by the following comparison:
DT_ORPHAN_TEST(Ay, Bs) = true <=V g(Ay) Zug USER.VECTOR(Vg(Bs))

That is, take the system timestamp of B, map each entry toitsuser equivalent, and do aTIMETREES
vector comparison with the user timestamp of Ag.

This test captures all potential knowledge of orphans.

Theorem 4.4 |If system node Bs and valid user node Ay satisfy As — Bg for
some As € SYSTEM(Ay), then they satisfy the statement:

ORPHAN(Arr, Bs) <= DT_ORPHAN_TEST(Ay, Bs)

Proof Let Ay occur at process p and Bs at process q.

Suppose ORPHAN(A7, Bs) holds. Then at some process r, there exists a user node C; and
system node D s satisfying the following statements:

1. Cy = Ay,
2. Dg rollsback C, and

3. Dg — Bs.

Let £y be the r entry of Vyg(Arp) (Which exists, since Ay isvalid). Let Fis be the » entry of
Vgs(Bs), and let Fi; = USER(Fs). By (1) and the definition of timestamp vector, Cry — Ey.
Hence, £y — Fy wouldimply Cpy — Fyr. By (2), Cy cannot precede or equal the user version
of any system node G5 at » with Ds — (G5 (since rolled-back nodes stay rolled back). By (3)
and the definition of timestamp vector, Ds — Fs. Thus C; cannot precede or equal Fi;, SO Eyr
cannot precede or equal ;. Thus DT_ORPHAN_TEST(Ay, Bs) holds.

Conversely, suppose DT_ORPHAN_TEST(Ay, Bs) holds. Then there exists a process r such
that C; fails to precede or equal Fy;, where Cy is the r entry of Vg(Ar), Fs is the r entry
of Vgs(Bs), and Fyy = USER(Fs). Let Cs be the minimal element of SYSTEM(Cy;). Since the

97

definition of timestamp vector provides Cy — Ay, Theorem 4.1 provides Cs — Ag for any
As € SYSTEM(Ay). Hypothesis then provides C's — Bs. The definition of timestamp vector
then providesthat C's — Fs. Since C'yy neither precedes nor equals I/, there must exist a Dg
a rintherange Cs — Dg —— Fg such that Ds rolls back C;;. By the definition of timestamp
vector, Ds — Bgs. Hence ORPHAN(Ay, Bs) holds. [

Figure 4.27 shows how DT_ORPHAN_TEST resolves the orphan elimination problem from
Figure 4.24. Figure 4.28 shows how the test resolves the orphan prevention problem from
Figure 4.25.

4.3.3. The Protocol

We build our protocol for optimistic rollback recovery by having the system processes maintain
vector clocksfor the user and system partial orders, and then using these clocksto test for orphans.

failure

As As A7
p: E{p- >
"I've rolled
w1 back" :

q:
"I've rolled
&~ back"
c,
Vusr(BB) Vsys(BS)

Figure 4.27 DT_ORPHAN_TEST allows accurate orphan elimination. Here, node
Bs is the only named system node. At Bs, the system process at ¢ can know that
user node Bsis an orphan, because in the process p timetree, node A4 (the p entry
of Vs (B3)) does not precede node Ag (the USER image of the p entry of Vg Bsg)).

98

failure

As A7

"I've rolled
; back"
g-

Vsys(CS)

Vusr(BS)

Figure 4.28 DT_ORPHAN_TEST allows accurate orphan prevention. Here, node
(s is the only named system node. At C's, the system process at » can know that
the send Bs of user message M is an orphan, because in the process p timetree,
node A4 (the p entry of V«(Bs)) does not precede node Ag (the USER image of the

p entry of Vgs(Cs)).

99

[* the orphan test */
function DT_ORPHAN_TEST(TESTED . STATE, TESTING _ STATE)

V «V g(TESTED _STATE)
W «USER_VECTOR(V g/s(TESTING _STATE))
return ~COMPARE(V, W, (USER_PARTIAL _ORDER, TIMETREES))

[* process p receives system message M */
procedure RECEIVE(M)

[* set pointersto current nodes */
As=CUR_NODE(p, SYSTEM _PARTIAL _ORDER)
Apy=CUR_NODE(p, USER_PARTIAL _ ORDER)

[* update SYSTEM _PARTIAL _ ORDER vector*/
Ss«—SEND_EVENT(M3, SYSTEM _ PARTIAL _ ORDER)
Vys(As)—MAX(Vgs(As), Vgs(Ss), (SYSTEM _PARTIAL _ ORDER, SYSTEM _ TIMELINES))

[* isp now an orphan? */
if DT_ORPHAN_TEST(Ar, As)
then roll back to maximal non-orphan state

/* was sender’s current user node an orphan? */
if DT_-ORPHAN_TEST(USER(Ss), Bs)
then optionally inform the sender

[* did My include a user message? */
if USER_MESSAGE_TEST(M5s) then
St +—SEND _EVENT(USER_MESSAGE(M), USER_PARTIAL _ ORDER)
[* accept it if the user send is not an orphan */
if DT_ORPHAN_TEST(Sy/, Bs)
then optionally inform the sender
else accept USER_MESSAGE(M)

Figure 4.29 In the distributed time protocol, a system process rolls itself back if
its user state has become an orphan, and then accepts a user message only if its
send is not an orphan. (We use = to indicate assignment by reference, and < to
indicate assignment by value.)

100

Sending a User Message Suppose the user process at p decides to send a message M;; to
the user processat ¢. The user process p packages M, along with V s(Arr) (where Ay is the user
send event) and routesit to the system process at p, who sends the package as a system message.

Sending a System Message When the system process at p sends a system message M to
the system process at ¢, it sends along the timestamp Vg 5(Bs) (Where Bs the system send event).
The system process at p may optionally include the user timestamp vector of USER(Bs).

Receiving Messages Figure4.29 shows the procedure used for receiving messages. Suppose
the system process at p receives asystem message M s sent by the system process at ¢. The system
process at p updates its current Vg5 vector. |f DT_ORPHAN_TEST indicates that p’s current user
node is an orphan, the system process at p performs rollback. 1f DT_ORPHAN_TEST indicates
that the user node corresponding to the send of M is an orphan, the the system process at p may
optionaly inform ¢. If M contains a user message My, then the system process at p applies
DT_ORPHAN_TEST to the send of M. If this event is an orphan, p may optionaly inform ¢; if
not, the system process at p lets the user process at p receive the message.

(Suppose the send of a user message My user-followed from node A;; at process r, but process
p’scurrent user node dependson By at r, with A and By concurrent in thetimetree. At least one
of Ay, By must have been rolled back, and the system timestamp on A, will carry that information
if the system process at p does not already know it. Thus, this protocol automatically enforcesthe
invariant that user states are alwaysvalid.)

Rollback A process rolls back in two situations. when it fails, and when it discovers it is an
orphan.

To roll back because of its own failure, a process restores the maximal recoverable state in its
live history.

Toroll back becauseit discoversitisan orphan, aprocess must find astateinitslive history that
is not an orphan—that is, a state whose V- timestamp still user-precedes the current Vs vector.
Clearly the initial state is not an orphan, and clearly once a user state is an orphan, subsequent
user-states are orphans. Thus, for agiven value of Vg, there exists a unique user-maximal state in
the live history that is not an orphan.

How quickly the system recovers from rollback depends on how quickly the processes that are
(or may become) orphans learn of the rollback. Our protocol allows a range of aternatives, from
broadcasting system-only messages, to letting the news percolate via the system timestamp data
ON USer Messages.

101

4.3.4. Implementation Details

Implementing this protocol requires solving a number of problems:

e Building vector clocksfor SYSTEM _PARTIAL _ ORDER requiresthe ability to sort system states
in terms of system timelines.

e Building vector clocks for USER_PARTIAL _ORDER requires the ability to sort user statesin
terms of user timetrees.

e Performing DT_ORPHAN_TEST requires the ability to map system states to user states (that
is, to perform USER).

This section provides one possible solution. We build a SYS_NAME data structure for each system
node, aUSR_NAME data structurefor each user node, and show how to perform the above functions
in terms of these data structures.

The System Timeline System states at a process occur in consecutive order, so asimple scalar
counter will suffice. The only complication arises because failed processes will not know how high
their system state counter was before failure.

Consequently, we have each process maintain two counters. INCARNATION_COUNT tracks
the current incarnation of the process [StYe85], and SYS_COUNT tracks the current node within
that incarnation. Startup initializes each counter to zero. The SYS.COUNT counter is incremented
with each subsequent system node, unless the subsequent node is a rollback node, in which case
SYS_ COUNT resetsto zero, and INCARNATION _ COUNT isincremented.

The SYS_.NAME for a node consists of three items. the INCARNATION_COUNT value, the
SYS_COUNT value, and the USR_NAME of the node's current user state. To sort two system nodes
at the same process, we perform lexicographic comparison of the

(INCARNATION_COUNT, SYS_COUNT)

pairs. To implement USER, we return the USR_NAME entry.

The User Timetree Comparing nodes in user timetrees is more challenging than comparing
nodesin system timelines, because trees do not guarantee that two nodes can even be ordered. The
restriction that we must generate USR_NAME values on-line further complicates matters.

We can begin by having each process maintainaUSR_COUNT variable, initially zero, indicating
the count of the current user nodein the currently livehistory. The processincrementsUSR_COUNT
with each subsequent user node—except one obtained through rollback.

102

The USR_COUNT values suffice to sort two user nodes within the same live history. However,
we need to be able to determineif two nodes are in the same history—that is, if oneis a descendent
of the other in the user timetree.

Conceptually, processes could track thisinformation by maintaining the path from the root to
the current node in the user timetree. Label the nodes in the user timetree with their USR_COUNT
value, and the edge into each node A with the INCARNATION _COUNT value active when that node
was executed. The INCARNATION_COUNT valueis fixed until rollback occurs—then we create a
node for the new instance of restored state, and add it as a sibling of its earlier instance. The edge
from its parent to the new node is labeled with the new INCARNATION . COUNT value.

The path for node A isjust the sequence of pairs of node and edge labels
(No, EO)? ey (Nk—lv Ek—l)

necessary to reach A fromtheroot. Figure4.30 showsthelabelling on atimetreefor acomputation
that rolls back twice.

We make a couple of observations:

e Pathsare sufficient to sort nodes. If A and B are two nodesin the user timetree, A precedes
B iff the path for A isaprefix of the path for B5.

¢ Paths can be greatly condensed. The :th node label in a path isthe integer : — 1. The :th
edge label in a path is the same as the label on edge : — 1, unless edge : leads to a node
restored by rollback. Unless the computation has rolled back to initial conditions, al paths
start with (0, 0).

Let A have USR_COUNT = k. Then the path from theroot to A has the form
(0, Eo)y ey (K — 1, Ej_1)

We condense this path by deleting (¢, £;) if £, = E;_1, and deleting the leading pair if it is (0, 0).
The USR_NAME of A consists of the USR_COUNT value, and this condensed path. (Figure 4.30
shows this construction.)

To compare two user nodes in the timetree at a process, we check whether one node’s path is
a prefix of the other. Suppose &, P and &', P’ are the USR_NAME values for nodes A and A’, and
k < k'. We determineif A — A’ by removing from P’ any pairs (m, E,,) with m > k, and then
checking if the resulting list isidentical to P.

The length of the condensed path in the USR_NAME for node A is proportional to the number
of rollbacksin the path from the root to A. If failures occur, thiswill not be constant; thus, for the
implementation we sketched above, USER _PARTIAL _ORDER timestamp vectors will not be linear.
The size instead will be proportional to the number of rollbacks in the SYSTEM _ PARTIAL _ORDER
past of the nodes in the vector.

103

Figure 4.30 Path information allows sorting in user timetrees. In this sample
tree, we have labeled nodes with their USR_COUNT value and edges with their
INCARNATION_COUNT value. The USR_NAME for A is 4,); for B is 3,{(1,1)}, and
for C'is 8,{(1,1),(5,2)}. We can determine that A does not precede (', since the
condensed path for A does not equal {(1,1)} (the condensed path for C' trimmed
for A). We can determine that B precedes (, since the condensed path for B does
equal the condensed path for C, trimmed for B.

We can reduce the amortized length of USR_NAME values by having processes try to avoid
transmitting redundant data. Suppose process p wants to send the USR_NAME of A to process q.
Instead of sending the path from the root to A, process p can send the path from an intermediate
node B to A. If process ¢ aready knows the path from the root to B, then process ¢ quickly
reconstructs the full path. 1f not, process ¢ recognizesthat it is missing data and blocks until it can
obtain it.

One example of this amortization technique is using a heuristic similar to Strom and Yemini’'s
approach. Each time aprocessrollsback, it broadcasts the path to that rollback node along with its
new incarnation count. Subsequent USR_NAME values consist solely of INCARNATION_COUNT
and USR_COUNT. (This heuristic introduces blocking into our protocol, but still maintains the
at-most-once lower bound on rollbacks at a process.) However, a wide range of other heuristics
exists for thistechnique. At one extreme, process p transmits only the end of the path; at the other
extreme, process p maintains the most recent system timestamp vector received from ¢, and uses
the ¢ entry as the intermediate node for a name sent to ¢.

Commitment and garbage collection may integrate nicely with these amortization techniques,
since processes may maintain alog vector of the maximal known logged nodes at other processes.

104

4.3.5. Piecewise Determinism and State Intervals

The presentation of our protocol allowed transitions between states to be nondeterministic. As
Section 4.1.5 observed, providing complete recoverability under this model requireslogging every
transition. However, redlistic distributed systems often guarantee that process execution is deter-
ministic between message receives, models for these systems focus on state intervals instead of
states. With afew modifications, our protocols adapt to this environment.

The framework of Section 2.2.1 can express piecewise determinism by restricting processes to
blocking receives—that is, if a process attempts to receive a message, it pauses until a message
isavailable. (This approach contrasts with more flexible polling or interrupting approaches.) We
requireall other processtransitionsto bedeterministic. A stateinterval istheperiod of deterministic
execution between successive receive events. We can build a simple time model to collect the
sequence of nodes between successive receivesinto a state interval node.

The coarser granularity of state intervals makes logging and replay easier. However, this
granularity also changes how rollback should affect the mapping between the system and user time
models. In the state model, when a process restores state Ay, it establishes asibling of A;; inthe
user timetree. However, this approach does not work for state intervals, since the state at other
processes may depend directly on Ay, rather than indirectly through a subsequent state transition
node. Restoring asibling of A;; incorrectly makes the state at these processes orphans.

The solution to this problem isfor rollback to restore state interval A, itself, not asibling. The
interval following the re-execution of A;; beginsthe new timetree branch. Consequently, the set of
system interval nodesthat a user interval node representsis not necessarily a connected sequence.
Thisfact has someimplicationsfor Section 4.2.5. Our graphical shorthand no longer applies, since
Theorem 4.1 no longer holds; however, we can till establish aweaker version of Theorem 4.1.

Theorem 4.5 Suppose Ay and By are user state intervals. Let Bs be any system
state interval corresponding to 5y, but let A5 be the minimal system state interval
correspondingto Ay. If Ay — By then As — Bs.

Proof Thisresult followsfrom induction on precedence paths. If Ay and By occur at the same
process, then the result easily follows. If Ay sends a message that begins 5, then some system
state interval following or equaling As must also precede Bs.

For more general paths, choose an intermediate node Cyy with Ay — Cpy — By, and let Cy
be the minimal system state node corresponding to C;. Establish the result for Ay and Cy;, and
thenfor Cy and By. O

Theorem 4.4 holdsfor state intervals, since we may substitute Theorem 4.5 for Theorem 4.1 in
its proof.

105

4.3.6. Comparison to Related Work

Checkpointing Aswenotein Section 4.1.3, recovery protocols based on checkpointing restore
the system to arecovery line composed of local checkpoints. Organizing recovery lines into an
increasing sequence (e.g., [BCS84, Ci89]) may allow asynchronous recovery and may tolerate
concurrent failures (since one recovery line will clearly be earliest). More complex structures
of recovery lines require more synchronization upon recovery, but may alow some surviving
processes to proceed without rolling back. However, unless every adjusted rollback vector is a
recovery line, checkpointing-based recovery will forcesurviving processesto roll back computation
that does not depend on the computation lost due to failure

The distinction between checkpointing-based protocol s and the message logging family some-
timesblurs. (Johnson [Jo93] presentsaprotocol that isexplicitly hybrid.) A checkpointing scheme
inwhich processes checkpoint every local stateto stable storage before proceeding would be similar
to pessimistic rollback; a checkpointing scheme in which processes checkpoint every local state
to volatile storage (and eventually to stable storage) would be similar to optimistic rollback. Our
protocol adapts to this latter environment.

Ciuffoletti [Ci84] proposed a checkpointing protocol for synchronous communication: with
each message, processes use a heavy-weight scheme to exchange history and checkpoint infor-
mation between sender and receiver. Although some aspects of this scheme foreshadow the user
and system levelsin our work, Ciuffoletti’s protocol is inherently synchronous, and the model of
synchronous communication does not apply to realistic distributed systems.

Optimistic Rollback Recovery Strom and Yemini [StYe85] initiated the area of optimistic
rollback recovery. They presented optimistic techniquesfor surviving processesto ensure complete
recoverability, and a rollback protocol® that allows processes to recover mostly asynchronously,
although delayed transmission of incarnation start information may cause blocking. This protocol
implicitly usespartial order timeto track dependency on failed computation (and, to our knowledge,
isthe the earliest publication of the timestamp vector mechanism).

However, Strom and Yemini did not consider the flow of knowledge of rollback. They conse-
guently built an orphan test that is strictly weaker than ours. Their protocol never falsely concludes
that a non-orphan state is an orphan. However, their protocol will falsely conclude that some
orphan states are not orphans—even when the testing process could potentially know otherwise.
These false negativesmake it possiblefor asingle failureat one process to cause another processto
roll back an exponential number of times, since the unfortunate process never rollsback far enough
(until the last time). Sistlaand Welch [SiWe89] claim an O(2") upper bound for the worst case in
the Strom and Yemini protocol. We prove an ©(2") lower bound by construction in Figures 4.31
through 4.33.

61n some sense, Merlin and Randell [M eRa78] foreshadowed Strom and Yemini’swork by presenting a protocol based
on arepresentation similar to Petri Nets; this protocol could be transformed and optimized into one similar to Strom
and Yemini’s.

106

Johnson and Zwaenepoel [Jo89, JoZw90] developed a general model for optimistic rollback
recovery. They used state lattices from partia order time to show that a maximal recoverable
system state exists, and presented synchronized protocols to recover this state—even without
reliable message delivery. Sistlaand Welch [Se89] presented two protocolsfor optimistic recovery
that avoid the exponential worst case by using synchronization during recovery; like Strom and
Yemini, Sistlaand Welch require reliable FIFO message channels. Peterson and Kearns [PeKe93]
recently presented a recovery protocol using vector clocks that synchronizes during recovery by
passing tokens.

Summary Optimistic rollback protocols improve on other recovery methods by requiring lit-
tle synchronization during failure-free operation and by requiring only the theoretical minimum
amount of computation to be rolled back (only the computation that depends on the computation
lost due to failure). Our protocol improves on previous optimistic rollback protocols by providing
both completely asynchronous recovery and a worst-case upper bound of at most one rollback at
each process. The key to asynchronous optimistic rollback recovery is the realization that two
levels of partial order time abstraction are relevant: causal dependency on rolled-back events and
potential knowledge of rollbacks. Our distributed time framework allows us to explicitly track
these two levels of time. We improve even on the explicit “vector time” work of Peterson and
Kearns by truly using the full power of temporal abstraction.

Po— -)

1 1

\ \
\ \
\ \
\ \
\ \
\ \

P1— —p

Pn—»> —

Figure 4.31 The failure of one process may lead to 2(2") rollbacks using Strom
and Yemini’'s protocol. This diagram shows how to construct computations exhibit-
ing this behavior. We build this computation inductively. This diagram shows the
hypothesis: the existence of a computation (', on n processes that accepts n user
messages M, ..., M,, then n system messages Ry, ..., £, announcing the rollback
of the send events of the user messages. We assume that the single failure at
process po triggers 2" — 1 failures in computation C,,, and that 2! of these failures
occur at process p,. Figure 4.32 shows how to build computation 1 from two
copies of computation C,,. Figure 4.33 shows the base for n = 1.

107

Py >

P2 >

Pn+1 >
cn +1

Figure 4.32 This diagram shows how to build C,,; from two copies of C,.
Computation C',, 1 receives n + 1 user messages M, ..., M, 1, thenreceives n + 1
system messages R, ..., R,11 announcing the rollback of the user send events.
Process p; receives M;, establishing a dependency, then sends n messages
Mj, ..., M! to the first copy of C,. This establishes dependency on p;, and transitive
dependency on the send event of A;. Process p; then receives rollback announce-
ment Ry, rolls back, and sends the announcements out to the first copy of C,. The
n remaining user messages Mo, ..., M,,.; are then fed directly to the second copy of
C',, followed by the remaining rollback announcements. (We cannot repeat the p;
trick since p; now knows about the initial failure. However, processes p, through p,,
only know about the failure at p;.) The assumption that C', rolls back 2" — 1 times
puts the number of rollbacks in C,,;1 at 2(2" — 1) + 1 = 2"*! — 1. The assumption
that the last process in C,, rolls back 2"~ times gives 2(2”—1) = 2" rollbacks at p,, 1
in C',4+1. Hence this construction establishes the induction.

108

Gy

Figure 4.33 This diagram shows the construction of (', the
base for the inductive construction of Figure 4.32.

4.4. A General Framework

From a high level, arollback protocol consists of the initiating process requesting that the system
roll back to some point, and each of the other processes receiving this request and cooperating.
This sketch raises some questions:

e How does the initiating process specify the state to be restored?

e How should the other processes react?

The protocol in Section 4.3 (as well as most of those in the literature) uses the current past-
current past (CP-CP) paradigm: the initiator chooses a state that it currently regards as being in
its past (that is, a state USER _ PARTIAL _ ORDER-preceding the decision to roll back), and the other
processes each choose a state from their current pasts.

The CP-CP paradigm has the advantage of being well-defined. Suppose the system iscurrently
consistent, and that the initiating processrestores state A. Then the adjusted rollback vector R*(A)
(from USER _PARTIAL _ ORDER) Will be consistent and concurrent with restored A (and subsequent
computation). When recovery is complete, the virtual FAILURE _FREE _ PARTIAL _ ORDER cOmputa-
tion will consist of the portion of theinitial failed computation preceding R*(A), with the revised
computation appended from there.

Phrasing rollback in terms of the CP-CP paradigm immediately suggests alternative paradigms:
letting the initiator and/or the other processes choose from their general pasts. Allowing the
initiating processto restoreany state fromitstimetree permitstheflexibility of rolling back rollback.
(The implementation sketch of Section 4.3.4 allows sorting of eventsin user-treeseven if the trees
grow through general-past rollback.) We can construct scenarios where this might be useful. For
example, suppose process p has been performing some valuable computation in silence. The

109

system assumes p has failed and restarts a new version—but when the old version speaks up, the
system decides it would prefer to discard the rollback and re-incorporate the old p.

As we have seen in Section 4.2.6, alowing both the initiator and the others to choose states
from their general pasts permits ambiguity. Implementing this approach in a distributed fashion
is difficult: processes must digointly choose consistent paths. (Figure 4.34 shows an example.)
Constraining the other processes to choose from their current pasts (but consistently with the
genera past state chosen by the initiator) also creates problems. For example, the other processes
may not be able to choose states that permit the initiator’s choice to exist. Figure 4.35 shows one
such situation.

One interesting avenue for future work lies in having the initiator choose not a state but a
predicate describing a system state it would like restored. (Of course, such an approach requires
that the predicate is satisfiable.)

Another interesting avenue isto implement general-past rollback by formally rolling back roll-
back. We might build athird level of partial order time to express the meta-recovery computation,
and use our earlier protocols to roll back the recovery computation that performed the origina
rollback.

110

S

Figure 4.34 During rollback recovery, allowing processes other than the initiator
to choose from their general pasts creates difficulty. For example, suppose process
g decides to roll back B. The naively defined rollback pseudo-vector of B is the
set S. Since S touches multiple branches at processes p and r, allowing these
processes to restore states from their general pasts creates ambiguity: e.g., if
process p chooses its A branch and process r chooses its ¢’ branch, then the
resulting system state will not be consistent. For system consistency, processes
p and r» must both choose their primed branches or both choose their unprimed
branches.

111

Figure 4.35 During rollback recovery, allowing the initiator to choose from its
general past while constraining other processes to their current past creates diffi-
culty. For example, suppose the current virtual computation has frontier A5, Bj,
but process p wishes to restore the state A;. No state at process ¢ in the
USER_PARTIAL _ORDER past of Bj5 is both consistent and concurrent with process
'S new state.

112

Chapter 5

Security and Privacy for Distributed
Time

5.1. Overview

Systems of time more genera than the linear order of real time are central to solving application
problems in asynchronous distributed systems. Since protocols for these applications require
examining the underlying distributed time models, explicitly providing a distributed time service
simplifies and clarifies the task of protocol design.

However, while real time can be determined from an independent physical device, relations
such as partial order time cannot be determined in isolation. Tracking relations such as the
PARTIAL _ORDER_TIME model requires collecting and sharing information; tracking relations in
time models that dispense with transitivity or permit cycles involves even more local information.
Thus dealing with distributed time exposes protocolsto security risks. Isthe information a process
receives correct? Can shared information be used for dishonest purposes?

Encapsulating a system’s dealings with partial order timeinto asingle time service provides an
arenato examine and resolve security and temporal issues for protocol design.

The proposal document [Sm91] for thisthesi s recognized the central roleof partial order clocks,
cataloged some of the security and privacy risks, and gave the original presentation of the Sgned
Vector Timestamp protocol, which protectsagainst some of theserisks. Whilethisprotocol prevents
dishonest processes from forging causal dependence on nodes at honest processes, it suffers from
some drawbacks:

e The Signed Vector Timestamp protocol cannot guarantee detection of causal paths touching
dishonest processes. Consequently, Signed Vectors cannot be used to build secure protocols
for problems such as distributed snapshots requiring accurate detection of non-precedence.

e The Signed Vector Timestamp protocol leaks private information, since vector entries are
publicly readable.

e The Signed Vector Timestamp protocol requires each process to check »n signatures.

e The Signed Vector Timestamp protocol requires that the tempora relation being tracked
express al paths of information flow; thus the protocol does not extend to more general
relations (such as USER _ PARTIAL _ORDER from Chapter 4).

This Chapter In this chapter, we use new developments in inexpensive tamper-proof hard-
ware to build the Sealed Vector Timestamp protocol, which provides stronger security and privacy
protection than any previous protocol. Sealed Vectors solve previously open problems by pre-
venting dishonest processes from forging dependence on any events, and by preventing dishonest
processes from denying dependence (if malicious processes cannot communicate covertly). (Even
with covert communication, Sealed Vectors provide some protection against denying dependence.)
Sealed Vectors also move beyond previous work by addressing privacy risks, and by providing
secure clocks for partial orders where information flow does not imply precedence.

The proposal document opened up this area of research. This chapter presents the most se-
cure protocols to date, and solves problems other researchers left open [ReG093]. Section 5.2
discusses the inherent security and privacy risks for partia order time. Section 5.3 surveys
the defenses and presents our new protocol. Section 5.4 discusses our new protocol, and
Section 5.5 considers some directions for future research. For clarity of presentation, most of
this chapter considers the problems of tracking temporal relations in a Type 4 parallel pair such
as (PARTIAL _ORDER_TIME, TIMELINES). Chapter 6 will consider the implications of this work for
more general time models.

(Preliminary versionsof somethismaterial appearedinearlier publications[SmTy91, SmTy94].)

5.2. Security and Privacy Attacks

Partial order time draws on data distributed throughout the system. Consequently, building partial
order clocks requires that processes share private information, and trust the private information
shared with them. This opens opportunities for Byzantine (malicious) processes to manipulate
the clock protocols, and consequently to manipulate application protocols built on these clock
protocols.

We sketch four such attacks on vector clocks.

Nonsense Attacks Malicious processes can send arbitrary vector entries. Since honest
processes will dutifully copy and pass on these values, a single act by a single malicious process
can destroy the validity of many vectorsthroughout the system. (Lamport total order clocks[La78]
are particularly vulnerable to these attacks.) Simple sanity checks fail to combat this problem.
Suppose vector entries are integers. If honest processes refuse to accept vector entries that have
increased more than NV, a dishonest process can repeatedly increase an entry by N — 1. The next
honest process the victim talks to may then mistakenly identify the honest victim as corrupt.

114

Malicious Backdating Malicious processes can selectively reduce vector entries, and thus
fool honest processes into thinking events happened earlier than they actually did. Consider the
application of trading commaodities options on a public network. Figure 5.1 shows how Malicious
Backdating permitsthe crime of optionsfrontrunning, which can occur when brokersmay tradeboth
for themselves and for their clients. (One place where options frontrunning occurs is the Chicago
commodities exchange.) If a broker happens to buy a small quantity of shares for himself before
his client requests a large number of shares, then the broker will make a tidy sum. Consequently,
on receiving a client request, a dishonest broker has incentive to issue a request of his own that
appears not to have followed the client request. I1n an electronic exchange using vector clocks, a
malicious broker can do this by re-using an old vector on his purchase request.

Malicious Postdating Malicious processes can selectively inflate vector entries, and thus fool
honest processes into thinking events happened later than they actually did. Figure 5.2 shows
how such Malicious Postdating permits insider trading. A malicious process can send a cohort
an advance copy of an announcement along with an advanced vector. The cohort can act on this

C does not
precede B
Q

Commodities
Exchange

Buy 10 Buy 1000 "The price
shares for shares for went up”
me" Cathy" P

Bad Bob

Cab O
I'll use my I'll sell my
saved vector, shares now

| want to buy a lot of orange
futures---I'll tell my broker

Figure 5.1 Malicious processes can selectively backdate nodes. Here, Bob com-
mits the crime of options frontrunning by making his own purchase appear not to
follow his client’s request.

In the physical Chicago exchange, the only defense the FBI has against options frontrunning is placing undercover
agentsin the pit to look for unusually lucky brokers.

115

data, but use the advanced vector to hide her headstart. (The cohort could even be unwitting; the
malicious process might frame her now, in order to spread the blame should the ruse be discovered
later.)

Compromised Privacy Malicious processes can correctly perform the vector clock protocol,
but use the vector entries to gain illicit knowledge. Figure 5.3 shows how this technique reveals
anonymouswhistleblowers. Changesin subsequent timestamp vectors sent from Alice to Bob show
the identities of processes communicating with Alice.

5.3. Defenses

Anideal clock should report “ A — B” exactly when A precedes B, even if processes perform
malicious actions. Anideal clock should aso confine private information. We can evaluate clock
protocols by this standard: against decreasing amounts of honesty, how well do clocks perform?

Many application protocols use forms of partial order time and vector clocks. A clock protocol
meeting thisideal transparently protects higher-level applications against the security and privacy
risks of Section 5.2.

Stock
Exchange
' Public Must be OK,
I'll use a announce- since B
future vector, ment precedes C
@)
.. B
Bad Bob >
Advance
announce-
ment I"d better
buy!
Cathy >

Figure 5.2 Malicious processes can selectively postdate nodes. Here, Bob leaks
an advance copy of his public announcement to Cathy in such a way that allows
her to act on the data first, without appearing to have had a headstart.

116

Manager Alice

boss of "I caught you!"
Bad Bob

- The Cathy entry i~
boss of Secret tip = in Alice's vector You're

about Bob fired!"

has changed!

Honest Cathy

Figure 5.3 Malicious processes can exploit vector data for illicit purposes. Here,
Bob uses the timestamp vectors from Alice to learn the identity of whistleblower
Cathy.

5.3.1. Previous Work

If all processes are honest, then the process p entriesin al vector timestamps originate at process p.
Our Sgned Vector Timestamp protocol [SmTy91, ReGo93] builds on this observation by requiring
each process to digitally sign? its entries in outgoing timestamp vectors. That is, the process p
entry in atimestamp vector now consists of the name of anode at process p, and asignature from p
on that name. This scheme prevents malicious processes from advancing vector entries belonging
to honest processes. If an event A occurs at an honest process and our time model expresses al
information flow paths, then possession of asigned entry for A is proof of dependence on A. With
Signed Vectors, A — B when an honest clock reports “A — B” (and A occurs at an honest
process). If al processes along aprecedence path from A to B are honest, the converseisalso true:
an honest clock reports“A — B” when A — B.

However, Signed Vectors may fail if precedence paths go through malicious processes. For
example, a malicious process can use old values in the vector entries for honest processes, as
long as the malicious process has retained the matching signatures. Signed Vectors still permit
the Malicious Backdating and Malicious Postdating attacks. Signed Vectors do not even attempt
to address the Compromised Privacy attack. These problems migrate to higher-level applications.
Inability to detect non-precedencereliably canresultininefficiency (inoptimisticrollback recovery,
processes may mistakenly conclude they depend on failed states) or complete incorrectness (in
global state protocols, processes may make incorrect decisions regarding “concurrent” events).

2Section 5.3.3 will discuss digital signatures in more detail.

117

The security of the Signed Vector protocol depends on the fact that precedence paths and
information flow paths coincide. If precedence and information flow do not coincide, then Signed
Vectors do not provide secure clocks. For example, consider the partial order describing the virtual
computation arising after rollback with modified replay.

Three additional protocolsexist for the special case of a process sorting the send events of two
messages it has received [ReGo93]. The Piggybacking protocol generalizes the vector timestamp
protocol by timestamping each event £/ with a signed record of all messages whose send events
precede . Piggybacking (like Signed Vectors) ensures that if a clock reports “A — B” and
A occurs at an honest process, then A — B; Piggybacking further limits the possible actions
of a dishonest A process conspiring to make a clock falsely report “A — B.” However, the
Piggybacking protocol (also like Signed Vectors) cannot reliably detect precedence paths touching
malicious processes, and does not address the issue of privacy. The other two protocols from
[ReG093] alter the order in which messages are received. These protocols address the problem of
detecting the partial order by changing the partial order; further, they do not accurately report non-
precedence. The Conservative protocol requiresthat before sending anew message, a processwait
for acknowledgements of any previous messages it sent. The Causality Server protocol assumes
secure FIFO channels, and relies on a trusted central intermediary to impose a total order on all
message traffic.

5.3.2. The Sealed Vector Timestamp Protocol

The Sealed Vector Timestamp protocol has security propertiesthat solve previousy open problems:

e Our protocol accurately reports“A — B” or “A —~ B,” in the presence of arbitrary mali-
cious processes (including the A process).

e Our protocol does not leak private information.

The Sealed Vector Timestamp protocol satisfies the ideal (assuming no covert channels), and
protects privacy of vector entries as well. Further, this protocol extends to time models where
information flow does not imply precedence. Table |1l compares our new protocol to previous
work.

Overview Our new protocol restson thethetechnol ogy of secure coprocessors[TyYe93, Yeed4]:
inexpensive physically secure deviceswith aCPU, ROM, and non-volatile RAM. A host processor
interactswith itssecure coprocessor through formal 1/0 channels. Any other method of determining
theinternal state of the coprocessor—including physically penetrating the hardware—resultsin the
erasing of RAM and CPU registers. Secure coprocessors are being deployed rapidly; commercia
secure coprocessor products are available from IBM (#ABY SS [Wein87], Citadel [WWAP91]),
and have been announced by other vendorsincluding National Semiconductor [Va94], Semaphore,

118

AR
T, R D | s
S S e | o
T | e | s
ot Sealed Sealed Sealed

Table 1l This table compares how, against decreasing amounts of honesty, par-
tial order clock protocols meet the clock ideal: reporting “A — B” «<— A — B
while protecting the privacy of vector entries. Sgned denotes the Signed Vector
Timestamp protocol; Sealed denotes the Sealed Vector Timestamp protocol; PB
denotes the Piggybacking protocol.

Telequip, and Wave Systems. Various protection technologies exist. For example, IBM wraps
circuit boardsin nichromewire and then sealsthem with an epoxy mixture chemically stronger than
the wire. A detection circuit monitors the resistance of this wire wrapping; penetration attempts
will disrupt the wire wrapping and alter the resistance (e.g., by shorting the wire or by cutting it).

Secure coprocessors only possess limited amounts of power. We cannot secure an entire
workstation—even if we could, we could not secure the user. Bootstrapping from this small
amount of physical security into full protocol security raises subtleissues. For example, malicious
processes might attempt to bypass coprocessors, or to attack communication lines. (Recent work
[TyYe93, Yeed4] shows how to protect against these attacks.)

In the Sealed Vector Timestamp protocol, each process runs on a host processor with a secure
coprocessor. The secure coprocessor creates timestamp vectors and seals them so that processes
cannot read them. Although processes can store and exchange timestamps, they need to query a
Secure coprocessor in order to compare them.

The security of Sealed Vectors follows from a number of properties:

e No party (except a secure coprocessor) can obtain information about the contents of any
vector entry from a sealed timestamp, even if the party knows the other entries.

o All processes must route incoming and outgoing messages through secure coprocessors.

e A secure coprocessor must be ableto verify that a timestamp was properly sealed by another
Secure Coprocessor.

119

¢ Given aseded timestamp and an event, a secure coprocessor must be able to verify that they
match.

5.3.3. Cryptographic Tools

We build a timestamp scheme meeting this description using two common cryptographic tools:
digital signatures and bit-secure public key cryptography [DiHe76, RSA78]. A digital signatureis
afunction S from avalue space to a signature space meeting the following conditions:

e Given avalue v and asignature s, any party can determine whether s isavalid signature of
v: Whether S(v) = s.

e However, it isintractable for any party (except the privileged signing party) to take a set of
value-signature pairs and produce a pair not in this set.

Public key cryptography consists of afunction £ (from the plaintext space to the cipherspace)
and afunction D (from the cipherspace to the plaintext space) meeting the following conditions:

e For any plaintext value v, any party can calculate £(v).
e For any plaintext value v, D(E(v)) = v.

e It isintractable for any party (except for the privileged decrypting party) to take a set of
plaintext-ciphertext pairs and produce a pair not in this set.

Standard public key cryptography requires only that inverting £ is difficult (without the priv-
ilege of knowing D). Bit-secure public key cryptography requires an additional level of security.
Roughly speaking, from a given ciphertext, a malicious process should gain no information about
the plaintext that it did not know a priori. ([Gold89] presents formal definitions.) Some popular
cryptosystems (like [Ra79] and [RSA78]) are known to leak number-theoretic properties of the
plaintexts and thus fail to meet this condition [ACGS88, Li81]. For the Seadled Vector protocol
to attain its full security potential, it should be implemented using strong cryptosystems such as
[BIG084] or [GoMi82].

Operation We use cryptography and signatures both on messages (£msy, Dmsg and Smsg) and
on timestamps (L, D @nd Sig).2 Each process p has a name, which we denote as p. Each
process p runson ahost processor with a secure coprocessor, which we denote as psc. Each secure
coprocessor knows that name of its process.

3This presentation assumes global schemes for all processes. In practice, giving each processits own key scheme adds
flexibility and another level of security; Section 5.4.2 discusses these issues.

120

Let P be the set of process names, let £ be the set of event names, let V be the set of possible
timestamp vectors, and let M be the set of possible message texts. Let Gng and Gig be the
signatures spaces for messages and timestamps, respectively; let Cmgg and Ci be the cipherspaces
for messages and timestamps. Our signature and encryption functions act according to these rules:

Stg:gXVI—)gtg

Fig - gXVthg'_)ctS
Smgg:’PX,PXMXCtS(Hgmgg

The functions Ensg and Fig are public. Each secure coprocessor psc has the ability to calculate
Dmsg, Dist, Smsy, @d Styt; the coprocessor psc aso maintainsthe current process p timestamp vector,
which we denote as V.

Obtaining Timestamps Suppose process p wants to obtain a timestamp for its current event
A. Process p submits the request to psc, which obtains V(A) by incrementing the p entry of V.
The coprocessor psc then returns the sealed timestamp:

T(A) = Fg(AV(A),Sw(AV(A)))

Figure 5.4 illustrates this structure.

The signature plays two roles here. First, it proves that this vector belongs to this event.
Secondly, its presence inside the plaintext protects against a malicious process guessing the value
of the vector, and verifying this guess using Fig.

Figure 5.4 A sealed timestamp consists of the encryption of three items: the
name of an event, its timestamp vector, and a signature on this pair. The signature
certifies that this vector belongs to this event, and also protects against guessing
the plaintext: verifying a guessed vector requires guessing the correct signature.

121

Comparing Timestamps When process p wants to compare events A and B, it sends 7'(A)
and T'(B) to psc. The coprocessor applies Dig to extract the event names, vectors and signatures.
If the signatures are valid, the coprocessor then compares V(A) and V(B), and reports the result:
gither “A — B,”“B— A" or“A «/~ B.”

Sending Messages Suppose process p wants to execute a send event S, sending a message
with text M to process ¢q. Process p submits A and ¢ to the secure coprocessor psc, which
calculates the timestamp® 7'(.S'), and returns the ciphertext

M/ = Emsg <p7 q, M7 T(S)v Smsg(pa q, M7 T(S)))
Figure 5.5 illustrates this structure. Process p then transmits the message.

A malicious process might still beableto suppressthismessage M. (For example, inFigure5.1,
Bad Bob could have his purchase order sealed, but only introduceit into the network if he receives
an order from his client.) The secure coprocessor psc can protect against loss by requiring a
signed acknowledgement from ¢sc. If the acknowledgement does not arrive, psc can retransmit
the message—perhaps incrementally, as part of other sealed packets. A malicious process can
successfully suppress a message only by permanently partitioning itself from the network.

Receiving Messages Suppose a process p receives a ciphertext message M’. To read M,
process p needs to send it to the secure coprocessor psc. The coprocessor applies Dmg to obtain
the source and destination process, the plaintext M, the timestamp 7'(.S) of the send event, and
the Smsy Signature of this data. The coprocessor verifies that the Sy Signature is valid and that
p isthe intended destination process. The coprocessor then applies Dy to the timestamp, checks
its signature, and obtains the vector V(.5'). The coprocessor then performs the vector timestamp

timestamp |..... signature
ofsendevent) @ . of message

Figure 5.5 The message ciphertext encrypts the message information (source
and destination processes, message text), along with the sealed timestamp of the
send and a signature of these values.

4Since messages are tagged with a signature before encrypting, using the unsealed timestamp V(.S) would suffice here.

122

protocol: replacing its current vector V, with the entry-wise maximum of V,, and V(5). Finally,
psc returns to p the name of the source process, the plaintext A, and (optionally) the timestamp

7(S).

5.4.

Discussion

5.4.1. Results

We make some preliminary observations:

The coprocessors carry out the vector timestamp protocol. Thisfollowsdirectly
from the description.

Only secure coprocessors can unseal messages and timestamps. A process
may be able to guess some or all of the entries of a given timestamp vector. If timestamps
were merely vectors encrypted with a public key, then a process could guess a possible
vector, encrypt the guess, and compare the result to the ciphertext. However, in our scheme,
timestamps are the encryption of a vector along with a signature of that vector. Without
knowing the signature function, a process cannot verify that V' isthe vector in the timestamp
(A, V, Sie(A, V). Timestamps are truly sealed.

Similarly, with high probability a process cannot decrypt an encrypted message by making
some lucky guesses, since that would require breaking the message signature Smsg.

Only the secure coprocessor at the source process may seal messages.
Messages arriving at an honest process will be routed to the secure coprocessor, which will
ignore messages that do not include both a valid timestamp and a valid signature on the
message and the timestamp together.

Only the secure coprocessor at the intended destination process may unseal
amessage. Sealed messages must be decrypted to be intelligible. The receiving process
must consult its secure coprocessor, since the encrypted message includes the name of the
intended destination process. (However, a malicious process can receive and discard an
encrypted message without consulting its coprocessor. Section 5.4.2 considers this avenue.)

Together, these assertions imply the following result:

Theorem 5.1 Suppose the following are true statements:

e All messages to or from honest processes are routed through through secure
COProcessors.

e The encryption and signature functions are not breakable.

123

Proof

e Theintegrity of the secure coprocessors is not compromised.
Then Sealed Vectors guarantee the following properties:

e If aclock reports“A — B” then A — B.

¢ If node A precedes node B aong a path where each message edge touches an
honest process, then clocks will report“A — B.”

Let 5 bethe PARTIAL _ORDER_TIME graph of thiscomputation. To construct agraph ~ that

reflects the computation perceived by the secure coprocessors, we perform these steps:

Copy the entire timeline belonging to each honest process.

For each message edge incident to an honest process, copy the edge, and the node at the other
end (if itisnot already in ~).

Add each node that a dishonest process registers with its coprocessor.

At each dishonest process, connect the v nodes in their 3 sequence.

A coprocessor reports“A — B” in3iff A — Biny. O

Proof

Corollary 5.2 Suppose that, in addition to the hypothesis of Theorem 5.1, mali-
Cious processes cannot communicate without using the sealed message protocol. Then
Sealed Vectors guarantee that clocksreport “A — B” iff A — B.

Construct v asin the proof of Theorem 5.1, only add all message edges and their incident

nodes (if they are not already in~). O

This protocol improves on prior work by offering security advantages:

Complete Results If aclock reports“A — B,” then A — B. If a clock reports
“A «/ B” (and malicious processes cannot communicate using covert channels) then

A i B.

No Spoofing Evenwith covert channels, amalicious process cannot deny having received
amessage from an honest process.

Privacy The private information shared in timestamps is confined to the secure coproces-
sors.

Wider Application The Seded Vector Timestamp protocol does not require that the
partial order directly arise from information flow.

124

In particular, Sealed Vectors protect against all the attacks catalogued in Section 5.2, and provide
secure clocks for scenarios such asthe partial order arising after rollback with modified replay.

Sealed Vectors also improve on Signed Vectors in terms of scalability: the number of decryp-
tions required on incoming messages decreases from linear to constant.

5.4.2. Implicit Assumptions

This chapter has made several implicit assumptionsopen to challenge. We discussthese challenges.

No Covert Channels Precedence corresponds to paths through the PARTIAL _ORDER_TIME
graph. The Sealed Vector protocol prevents a single malicious process from masking its presence
in such paths. However, if malicious processes can communicate without using officia (that is,
coprocessor-sealed) messages, then they can cooperatively hide their presence in paths—since
communication outside of the coprocessorsisinvisible to the clocks.

One approach to this problem is to make such communication very difficult: for example,
by having the secure coprocessors handle net traffic (and perhaps snoop on Ethernet packets),
malicious processes would be forced to communicate outside the network.

Covert communication is also possible using in-band signaling, since it may be possible to
extract information from sealed messages without consulting secure coprocessors. For example,
amalicious process might draw conclusions from the existence of the message, the length of the
message (real encryption usually breaks long text into blocks and encrypts each block separately)
or the frequency of multiple messages.

Security of Coprocessors The protocol dependson the physical security of the coprocessors.
In practice, secure coprocessors are extremely difficult to penetrate. However, as with any security
mechanism (physical or computational), it may be possibleto compromisethe system if the attacker
iswilling to pay tremendous amounts of money. (For adetailed analysis of the cost, see [Wein91].)
What do we do if the exception case occurs—if a coprocessor is compromised? One way to limit
the damageisto use separate Sy, St 8Nd Ly functionsfor each process. Thistechnique prevents
a compromised coprocessor from impersonating someone else or performing message decryption
for someone else. Using separate Fi¢ functions prevents the compromised coprocessor from doing
comparisons for someone else, but requires re-encrypting forwarded timestamps. (Section 5.5
considers some further defenses.)

Validity of Keys Giving each coprocessor its own keys raises the issue of key management: a
new coprocessor must somehow announce its public keys. A straightforward technique to prevent
dishonest processes from impersonating a “new coprocessor” is to have new coprocessors obtain
certificates, signed by a universally trusted agent, listing their identity and public keys.

125

5.5. Future Work

Limiting Penetration Damage What can we do if the integrity of a coprocessor is compro-
mised? Penetration exposes any data that a coprocessor has saved. However, an uncompromised
coprocessor can securely forget data. This observation suggests an aternative Give-and-Forget
timestamping scheme. Suppose process p at event .S sends a message to process ¢, who receives
it a event R. Process p generates a key pair K15, K2 5. Process p signs a certificate asserting
that K> s isits public key for event S, and sends this certificate along with the private key K s
to process ¢ with the message. Process ¢ uses the private key K3 ¢ to encrypt an identifier for R
and then erases the key. Process ¢ then has a universally verifiable certificate that it knew about
S when R occurred. However, examining this certificate alows no one—not even process ¢—to
forge anew certificate of knowledge of .S without the cooperation of process p.

Thistechnique alows a secure coprocessor to generate proof-of-timestamp certificates showing
the last message received from each uncompromised process. Should the coprocessor later be
compromised, it cannot produce new certificates for these messages. To prevent a compromised
coprocessor from rolling back timestamp entries, we can require all coprocessors to use these
proof -of -timestamp certificates to prove the validity of each entry in their timestamp vectors.

Other approaches for pre-compromised coprocessors to limit the forging power of their com-
promised versions include the Distributed Trust and Digital Timestamping techniques of [BHS92,
HaSt91], as well using data on acknowledgement packets.

Improving Performance A performance problem with vector clocks results from size: time-
stamps have n entries, comparing timestamps requires n comparisons. Charron-Bost’s result
[CB91] that partial order timestamps must be linear suggests two approaches to improving per-
formance: implementing vector clocks more carefully (to reduce the actual data transmitted), and
trading timestamp size for comparison time.

Singhal and Kshemkalyani [SIKs90] present a vector clock implementation where processes
refrain from transmitting redundant datain vectors. Integrating this technique with Sealed Vectors
would yield increased efficiency.

A more generalized approach would be to give processes more latitude in choosing which
entries to transmit and which to withhold. Some entries in timestamp vectors might be marked
with flagsindicating that that valueismerely alower bound. Thislower bound may sufficefor many
comparisons, if it does not, a secure coprocessor would need to consult other secure coprocessors
to obtain the missing data. It would be interesting to develop good heuristics for deciding which
entries to withhold and for determining when the expense of a “miss’ outweighs the benefits of
withholding.

Another interesting approach would beto implement vector clock protocol inamorecentralized
fashion. For theextremecase, supposewehad asingletrustedlogging site. When aprocessreceives

126

a message, its secure coprocessor sends a note to the logging site indicating the sending process,
the receiving process, and the local indices of the send and receive events. The logging site then
has sufficient information to maintain the timestamp vectorsfor each process. We obtain constant
size timestamp data on messages—at the price of doubling the number of messages, and having
processes need to consult a remote site to perform comparisons. This approach till requires
coprocessor sealing in order to force a process not only to acknowledge receiving a message, but
also to file alogging note. (This approach differs from the Causality Server protocol [ReGo93] in
that messages are not routed through an an intermediary, but logged after the fact, that no FIFO
nor secure channel assumptions are needed, and that the logging site protocol preserves the actual
partial order, not just a consistent total order.)

Yet another technique (e.g., [ACGS91]) is to use vector clocks to track a coarser partia
order—trading timestamp size for false positives in precedence detection. However, adapting
these techniques (or the linear timestamping techniques of [BHS92, HaSt91]) creates the problem
of proving the absence of a precedence path. Developing a hierarchical approach—to indicate the
most “likely” precedence path, and then verify its correctness—is one path of future research.

General Confinement Models Another areafor exploration is the use of more general con-
finement models. Coprocessor sealing provides control over the information a timestamp provides
to a process. This control may provide more benefits than just suppressing vector entries—in
particular, it may alow for anonymous or hidden causality [Gr75].

127

128

Chapter 6

Secure Distributed Time for Secure
Distributed Protocols

6.1. Overview

Chapters 2 through 4 showed how framing application problemsin terms of distributed time pro-
vides a deeper understanding of the problems, and allows the development of flexible and genera
protocols that access the distributed time structure by querying clock primitives. Separating the
clocksfromthe higher-level protocolsin thisfashion allowsusto change the clock implementations
transparently to the higher-level protocols. However, the popular timestamp vector implementation
of partial order clocks suffersfrom security and privacy risks, as Chapter 5 discussed.

These security and privacy risks for timestamp vectors create problems for higher-level proto-
cols that use these clock implementations. For example, malicious clients can exploit the security
and privacy risks of timestamp vectorsin order to subvert the immediate ordered service protocol
of Section 2.5.2. Standard attacks on timestamp vectors trand ate to higher-level protocol attacks:

e Backdating A malicious process p could ensure that its requests receive undue priority
by backdating the timestamp vectors on them.

e Postdating Alternatively, a malicious process p could ensure that its requests always
precede those from an honest process ¢ by sending postdated vectors on its messages to g.

e Privacy A malicious process could use the timestamp vectors sent as part of the protocol
to spy on the activity of other processes.

Chapter 5 considered two approaches to provide secure clocks for the PARTIAL _ORDER_TIME
model: the Sgned Vector Timestamp protocol and the Sealed Vector Timestamp protocol. Using
the security of these clocksto provide security for higher-level application protocols (such as those
presented in Chapters 2 through 4) raises two critical issues:

¢ Do the security properties of the clocks protect the application protocol s against clock-based
attacks?

¢ Do the security properties of the clocks hold for the higher-level time models considered by
some application protocols?

For example, the Signed Vector Timestamp protocol protects immediate ordered service only
against some of the postdating risks—with Signed Vectors, a malicious process must confine its
postdating to entries belonging to processes whose keys it knows. The Signed Vector Timestamp
protocol provides even less protection if (due to failure and recovery) the partial order model is
flow-virtual. On the other hand, the Sealed Vector Timestamp protocol eliminates al threerisks.

Chapter 6 examines these issues of security and privacy for higher-level protocols and time
models. Section 6.2 explores the protection that our secure vector protocols provide for the time
models considered in thisthesis. Section 6.3 and Section 6.4 consider the security implicationsfor
the application problems of distributed snapshots and optimistic rollback recovery, respectively.

6.2. Security, Timestamps, and Time Models

Section 6.2.1 discusses the general paradigm behind the clock schemes proposed in this thesis.
Section 6.2.2 discusses some attacks permitted by this family. Section 6.2.3 discusses how the
defenses proposed in Chapter 5 fare against these attacks, for various types of time models.

6.2.1. Timestamp Clocks

The clock protocols discussed in this thesis are based on timestamps. processes generate a time-
stamp associated with an event or state A, and this timestamp serves to sort A relative to other
events or states.

Such timestamp clocks are easily implemented for Type 4 parallel pairs—pairs that are con-
sistent, independent, strongly monotonic and flow-supported. The ease of implementation follows
from these properties:

¢ Strong monotonicity impliesthe relation between two nodes is established forever once they
come into existence.

e Flow-support implies that a process has the potential to know all information necessary to
create a timestamp for a node when the node comes into existence.

For example, consider generating the timestamp vector for anode A in the PARTIAL _ORDER_TIME
model. The timestamp vector V(A) is well-defined when A occurs, due to strong monotonicity:
when A occurs, al the nodes that precede A have occurred, and their precedence is established.
The timestamp vector V(A) can be created when A occurs, due to flow-support: information paths
exist from every nodeinV(A) to A.

130

Timestamp clocks can also be implemented for some Type 2 parallel pairs—pairsthat are only
guaranteed to be consistent and independent. These pairslack the convenient properties of Type 4,
but we may compensate:

¢ Weak monotonicity impliesthat when aprecedencerelationisestablished between two nodes,
therelation holdsforever. Consequently, weak monotonicity coupled with away to determine
when all such relations have been established for anode still permits a timestamping scheme.

e Strictly speaking, only the agents that create timestamps require information flow. These
agents do not need to be processes—for example, the Sealed Vector Timestamp protocol
splits clocks from processes.

Before we can discuss example implementations for time models other than Type 4 parallel
pairs, we need machinery to separate clock agents (and their experience) from process agents. The
tools of distributed time provide an easy way to express this notion: we can build a Type 4 paradlel
pair

(CLOCK _PARTIAL _ORDER, CLOCK _TIMELINES)

to expressthe computational activity and information flow of the clock agents. We consider various
pairs:

e For the PARTIAL _ORDER_TIME model with the processes themselves implementing clocks,
the clock pair aboveisthe same as (PARTIAL _ ORDER_TIME, TIMELINES).

e For the SYSTEM _PARTIAL _ORDER and USER_PARTIAL _ORDER models, if processes them-
selves implement clocks, then the clock pair isthe same as

(SYSTEM _PARTIAL _ORDER, SYSTEM _TIMELINES)

If processes use separate clock processors, then the clock pair isthe partial order parallel pair
obtained by treating clocks as separate processes.

Using (CLOCK _PARTIAL _ORDER, CLOCK _TIMELINES) clarifies the discussion of when we can
build timestamp clocks for aweakly monotonic model M. Basically, we use the clock computation
to simulate strong monotonicity and flow-support. We restate the earlier conditionsin these terms:

e Simulated Strong Monotonicity Clocks in CLOCK _PARTIAL _ORDER generate time-
stamps for nodes A and B in M only when the relation between A and B is fixed.

e Simulated Flow-Support If a precedence path exists from node A to node B in

M (CUR_GRAPH), then a precedence path exists from A to the clock node that generates a
timestamp for B.

131

For example, consider generating timestamp vectors for the STRONG_PARTIAL _ ORDER model. A
send event .S depends on the corresponding receive event R, only no information path existsfrom i
to 5. Asaresult, when anode A occurs, the information necessary to create V(A) isnot available,
and infact V(A) may not even be well-defined. However, aclock coprocessor could keep track of
the set X of receive events it depends on but does not know about, and generate for A an interim
timestamp consisting of avector V' and this set X. Thisinterim timestamp satisfies the invariant:

V(A) = (|] V(R)) uv
ReX
Independently, the clock coprocessors share interim timestamp information for receive events that
have occurred, and transform interim timestamps to reflect this new information. If the set in an
interim timestamp for node A becomes empty at clock node B¢ at process p, then all nodes that
will ever precede A have occurred, and information paths exist to B¢ from each of these nodes.
The clock at process p may then generate the full timestamp vector V(A).

Precedence Horizons Thetimestamp vector protocol susetimestampsthat specify precedence
horizons: the timestamp vector for node A consists of the names of the process-maximal nodes that
precede or equal A. Such precedence horizonsfunction as clocksfor parallel pairswhere processes
can sort events in the other process's local time structures. As Chapter 4 described, this approach
also extendsto restricted subgraphs of nonlinear pairs (e.g., when awell-defined valid computation
emerges from USER_ PARTIAL _ ORDER).

6.2.2. Attacks
Clocks based on precedence horizons have three distinct tasks:

e Generating Local Tokens A clock at a process must generate alocal token for each of
its nodes. This token may an integer or a more complex identifier, and may include items
such as signatures.

e Assembling Timestamps A clock at a process must assemble sets of these local tokens
into aglobal timestamp.

e Disassembling Timestamps A clock at aprocess must disassemble aglobal timestamp
into local tokens, some of which may be re-used when assembling subsequent timestamps.

These tasks generate the following security concerns.

e Isagiven local token correct? Suppose the clock at process ¢ has a token for node A at
process p. Did node A actualy occur? Isthisthe correct token for A? Should the clock at ¢
even possess this data?

132

¢ Isthe assembly correct? Clocks are supposed to follow some set of specified rules when
assembling timestamps. Were these rules followed?

¢ Istheinformation released by disassembling a timestamp confined to appropriate agents?

These concerns create opportunities for malicious agents to attack clock protocols. Chapter 5
discussed three such attacks. Compromised privacy may occur when agents release data from
disassembled timestamps. Violating the assembly rules (and creating fraudulent tokens) leads to
backdating and postdating attacks, these violations can aso lead to concurrent-dating attacks in
which some vector entries are advanced and others reduced.

The PARTIAL _ORDER_TIME model alone providesasingle partial order with straightline graphs
at processes. Departing from this comfortable world permits two additional attacks:

e Level-Mixing Whenwedeal with multiplelevelsof timewithout adequately distinguishing
thelevels, amalicious agent may assemble timestampsfor onelevel using tokensfor another.

e Branch-Mixing In nonlinear pairs such as USER_PARTIAL _ORDER, a malicious agent
may assemble timestamps using at least one token from an incorrect process branch. Such
“sdedating” places an event in a computation different from the one actually occurring.

6.2.3. Defenses

Signed Vectors The Signed Vector Timestamp protocol requires processes to implement their
own clocks, and addresses the security concerns of Section 6.2.2 by using cryptography to verify
the identity of the process creating the local tokens. Each process has its own private key; multiple
levels of processes presumably have distinct private keys.

This approach raises two significant problems:

e The protocol restricts only identity, not time.

e The security of the protocol rests on an implicit assumption that the time model is not
flow-virtual: that information flow implies precedence.

We now consider these problemsin moredetail. The Signed Vector Timestamp protocol leaves
processes completely freeto create arbitrary local tokens. Thisflaw permitsthe postdating attacks:
a malicious process p can advance its own local counter, sign it, and pass this along to a process
g asthe “real” value. Processes are also free to create arbitrary global timestamps from the local
tokens available. Thisflaw permits the backdating attacks on PARTIAL _ORDER_TIME: amalicious
process p can assemble an arbitrary timestamp from the signed entriesit possesses.

The Signed Vector Timestamp protocol also implicitly assumes that, barring signature compro-
mise, possession of asigned entry for anode implies precedence from that node. Suppose that node

133

A occursat an honest process p, that aprocess g at clock node B¢ generatesatimestamp for node 5,
and that this timestamp includes a signed entry from node A. For Signed Vectors, thisis sufficient
evidence to conclude that A — B in the higher-level model M. However, all we are justified
in concluding is that Ac — B¢ in the CLOCK _PARTIAL _ORDER, Where A- was the timestamp
generation event for A. In flow-virtual time models (such as USER_PARTIAL _ORDER), precedence
in CLOCK _PARTIAL _ORDER Will not imply precedencein the higher-level M. Inthese cases, Signed
Vectors permit branch-mixing attacks. (Figure 6.1 shows asimple example.) Branch-mixing may
even masquerade as the postdating of the entries belonging to honest processes.

Sealed Vectors Using secure coprocessors to implement clocks alows reliable location of
tokens in both space and time. Using secure coprocessors also ensures that no rules are broken in
the assembly and disassembly of global timestamps, since we can trust the secure coprocessor at
any processto track alocal counter and (barring communication subversion) assemble the correct
pieces into timestamps. Secure coprocessors could aso be used to track relations in a model M
more general than the underlying SYSTEM _PARTIAL - ORDER model, if the model iswell-defined in
terms of the SYSTEM _PARTIAL _ORDER. Thus the security properties of Sealed Vectors extend to
models such as the USER _ PARTIAL _ ORDER and the STRONG _ PARTIAL _ ORDER.

Figure 6.1 The Signed Vector Timestamp protocol fails for flow-virtual time mod-
els, since processes may retain signed entries from previous lifetimes. Suppose
process p has rolled back for reasons other than local failure: either voluntarily,
or in response to failure at another process. Process p at node Ag can forge
USER_PARTIAL _ORDER dependence on nodes B; through B3 at process ¢ and on
node ('; at process r, because an information path exists from A4 to A¢. Even
giving each process incarnation its own private key does not remove this problem.

134

By also functioning as reliable oracles at processes, secure coprocessors make new techniques
possible. For example, the secure coprocessor at process p will truthfully list a complete set of
nodes at p satisfying some particular property (provided that the nodes have been registered with
the coprocessor, and that the property is something that the coprocessor has sufficient information
to evauate).

6.3. Distributed Snapshots

Chapter 3 discussed the problem of taking distributed snapshots in terms of the distributed time
framework. This discussion took two paths: using clocks for partial order time to build Round
Robin protocols assembling global states, and using such snapshot protocols with more general
time modelsin order to capture global states with more specific properties. Their use of distributed
time clocks makes these protocol s susceptible to the security and privacy risks—and defenses—of
Chapter 5.

This section considers these issues. Section 6.3.1 considers active attacks, and Section 6.3.2
considers passive ones. Section 6.3.3 discusses the security and privacy implications for the
distributed time snapshot protocols using more abstract time models.

6.3.1. Active Attacks

Distributed snapshot protocol s based on timestamp vectorsinherit their security risks. Sincetaking
a snapshot requires more than just sorting timestamps, these protocols are liable to some additional
risksaswell. That is, taking a distributed snapshot involves two somewhat orthogonal tasks:

e assembling atimedice, and

e obtaining adescription of the activity on thistimeslice.

A malicious process may actively attack both tasks.

Attacking Timeslice Assembly The basic Round Robin snapshot protocol of Section 3.2.1
assembles a maximal set of nodes mutually concurrent in the transitive global time model. This
basic protocol organizes processes into a directed cycle. Suppose process P, receives a set S;_1
of mutually concurrent nodes from P; through P;,_1. Process P, is supposed to add one of itsown
nodes to form mutually concurrent set S;.; however, process £, may act instead with malice:

e Backdating Process P, could forge abackdated timestamp for some node A, and conse-
guently include A in S, evenif A followssome B € Sj_;.

135

e Postdating Likewise, process P, could forge a postdated timestamp for some node A,
and consequently include A in S, evenif A precedessome B € S;._1.

This protocol gives each process freedom in selecting concurrent nodes. This freedom makes
concurrency detection less robust against attack. The Signed Vector Timestamp protocol does not
help: amalicious process P, can select arbitrary signed entries from the timestamps on the nodes
inset S k—1-

The Reduced Round Robin snapshot protocols of Section 3.2.2 achieve better performance
than this basic protocol; this improvement exploits shortcuts: using concurrency information that
timestamp and rollback vectors aready contain. These shortcuts sometimes make concurrency
detection moreresilient. For example, suppose amalicious process p fraudulently wishes to insert
anode A into a snapshot obtained from the adjusted timestamp vector V*(B) of node B at process
g. Since process ¢ already “knows’ the identity of A (from the timestamp vector for B), process
p must manipulate vectors not only before ¢ asks for the snapshot, but also before 5 even occurs.
Process p must forge the right sequence of outgoing messages—and must hope that other processes
do not send messages that dispel the illusion that the node preceding A at p isthe p-maximal node
preceding B. On the other hand, taking a snapshot using an adjusted rollback vector R*(B) does
not provide as much resilience, since the potential delay between B and R*(B) gives malicious
processes more flexibility.

Attacking Descriptions Taking a snapshot usually entails more than just collecting a set of
mutually concurrent timestamps; we also want a description of the activity associated with each
of these timestamps. This requirement creates another avenue of attack: a malicious process may
attack asnapshot protocol by using legitimate timestamps but lying about the nodes and activity that
belong to the timestamps. For example, in the Reduced Round Robin snapshot protocol, an honest
process ¢ might ask a malicious process p for the node following the one names by the p entry in
V(B), for anode B at process ¢q. Protocols such as Signed Vectors keep the timestamp separate
from the node name—so process p can reply to ¢ with the proper timestamp for the requested node,
but may forge the name and description of the node itself.

Defenses Protecting against these attacks using the Sealed Vector Timestamp protocol is
straightforward. Sealed Vectors protect against forging timestamps and subverting concurrency
detection; the presence of atrusted agent (the secure coprocessor) to link timestamps to node names
protects against description attacks.

Effectively protecting against these attacks without using secure coprocessors remains a re-
search area. Expanding Signed Vectors to include more detail s of message paths might make them
harder to forge. However, we till have the problem that (in terms of Section 6.2.1) the ability to
assemble legitimate timestamps easily transforms into the ability fraudulent timestamps. Rather
than using the correct set of local tokens, amalicious process may use a carefully chosen incorrect
Set.

136

Thetechniquesof Haber and Stornetta[HaSt91, BHS93] provide some groundsfor futurework.
Cryptographic linking techniques might prevent node-name attacks (honest processes can prove
their alegation that a given node follows node A), but using these techniques requires forcing
processes to exchange correct logging information. This exchange may be difficult to ensure
without the trusted local agent of a secure coprocessor. Pseudorandom logging techniques may
be more effectivein these situations—but at the expense of increased communication and delayed
verification, and also with the increased risk of espionage and sabotage that come with remote

logging.

6.3.2. Passive Attacks

Snapshot protocols based on distributed time also permit passive attacks—both the standard time-
stamp vector attacks, and new ones raised by the snapshot problem.

Privacy Distributed snapshot protocols based on timestamp vectors inherit their privacy risks:
vectors leak information. Problems also arise from observation effects:! the interaction between
the act of observing and the computation being observed. Do the messages exchanged as part of
taking a snapshot of a given computation belong to the computation? If not, then the data being
exchanged creates serious potential for abuse. Participating in such a snapshot protocol provides
processes with valid local tokensfor nodes on which they have no precedence; a malicious process
might use these tokens to forge timestamps. For example, using the Signed Vector Timestamp
protocol here would distribute signed vector entries to processes that have no dependence on the
nodes named by those entries.

Spying on the Initiator The preceding attacks come from spying on the data exchanged as
part of asnapshot protocol. A malicious process may also gain unauthorized information from the
fact that a snapshot protocol is being executed. For example, suppose auditor Alice is asking for a
snapshot to verify that the electronic currency in circulation sums correctly. If counterfeiter Bad
Bob knows this fact, then he may manipulate this probe to hide his crime (and subvert the purpose
of Alice taking this snapshot).

Spying on Other Processes A distributed snapshot protocol may also be misused by its
initiator to gain unauthorized information about other processes in the system. Of course, an
authorization policy must exist for an action to be classified as misuse. If anyone is permitted to
take any kind of snapshot at any time, then subversion is not necessary. However, more substantive
authorization rules create the potential for both direct and indirect attacks. A malicious process
p might forge its own authorization proving the legitimacy of its snapshot request; aternatively,

1Section 3.4.2 discussed thisissue.

137

amalicious process p might spy on process ¢ by simulating participation in a legitimate snapshot
protocol initiated by a different process.

Defenses One way to add resiliency to a snapshot protocol is to require each participant to
identify the initiator. However, strengthening a protocol by including extra information suggests
afundamental tradeoff between privacy and security: information included is information leaked.
As with the active attacks, using secure coprocessors appears to be the best defense. We can sedl
the entire snapshot protocol, and also use secure coprocessors to ensure the initial requests for
snapshots agree with whatever policy we select for snapshot authorization.

6.3.3. Alternative Models

Chapter 3 introduces another approach to obtaining global states satisfying some particular prop-
erty: taking a standard snapshot from a nonstandard time model. Chapter 4 shows how at |east
three distinct virtual partial orders arise from rollback with modified replay; a process may aso
wish to take a snapshot from one these alternative models.

This approach to snapshots follows directly from the orthogonality between clocks and higher-
level time protocols. However, the performance orthogonality between clocks and protocols does
not extend to a security orthogonality between clocks and models. As Section 6.2 discussed, how
a temporal relation in an abstract time model arises from the real-time partial order (e.g., is it
flow-virtual?) influences how its clocks may be attacked.

Blocked Partial Order Time Theorem 3.5 from Section 3.3.2 repeats a result from [Sm93]:
each timedlice from a Type 2 (consistent and independent) parallel pair has a unique subset of
nodes that determine the timedice. Since these subsets are partial timeslices from the composition
of the BLOCKED model with the partial order, taking snapshots in this higher-level model yieldsan
exponential number of snapshots in the original partial order. This technique creates the potential
for security and privacy problems, because of the BLOCKED model itself, and because we have two
levels of time.

One problem arises because of the lack of view-completeness. Applying BLOCKED to a Type 2
parallel pair (M, M’) does not preserve all properties of (M, M’); in particular, we lose view-
completeness (as Section 3.3.2 observes). This adds a wrinkle to the Round Robin protocol: a
process may not have any node to add to the partia timedice. This wrinkle leads again to a
security-privacy tradeoff: if we do not require such a process to provide proof of its necessary
abstention, then we allow malicious processes to opt out of reporting sensitive data. The role
of secure coprocessors as trusted oracles keeps this from being a problem for the Sealed Vector
Timestamp protocol.

138

Flow-support is another property that the BLOCKED model does not preserve. Consider a
message edge S — R in a graph from the PARTIAL _ORDER_TIME model. Composing BLOCKED
with this model draws an edge to i from the local successor of 5, but an information flow path
does not exist. Thisisnot a serious problem: the sending process can inform the receiving process
of the identification of the next local node. For the higher-level model, the foundation of the
Signed Vector Timestamp protocol still holds: possession of a signature for an honest node proves
dependence on that node. We may thus use either Signed Vectors or Sealed Vectors to track
BLOCKED o PARTIAL _ORDER_TIME relations.

The fact that two distinct levels of time are being tracked also permits level-mixing at-
tacks. Consider again the example of PARTIAL _ORDER_TIME. The PARTIAL _ORDER_TIME and
BLOCKED o PARTIAL _ORDER_TIME models describe sufficiently similar structures that privacy is
not a problem. However, security risks might till exist: for example, with Signed Vectors,
timestamps for one level could be used to construct timestamps for the other. As Section 6.2.3
observed, the use of Signed Vectors with multiple levels requires either distinct signature func-
tions or distinct name spaces. (Otherwise, our trick for having possession imply precedence in
BLOCKED o PARTIAL _ ORDER_TIME causes this property to fail for PARTIAL _ ORDER_TIME.)

Strong Partial Order Time We developed the STRONG model to allow processes to take
snapshots in which no messages are in transit. The STRONG model composes with a partial order
by making message edges bidirectional; the resulting temporal relation has the property that its
timedlices are exactly the timedlices from the origina partial order in which no messages werein
transit.

The STRONG model aso alters the properties of the model to which it is applied. For example,
STRONG o PARTIAL _ORDER_TIME differsfrom standard partial order timein some substantial ways:
edges may flow backwardsin time, and precedence no longer impliesinformation flow. The most
substantial difference is that the relation possesses cycles. Making message edges bidirectional
ties together send events and receive events; sets of messages may interact in unexpected ways to
form larger cycles.

The cycles in the STRONG o PARTIAL _ORDER_TIME model create opportunities for malicious
processes to attack clock and snapshot protocols. As Section 6.2.1 discussed, clocks must keep
track of theincoming edges with unknown originating nodes; clocks that know theidentity of these
nodes must see that this information eventually reaches the clocks that need it. Without secure
coprocessors to keep them honest, malicious processes can lie on both ends of this task, and spy
on the information itself.

Malicious processes can also subvert the model without attacking the clocks by making sure
that at least one message is alwaysin transit. Figure 6.2 sketches this scenario.

139

Bad Bob

Crooked

Cathy
S1 R S5 R>

Figure 6.2 Malicious processes may subvert the STRONG _PARTIAL - ORDER model
by ensuring that at least one message is always in transit. This PARTIAL _ ORDER_TIME
graph illustrates the initial phases of such a conspiracy between Bad Bob and
Crooked Cathy. For each ¢, 5; — R; and S/ — R! in the timelines. However, the
STRONG model makes message edges bidirectional, so applying that would make
R, — S! and R, — S;,. Hence, in STRONG_PARTIAL _ORDER, each Bad Bob node
from S; to R; (inclusive) is cyclic, and cannot be part of a timeslice. Bad Bob and
Crooked Cathy collaborate to ensure that any Bad Bob node from S5; on can never
be part of a STRONG_PARTIAL _ORDER timeslice.

6.4. Optimistic Rollback Recovery

The optimistic rollback recovery protocol of Chapter 4 uses distributed time clocks, and thus is
liable to security and privacy attacks on the clock mechanisms. Section 6.4.1 considers standard
attacks on clocks, and Section 6.4.2 considers some attacks more specific to optimistic rollback
recovery. Many of these issues are also relevant to previous rollback protocols; however, by its
explicit foundation in two levels of partial order time, our protocol is a particularly appropriate
scenario to discuss these issues.

6.4.1. Standard Attacks

Chapter 5 discussed threerisks of partial order clocks: backdating, postdating, and privacy leaks.
Section 6.2.2 discussed the additional problems of level-mixing (that arises when an application
tracks multiple levels of time) and branch-mixing (that arises when an application deals with a
nonlinear pair). These risks all apply to our optimistic rollback recovery protocol, which uses two
levels of time: a nonlinear pair to track dependence on failed nodes, and a parallel pair to track
knowledge of rollback.

The SsYSTEM _PARTIAL - ORDER model tracking knowledge of rollbacksisastandard partial order
model, producing the partial order that an external observer (unawarethat recovery istaking place)
would perceive. The standard backdating, postdating, and privacy risks apply.

140

In this context, backdating hides knowledge of rollbacks; the malicious process falsely deludes
an honest process into thinking a node is not an orphan. This hoax may have direct consequences,
such as the honest process failing to roll itself back or to discard an incoming orphan message, or
may have more subtle consequences, such undeceived honest processes rejecting messages from
the deceived honest process. Figure 6.3 shows an example of the first scenario; Figure 6.4 shows
an example of the second.

Postdating a node in the SYSTEM _ PARTIAL _ ORDER order involvesforging the future. Placing a
user node artificially far in the SYSTEM _ PARTIAL _ORDER future allows amalicious process to fool
an honest one into accepting orphan messages. Figure 6.5 shows an example. The Signed Vector
Timestamp protocol does not solve these problems, but the Seal ed Vector Timestamp protocol does.

In the USER_PARTIAL _ORDER model tracking dependence on failed nodes, backdating and
postdating have the more standard behavior of hiding or forging dependence on failed nodes. This
model behaves like the standard partial order until rollback actually occurs.

Branch-Mixing Once user timelinesturn into timetrees, the USER _ PARTIAL _ ORDER graph may
generate a valid FAILURE _ FREE _ PARTIAL _ORDER graph. However, the fact that failure-free graph
isflow-virtual complicatesthetask of reliably trackingit. AsSection 6.2.3 observed and Figure 6.1

.,

Alice has rolled
back, so Cathy
is an orphan!

I'll backdate my
SYS_TIME vector, so
Cathy won't know!

Bad Bob:

"Should | i
perform this| | Go right
expensive | [ahead!”
act?"

"Are you

Cathy:

Oh no---I'm
an orphan!

Figure 6.3 Backdating SYSTEM _PARTIAL_ORDER relations can cause honest
processes to waste computation. In this example, Alice's rollback makes Cathy
an orphan. By backdating the SsYSTEM _PARTIAL - ORDER vector on his first message
to Cathy, Bad Bob prevents Cathy from learning that she is an orphan until after she
has performed expensive computation that now must be discarded.

141

Alice: —®)®») >

I'll backdate my
SYS_TIME vector, so
Cathy won't know

that she is now
O-an orphan,

Bad Bob:

Cathy:

I'm rejecting
this message,
since Cathy
is an orphan!

Doug: >.

Figure 6.4 If knowledge of rollback is propagated solely on system messages
carrying user messages, then backdating SYSTEM _PARTIAL _ORDER can cause an
honest process to remain an orphan indefinitely. In this example, Alice's rollback
makes Cathy an orphan. By backdating his SYSTEM _PARTIAL _ ORDER Vvector, Bad Bob
prevents Cathy from learning this fact. All of her subsequent user messages will be
rejected—Cathy loses all credibility with Doug.

142

I'll postdate my
old SYS_TIME vector
so it USR-follows A
but SYS-follows B

back, so Cathy
is an orphan!

Bad Bob:

Cathy:

Doug:

| see that Cathy
is not an orphan, so
I'll accept this
message

Figure 6.5 Postdating SYSTEM _PARTIAL _ORDER relations fools honest processes
into accepting orphan messages. In this example, Alice's rollback makes Cathy an
orphan. By advancing his Alice entry in the system model but not in the user model,
Bad Bob not only hides the rollback from Doug, he ensures that Doug will not listen
to anyone else’s announcement of the rollback.

143

illustrated, the Signed Vector Timestamp protocol breaks down when the a graph is generated
virtually—possession of a signed entry for a node no longer implies dependence on that node.

The Sealed Vector Timestamp protocol still provides protection in this scenario.

Level-Mixing Oneway to subvert a protocol that requires accurate tracking of computation on
two levelsisto disrupt the correspondence between the levels. For example, the rollback protocol
from Chapter 4 requires that processes be able to map two system nodes at another processto their
corresponding user nodes, and be able to sort them in terms of the USER_PARTIAL _ORDER model.
How can this mapping be made reliable? If it is each process's responsibility to report anode as a
pair of identifiers, then malicious processes can avoid the problem of forging timestamps merely
by mismatching valid timestamps.

Again, the Sealed Vector Timestamp protocol still provides protection in this scenario.

Privacy Risks Surviving processes may need to roll back in responseto afailure. If asurviving
processis malicious, it may retain and exploit old state. For example, one processin a poker game
may mistakenly reveal acard, and call for rollback. How do we ensure the other processes actually
“forget” the revealed card?

Banking systems provide another example. Suppose Alice deposits a large check for Bad Bob
with banker Cathy. Alicethen discoversthat all her activity that day wasincorrect, and rollsherself
back. The current state at Cathy indicates that alarge sum of money isin Bad Bob’s account—but
Alice' s failure makes this state an orphan. If Bad Bob learns that Cathy is an orphan before Cathy
does, then Bad Bob can exploit the incorrect balance by withdrawing the extra money.

To solve this problem, we need to introduce a complete discontinuity in the state of surviving
processes that roll back. Perhaps we could force a site migration, and keep the location of the new
site secret from the old site. We may need to extend this discontinuity to any process learning
of rollback: the banking example did not specify whether Bad Bob’s own state was an orphan.
This problem raises similar issues as commitment, since transfer of knowledge is an action that is
difficult to undo.

6.4.2. Other Avenues of Attack

Our framework of secure distributed time provides protection against clock-based security and
privacy risks. However, optimistic rollback recovery protocols face other security risks. In this
section consider, we discuss some of these areas for future research.

Checkpointing Rollback protocols assume some mechanism for processes to restore state.
Usually this mechanism uses stable storage to preserve sufficient information for state restoration.

144

This information may consist of checkpointed images of local state, logs of incoming messages
(for replay), logs of outgoing messages (for replay), or various combinations of these techniques.

The existence and use of thislogged information creates security and privacy risks:

e Forging Identity A malicious process can forge someone else's checkpoint.
e Forging Data A malicious process can lie about the datait stores as its own checkpoint.

e Forging Timestamps Inprotocolsthat preservemorethan just the most recent checkpoint
at each process, amalicious process can attack the methods used to identify which checkpoint
belongs to what point in (distributed) time.

e Forging Storage Location If stable storage servers are distributed throughout the
system, amethod must exist that, upon recovery of process ¢, specifies where the checkpoint
for ¢ issaved. A maliciousprocesscan disrupt recovery by leaving ¢’ s checkpointsuntouched
and attacking this mapping instead.

e Espionage A malicious process p might gain unauthorized knowledge about the affairs
of process ¢ by examining checkpoints belonging to q.

¢ Interactions The checkpointing policy at a physical process site cannot be completely
orthogonal to the levels of processes at that site. For example, in a system using Signed
Vectors, checkpointing a physical process would leak keys belonging to the system-level
processes (since the checkpoint would include these keys).

e Authority Theauthority to read a checkpoint belonging to a process ¢ must be more than
just the identity of ¢ or its physical site, since both these may vanish in afailure.

Restart As the last item above suggests, the mechanics of restart—especially in the face of
failure of physical machines—creates risks:

e Proving Legitimacy of Request How does a system establish the legitimacy of a
restart request? For example, consider the standard mechanism of a process p caling for
arestart of process ¢ if process ¢ has been silent for a while. (After all, indefinite silence
is indistinguishable from failure.) A process r that has heard from ¢ recently can veto this
request. Once more, we face a tradeoff between security and privacy: preventing malicious
vetoesrequiresthat process r present evidence (e.g., atimestamp) showing it has heard from
g—which alows process p to probethe behavior of processes and ¢ by “innocently” calling
for restart.

e Malicious Restart A malicious process might be able to abuse the restart mechanism by
convincing a sufficient quorum of processes that an honest, non-faulty process ¢ is dead.

145

e Malicious Termination Even with no malice, two versions of the same process may be
alive smultaneoudly because silence and failure are indistinguishable. Rollback implemen-
tations thus must include away to terminate honest processes. A malicious process might be
able to abuse this machinery and terminate inconvenient honest processes.

e Directing Migration to a Corrupted Site When an honest process g isrestarted (either
naturally, or through malice), a corrupt process p might be able to direct the restarted version
to a physical site that p has compromised—thus gaining access to data and authority of
Process q.

e Mutual Restart Even if amajority of processes must agree to restart a silent process, a
coterie of malicious processes could partition the honest processes and convince each half to
restart the other.

e Migration of Authority Security and privacy techniques (such as the Signed Vector
Timestamp protocol and the Sealed Vector Timestamp protocol) may assume that each honest
process possesses secret keys. Redlistic rollback protocols allow for a process to migrate to
a new physical site when the original physical site fails. How does the new version of the
process obtain the proper keys? If backup copies of the keys exist—even in ashared fashion
[Sh79]—what protects them? If new keys are created, what prevents a malicious process
frominventing and inserting new keys?

e Revoking Authority If asiteis compromised, how do the surviving honest processes
revoke its authority? Can the revocation mechanism be used to attack honest processes?

e Migration of Identity When aprocess migratesto anew site, how does it convince other
processes of its new identity? Can this mechanism be abused to steal theidentity of an honest
process?

Rollback Even if we take care of these attacks on a rollback recovery protocol, the protocol
can till be subverted ssmply by misusing it. For example, a malicious process can prevent the
entire system from ever getting any work done simply by repeatedly sending messages to honest
processes (establishing dependence) and then rolling itself back.

146

Chapter 7

Conclusion

7.1. Summary

Distributed time provides a general framework for building distributed protocols and for transpar-
ently adding security and privacy protection to these protocols. This thesis demonstrated these
clamsin three steps:

¢ We developed formal machinery to express the general temporal relations that arise in dis-
tributed application problems. We then built a suite of clock primitivesfor these relations.

e We analyzed application problems in terms of these general temporal relations. We then
built protocol solutions using the clock primitives. The orthogonality between clocks and
protocolsallows transparently modifying the protocols by changing clocks and time models.

e We identified the security and privacy risks inherent to tracking general temporal relations,
and built clock primitives that protect against these risks. We then provided security to our
higher-level protocols by transparently substituting these secure clocks.

By providing insight into the underlying temporal relations and orthogonality between clocks
and protocols, the distributed time framework permits us to build protocols that are more general,
more flexible, and more secure than previous solutions. Furthermore, the security and privacy
problems we identify—and the solutions we provide—also apply to less general frameworks.

Computational environments are becoming increasingly distributed, and applications are per-
meating social and financial arenas that are particularly sensitive to security and privacy attacks.
The problems that this framework addresses are likewise becoming increasingly important.

7.1.1. Distributed Time

Distributed time improves on previous work in partial order time by providing a fully general
temporal framework supporting protocol design and construction.

We defined a computation graph format to describe computation, and showed how to trandate
system traces into ground-level computation graphs. We then defined time models as representa
tional transformations of computation graphs, and constructed a suite of clock primitives probing
relations in these models.

Computation graphs allow us to consider temporal relations more general than partial orders—
for example, non-transitive relations and cyclic relations. Time models provide aformal meansto
abstract away irrelevant temporal, physical, and computational detail. The ability to composetime
modelspermitsusto build hierarchiesof temporal abstraction. The separation between timemodels
and computation graphs alows us to consider computations that arise virtually, via composition of
models.

7.1.2. Distributed Protocols

Distributed time supports protocol construction by providing an understanding of the general
temporal relations underlying application problems, and by allowing processes to examine these
relations via clock primitives. This thesis illustrates this support by applying the framework of
distributed timeto three application problems: detecting potential causality, and the more advanced
examples of distributed snapshots and optimistic rollback recovery.

Distributed time permits accurate detection of potential causality in asynchronous distributed
systems. Determiningwhether one event potentially influenced another reducesto querying aclock
primitive. The orthogonality in our framework permits transparent extension of protocols using
these clock queries. For example, changing the time model used in the clock primitives permits
departing from real-time partial orders, allowing the detection of potential causality in adistributed
computation that (perhaps viarollback and modified replay) never physically occurred.

By expressing temporal and computational abstraction, distributed time provides aframework
for taking distributed snapshots. A timedlice in a well-constructed time model represents an
instantaneous global state of the system in some underlying computation; clock primitives directly
support assembly of timedlices. This framework permits increased flexibility. For example, we
can take snapshots of the past, and (by using higher-level time models) we can take snapshots with
specific properties.

By expressing multiple levels of temporal and computational abstraction, distributed time pro-
vides aframework for optimistic rollback recovery. This problem involvestwo distinct distributed
computations. the user application level and the system recovery level. The ability to model both
levels permits us to build an optimistic rollback recovery protocol that allows processes to fully
exploit al potential information. Our new optimistic rollback recovery protocol is the first to
provide both fully asynchronous recovery and optimality in the number of individual rollbacks at
processes. In particular, we reduce the previous worst case for asynchronous optimistic rollback
recovery from exponential to at most one rollback per process after any failure.

148

7.1.3. Security and Privacy

Tracking temporal relations more general than real time creates security and privacy risks. This
thesis identified these risks and constructed clock primitives that protect against them. Because
our framework provides orthogonality between clocks and protocols, using secure clocks can
transparently provide security for higher-level protocols.

Unlike the passage of real time, the general temporal relations of distributed time cannot be
verified independently. Processes must share private information, and must trust the information
that is shared with them. This necessity of trust creates the potential for security and privacy risks
for clocks for these relations:. malicious processes may sabotage the clocks at honest processes by
providing false information, and may spy on honest processes by misusing the information that
honest processes provide. These risks for clocks trandate to risks for protocols based on these
clocks—such as the application protocols presented in this thesis, or other protocols based on
guerying temporal relations such as partia order time.

The proposal document for this thesis opened these questions and presented the Sgned Vector
Timestamp protocol, the first to provide security for partial order time clocks. This thesis used
cryptographic and secure coprocessor techniquesto devel op the Sealed Vector Timestamp protocol
that provides full security and privacy for time models more general than the standard real-time
partial order. The generality and security of these techniques provides security and privacy pro-
tection for higher-level protocols built on these clocks. For example, we can provide immediate
ordered service, take distributed snapshots, and recover from failure—while also protecting against
espionage and Byzantine attacks.

7.1.4. A Single Arena for Time and Security

Previous work has used partial order time to analyze distributed computation and to construct
distributed protocols. However, many distributed applications center on temporal relations more
genera than a single level of a partial order. Furthermore, separate applications may center on
temporal relationsthat are separate but related.

The time hierarchies and secure clocks developed in this thesis provide a single framework to
consider these separate issues. This framework allows us to integrate applications and solutions
developed independently. For example, rollback with modified replay changes the underlying
computation. By formally specifying how the rollback protocol changes the virtual partia order
computation, and by writing snapshot protocols in terms of queriesto clocks for a specific partia
order time model, the distributed time framework lets us take snapshots without worrying about
rollback. Furthermore, rollback creates several layersof partial order time; we can use distributed-
time based snapshot protocols to take snapshots of each layer. This framework also allows us
to consider the security and privacy issues for these various levels of time, independently of the
particular applications and protocols.

149

7.2. Future Work

Futureresearch in securedistributed timeincludes devel oping and testing new techniquesfor secure
clocks, and using this framework to solve the time and security problemsin new application areas.
Section 7.2.1 considers some areas of work in clock techniques, and Section 7.2.2 discusses some
particular application problems. However, the shape and scope of computation is changing, and the
guestions of security and privacy are becoming more urgent and harder to specify. Section 7.2.3
offers some speculation on the fundamental role that the secure distributed time framework may
play in this emerging world.

7.2.1. Future Work: Techniques

Discussions of new clock and security techniques and areas for future research have occurred
throughout this thesis. We summarize some of them here.

One of the principal drawbacks of any of the timestamp vector techniques is vector size: a
vector has one entry for each processin the system, and these entries may even have nonconstant
size. As Section 5.5 discussed, this property makes scalability a significant concern: how can these
techniquesextend to large networks? Avenuesto solve thisproblem include adapting cryptographic
linking and distributed trust techniques [HaSt91, BHS93], exploiting secure logging sites, and
developing good heuristics for when information can be omitted. The discussion of timestamp
clocksin Section 6.2.1 raises an additional question: do effective clock techniques exist that depart
from the timestamp approach in any substantial way?

Some areas for security research include limiting potential damage when secure coprocessors
are compromised (for example, fleshing out the Give-and-Forget approach of Section 5.5), de-
tecting covert communication between malicious processes, and exploring what privacy can be
attained without coprocessors. Another areafor work is formulating effective privacy policies for
coprocessor-based clocks such as Sealed Vectors. On a basic level, we need to develop formal
(and enforceable) rules for precedence querying. How does process p limit the use of timestamps
it generates? How will this policy limit what a malicious process may learn via selective probing?
On a more advanced level, we need to develop policies for snapshots and rollback that grant the
initiator some degree of anonymity while also establishing the initiator’s authority.

Theseissuesall hint at afundamental tradeoff between security and privacy. Including sufficient
datain protocolsto prevent malicious tampering creates privacy as well as efficiency concerns. Is
this tradeoff unavoidable?

150

7.2.2. Future Work: Applications

The framework of secure distributed time is a powerful tool for solving application problem that
depend on temporal relations more genera than real time. As Section 7.1 discussed, this thesis
appliedthistool to the problemsof potential causality, distributed snapshots, and optimistic rollback
recovery. However, the framework of secure distributed time may be appropriate for many other
application problems. We now consider some of these problems, and discuss the possible relevance
of our framework and possible topics for future research.

Rollback Our research into optimistic rollback recovery suggests many directions for future
work. One direction is exploring the area of commitability, especially in for situations where
rollback recovery may be initiated for reasons other than process failure. Another direction is
examining the list in Section 6.4.2 of possible security attacks on optimistic rollback recovery
protocols.

A third direction consists of exploring more genera versions of the problem: rea world
applications provide motivation for rolling back rollback. For example, users of word processors
and graphics packages frequently attempt to UNDO previous UNDO commands. As Section 4.4
discussed, rolling back rollback requires considering general-past versions of the problem. It
would be interesting to devel op effective distributed techniques for these scenarios.

Distributed Nested Transactions Natural experience provides many examples of atomic
actions: consider Alice physically giving aten dollar bill to Bob. This exchange is either success-
fully completed, or it never happened. No intermediate views of this action are possible.

Transactions (e.g., [GrRe93]) are a standard tool for providing this abstraction in distributed
systems. Without this framework, situations such as process failure, unreliable communication,
and interactions between concurrent transactions may cause pathological behavior. A particular
subcomputation may be distributed in time and space, and consequently may be susceptible to
many failures. However, atransactional system guarantees atomicity, consistency, independence,
and durability; a programmer may regard these subcomputations as durable, atomic actions that
appear to happen in some linear sequence.

Essentially, transactions perform temporal and computational abstraction. During atransaction,
certain processes may perceive individual steps occurring in a certain order; everyone else must
perceive these actions as an atomic unit. Nested transactions allow additional levels of abstraction
by permitting transactions to call lower-level transactions. Supporting nested transactions requires
managing the interactions between child and parent transactions. One aspect of thismanagement is
orphan elimination (e.g., [HLMW87]); when atransaction is aborted, all subtransactions executing
on its behalf must also be aborted.

Distributed time providestool sto support such temporal and computational abstraction. Hierar-
chies of time models permit the multi-level view necessary to implement individual steps as part

151

of a single unit, and to support nested transactions. Cyclic time models support atomicity in a
distributed environment. Partial order models support tracking dependency, for orphan elimination.
Consequently, distributed time might provide a nice framework to implement distributed nested
transactions. As an extra benefit, we can transparently provide security and privacy protection
to these implementations. Fitting existing implementation into our framework and showing they
already face these security risks would be an interesting research topic.

Electronic Currency Adapting the familiar paradigm of physical cash to a distributed elec-
tronic environment raises a number of challenges. Many properties of physical cash fail in the
more general case of electronic currency.

As the initial example for transactions showed, natural experience with cash implicitly uses
transactional behavior. For example, a dollar bill is a unique physical token; a faulty physical
transaction will never cause thistoken to be duplicated. However, electronic transmission of adata
packet (in general) leaves the sender with a copy of the packet. Further, electronic interactions
may be subject to network and process failures. For example, if the communication line breaks
while transferring cash, what happens to the cash? Consequently, robust electronic currency must
providefully transactional behavior; aswe have discussed, the abstraction tools of distributed time
have relevance to thisarea.

The temporal tools of distributed time also have relevance to electronic currency. For example,
bookkeeping and auditing practices in the real world are implicitly based on the notion of per-
ceivable rea-time simultaneity. However, perceivable ssmultaneity is one of the first casualties of
asynchronous distribution. The framework of distributed time provides support for obtaining and
reasoning about possible simultaneous states, and consequently provides support for performing
auditing and bookkeeping along timeslices.

Additionally, the framework of securedistributed time provides protection from acts of sabotage
and espionage that money seems to motivate in humans. If communication failures may cause
cash to be created (or destroyed), then malicious agents will smulate communication failures. If
incorrect values in timestamp vectors prevent discovery of illegal cash activities (as Section 6.3
discussed), then malicious agents will use incorrect values in timestamp vectors.

The ability to model multiplelevels of abstraction while providing some assurances of security
and reliability provides the distributed time framework with another class of potential applica-
tions: balancing privacy of transactions with government law. For example, the Internal Revenue
Service may have the right to examine and verify certain aspects of the flow of electronic currency.
Integrating time models expressing currency flow with time models expressing knowledge rights
might provide the necessary tools.

Electronic Exchanges Performing commodities trading on public networks raises a number
of challenges (e.g., [SEC94]). As the examples of Chapter 5 indicate, these applications are
susceptible to many explicitly clock-based security problems, since adversaries may reap rich

152

rewards by subverting clock protocols. How do we accurately detect the order of actions? How
do we prevent unauthorized leaking of information? The framework of secure distributed time
provides afoundation for exploring these issues.

Considering real-world scenarios raises even more questions. For example, how do we enforce
real-time fairness? Even though Alice in Albuguerque and Bad Bob in New York do not receive
news of astock offer at the same real time, they should have the same duration of time to consider
the offer. If Alice responds one second after she receives the news and Bad Bob responds two
seconds, Alice’s response should take precedence, even though it may have been sent after Bob's
was sent. (Thereal-time order in which the responses arrive is yet another issue.) These questions
suggest another interesting research topic: incorporating real timeinto the framework of distributed
time.

Capabilities Management A capability isan explicit authorization granting its bearer certain
rights. As computation becomes more distributed and asynchronous, the problem of capabilities
management becomes more complex. If Alice performs atask on behalf of Bob, how does Alice
inherit the necessary capabilities? How does Bob later revoke the capabilities he has transferred to
Alice?

Capabilities management in distributed systems raises severa issues related to partial order
time. We list some examples:

¢ Managing capability inheritance requirestracking arelation very similar to precedence paths.
¢ Revoking capabilities requires modifying these paths.

e Enforcing access rules requires using these pathsto restrict the user-level computation.

The framework of distributed time providestools for constructing and and tracking hierarchies
of partial order time relations. In capabilities management, these tools should apply both to
the time-like relations of capabilities, and to the interaction of these relations with time models
describing computation. In particular, our framework may have relevance to the earlier examples:

e Tracking which agents inherit which capabilities requires distributed construction of a di-
rected acyclic graph (e.g., [He91]). We could examine this problem in the distributed time
framework by building time models that express authority instead of temporal precedence.

¢ Inheritance complicates revocation. Revoking a capability given to Alice should also revoke
that capability from anyone who has inherited that capability (even indirectly) from Alice.
However, this revocation should not result in any other capabilities being revoked. If we
express capabilities using a time model, then revocation reduces to optimistic rollback re-
covery. Consequently, the framework of distributed time may have some bearing on this
problem.

153

e In order for capabilities to have meaning, their possession (or lack thereof) should affect
the underlying computation. Having access both to a time model describing the unfolding
computation and also to atime model expressing authority might provide a way to express
the semantics of capabilities; having access to clocks for these models might provide a way
to implement these semantics.

Enforcing access rights via capabilities is meaningless if malicious agents can subvert the under-
lying management system. Using the framework of distributed time has the additional benefit of
providing transparent security and privacy.

The framework of distributed time also provides the potential for integrating capabilities with
other temporal issues. For example, Herlihy and Tygar [HeTy89] use an approximation of real
time as a basis for revoking capabilities. Distributed time might provide away to generalize such
work based on linear time. For example, how would capabilities be temporarily restored during
rollback with modified replay?

Information Confinement A long-considered issue (e.g., [La73]) in computer security isthe
confinement of information to appropriate agents. Indeed, some researchers regard information
confinement to be synonymous with security (e.g., [NCSC90]).

Tracking the flow of information in order to enforce information confinement is an area in
which secure distributed time has particular relevance. This relevance arises for many of the
same reasons as in the capabilities management problem. Information confinement requires using
causality-like relations both to describe and also to proscribe computation, and requires careful
consideration of temporal abstraction and security issues. The framework of distributed time may
provide appropriate tools:

e The ability to express partial order time allows the potential to track correctly who has seen
what.

e The ability to support flow-virtual time allows us to extend this potential for computations
whose history is atered.

e The ability to support multiple levels of time allows us to track independent flows.

e The ability to support relations more general than partial ordersallows usto consider the se-
manticsof computation whiletracking informationflow. For example, nontransitiverelations
express process actions that destroy data.

Mobile Computing The advent of mobile computing raises a number of challenges related
both to abstraction and to security. The framework of distributed time might providetoolsfor these
iSsues.

154

Besides distribution and asynchrony, mobile computing raisesan additional level of abstraction:
networks with mobile agents must abstract from a dynamic physical topology to the more stable
logical topology. Providing a hierarchy of time models might express this abstraction; providing
clocks for these models might facilitate protocol construction. The dynamic physical topology
creates additional security risks: for example, if a mechanism exists for Alice to appear suddenly
in Cedar Springs, Michigan and have her communication routed to the server there, then Bad
Bob in New York may abuse this mechanism to intercept Alice's communication. Expressing the
abstraction using distributed time may provide techniques that transparently protect against these
risks.

Disconnected operation also raises challenges with time and with confinement. For example,
if a partition temporarily distributes Alice’'s computation among several physical sites, then she
must re-establish a consistent image upon repair of the partition. We might be able to address this
problem using the consistent global state tools of distributed time. Remote execution subverts the
standard client/server model, since a portion of the client’s computation may run on the server’s
machine, or vice-versa. Sharing a machine creates a mutual suspicion problem: one computation
might interfere with or spy on the other. (For example, Trojan Horses and viruses are examples of
such attacks.) The security and privacy tools of distributed time might address this problem.

Hidden Causality Real distributed systems frequently provide the potential for anonymous or
hidden causality [Gr75]. The semaphore mechanism is an example: the agent granted a lock by
a semaphore knows neither who released the lock nor who else is waiting for it. Extending our
framework to handle these issues would be an interesting research area. Suppose Alice releases a
lock which the semaphore grants to Bob. Does Bob now depend on Alice? Would vector clocks
leak the identity of Alice to Bob? If Alice failsand rolls back, what should Bob do?

Distributed Optimistic Execution Muchresearch (includingtherecent work of Leon [LFS93]
and Cowan [CLB94]) has explored the uses of highly optimistic execution in distributed environ-
ments. For example, allowing long-running application programs to execute based on speculation
(and to roll back if the speculation proves false) may provide increased performance (if the specu-
lationis correct sufficiently often). The abstraction tools of distributed time framework may handle
this distribution and the multiple time levels that may arise in such implementations; the security
tools might provide transparent tol erance against Byzantine attacks on the machinery of optimism.

7.2.3. A Framework for the Future

The abstraction from linear timeto partial orders and beyond has a precedent in the shift in physics
fromthe classical world-view to the relativistic world-view. The comfortable, familiar perspective
failswhen simultaneity of information vanishes. The right perspective clarifies otherwise baffling
behavior and also provides a way to continue to apply the comfortable perspective, once formal
tools exist for changing frames of reference.

155

Linear time does not adequately describe the behavior of distributed systems. When failure
recovery isalowed, asinglelevel of partial order time al so does not suffice—time must have depth
aswell aswidth. Levelsof temporal abstraction will only become more necessary as computational
environments become more complex, such as by admitting mobile agents, anonymous paths of
influence, and the potential for cross-channel communication. Multiple levels of abstraction will
multiply the problems of specifying and providing security and privacy in protocols running in
such environments.

However, understanding how virtual partial ordersarisefromahierarchy of timelevelsallowsus
to model the underlying behavior of the system, and to rel ativize the protocols and tools devel oped
for the comfortable world of partial order time. Understanding how partial order protocolsrelate
to the underlying time models also allows us to relativize the security challenges of timekeeping.

This thesis provides the fundamental contributions of a framework to understand the general
temporal relations and the concomitant security challenges that arise and will continue to arise in
distributed computation.

156

Glossary

Terms

acyclic

adjusted rollback vector
adjusted timestamp vector

antichain

atom
bit-secure
commitable

complete recoverability

computation graph
concurrent
consistent cut

consistent pair

consistent set

cut

when a node does not precede itself in agraph;
when atime model produces graphs with no
cycles; when the global model in aparallel or
nonlinear pair is acyclic

the vector obtained from the rollback vector for
anode by moving the other entriesto their
maximal preceding acyclic nodes

the vector obtained from the timestamp vector
for a node by moving the other entries to their
minimal following acyclic nodes

in an order, a set of mutually incomparable
elements

anode or edgein agraph
cryptographic functions that leak no information
astate or event that will never be rolled back

the assumption that any state in the live history
at anon-faulty processisrecoverable

adirected graph describing computation
when atime moddl |eaves two nodes unordered
acut that isalso atimedice

aparallel or nonlinear pair that is view-complete
and transitively-bounded

aset of user nodes whose live histories together
comprise a past-closed prefix of agraph from
FAILURE _ FREE _ PARTIAL _ ORDER

a set of nodes, exactly one at each process

15, 18

33

33

26

11
120
73
70

11
11
31
20

87

31

digital signature

externally equivalent

factoring model

flow-supported

flow-virtual

global state

ground-level computation

graphs
independent
join

lattice

live history

maximal node

meet

minimal generating set

minimal node

modified replay

afunction that only a privileged agent can
perform, but anyone can check

when two atoms at a process afford the same
external view

inanonlinear or parallel pair, the model induced
from the local model to the global model

when transitive precedence in amodel implies
information flow in any underlying computation;
when each model in a parallel or nonlinear pair
is flow-supported

when information flow does not necessarily
imply time model precedence; when the
transitive closure of each model inaparalel or
nonlinear pair is flow-virtua

in aground-level graph, aminimal set of atoms
that represents an instant of timein an
underlying computation

the “least abstract” computation graphs,
constructed directly from traces

when a parallel or nonlinear pair has the property
that each non-extremal node in the global model
represents a unigue node in the local model

in lattices, the least upper bound of two
elements; for vectors, the entry-wise maximum

anonempty ordered set closed under meet and
join

auser node along with its past from the
USER_PARTIAL _ ORDER

anode with no successors

in lattices, the greatest lower bound of two
elements; for vectors, the entry-wise minimum

inatimedice X, aminimal subset of nodes
whose adjusted timestamp vectorsjoin to yield
timedice X

anode with no predecessors

when the computation after rollback differsfrom
the original computation

158

120

20

18

17,18

17,18

27

12

33

33

78

11
33

55

11
66

node-monotonic

nonlinear pair

optimistic rollback

order

orphan
parallax

parallel pair

partial timedlice
past-closed

past-closure

pessimistic rollback

piecewise deterministic

prefix

pseudo-vector

public key cryptography

refinement

when a time model on ground-level graphs has
the property that once it produces a node, the
node never vanishes

apair of related models providing (respectively)
system-wide and process-only descriptions of
computation; the process descriptions need not
be linear

approaches that bet failure will not happen, and
allow orphansto develop at non-faulty processes

arelation that is transitive and antisymmetric

anode that depends on or equals arolled-back
node

when two snapshots of the same computation
could not both have been real simultaneous states
apair of related models providing (respectively)
system-wide and process-only descriptions of
computation; the process descriptions must be
linear

asubset (not necessarily proper) of atimedice

when nodes in a subgraph have the same history
asthey do in the original graph

a subgraph minimally extended to make it
past-closed

approaches that bet failure will happen, and

prevent orphans from developing at non-faulty
processes

when a process's computation between message
receive events is completely determined by the
state before the first receive and contents of the
message

asubgraph that is connected and that contains
the minimal nodes

an array of node sets, one for each process

an encryption function that anyone can perform,
but only a privileged agent can invert

time model M refinesto time model M» when
Mi(a) = M(e’) dwaysimplies
Ma(ar) = Ma(a)

159

68

11
64

58

26
12

12

68

72

12

80
120

15

representation map

rollback vector

stable

state interval

strongly edge-monotonic

strongly monotonic

time model

timedice

timestamp pseudo-vector

timestamp vector

timetree

trace

transitively bounded

Typel
Type 2

afunction (induced by the application of atime
model to a graph) that takes atoms in the image
graph back to sets of atomsin the original graph

the minimal nodes at each process that follow or
egual a given node

when a property remains true once it becomes
true; when a state or event has been successfully
logged to stable storage

asequence of states and events representing a
period of deterministic execution at a process

when a time model on ground-level graphs has
the property that once it produces two nodes, the
relation between those nodes is fixed

when atime model is node-monotonic and
strongly edge-monotonic; when the transitive
closure of each model in a parallel or nonlinear
pair is strongly monotonic

arepresentative transformation of computation
graphs

amaximal set of mutually concurrent (hence
acyclic) nodes

in anonlinear pair, the maximal nodesin the
local model that precede or equal agiven nodein
the global model

the maximum node at each process that precedes
or equals agiven node

the tree-structure on a process's events that
emergesinstead of timelinesin the
USER_PARTIAL _ ORDER

an exhaustive rea-time description of a
computation

when the transitive closure of amodel produces
unigue maximal and minimal nodes; when the
global model in aparallel or nonlinear pair is
transitively bounded

aparallel or nonlinear pair that is consistent

aparallel or nonlinear pair that is consistent and
independent

160

13

32

44,73

105

17

17,18

13

26

80

78

10

15, 18

20
20

Type 3

Type 4

valid

vector

view-complete

weakly edge-monotonic

weakly monotonic

Clock Primitives

ACYCLIC
COMPARE
CONCURRENT

CUR_GRAPH
CUR_NODE
LIST

LIST_CONCURRENT

aparallel or nonlinear pair that is consistent,
independent, and strongly monotonic

aparallel or nonlinear pair that is consistent,
independent, strongly-monotonic, and
flow-supported

when the live history of auser nodeisa
past-closed prefix of a graph from the
FAILURE _FREE _ PARTIAL _ORDER

an array of nodes, one from each process

when agraph from the global model in apair has
the property that for any edge at process, there
exists anode that is externally equivalent in the
transitive global graph; when aparallel or
nonlinear pair always produces view-complete
graphs

when a time model on ground-level graphs has
the property that once it produces an edge, the
edge never vanishes

when atime model is node-monotonic and
weakly edge-monotonic; when the transitive
closure of each model in a parallel or nonlinear
pair isweakly monotonic

clock primitivetesting if anodeis acyclic
clock primitive comparing two vectors

clock primitivetesting if two nodes are
concurrent

universal variable for current ground-level graph
clock primitive returning current node

clock meta-primitive, listing nodes from a
specified graph with a specified property

clock primitivelisting all nodes at a process
concurrent with a given node

161

20

20

87

31
20

17

17,18

35

36

37

MAX

NEXT
NODE

PRECEDES

PREVIOUS
SEND_EVENT
SYSTEM

USER

USER_MESSAGE
USER_MESSAGE_TEST

USER_VECTOR

Time Models

BLOCKED

CLOCK _PARTIAL _ORDER
CLOCK _TIMELINES

FAILURE_FREE_PARTIAL _ORDER

clock primitive returning the entry-wise
maximum of two vectors

clock primitive returning the node following a
given node at a process

clock meta-primitive returning the unique node
from a specified graph with a specified property
clock primitivetesting if one node precedes
another

clock primitive returning the node preceding a
given node at a process

clock primitive returning the send event of a
given message

clock primitive mapping a user node to the set of
system nodes it represents

clock primitive mapping a system nodeto its
user node

clock primitive extracting the user message from
a system message carrying one

clock primitivetesting if a system message
carries a user message

clock primitive mapping a vector of system
nodes to a vector of user nodes

time model expressing when the presence of one
nodein aminimal generating set for atimedice
blocks the presence of another

partial order time model expressing the
experience of clock agents

timelines time model expressing the experience
of clock agents

partial order time model defined only for traces
of executions of failure-free implemented
processes

162

36

37

36

37

82

81

81

82

82

82

55

131

131

83

IMPLEMENT

NET _ABSTRACT

PARTIAL _ORDER_TIME

STRONG_PARTIAL - ORDER

STRONG

SYSTEM _PARTIAL _ORDER

SYSTEM _TIMELINES

TIMELINES

TIMETREES

TRANS

USER_PARTIAL _ ORDER

Symbols

A—B
A—B
A i B
M; > M,
(M, a)

<l

time model expressing how to construct the
USER_PARTIAL _ORDER from the
SYSTEM _PARTIAL _ ORDER

time model abstracting away network activity
time model organizing process activity into a
partial order

a“partia order” time model with bidirectiona
message edges

time model making cross-process edges
bidirectional

partial order time model for the recovery
computation

timelines time model for the recovery
computation

time model organizing process activity into
timelines

“timelines’ time model expressing logical local
precedence for user computation—hence
process structureis atree, not aline

time model performing transitive closure

partial order time model that examines only the
state of the implemented process, and expresses
logical precedence

node A precedes node BB

node A precedes or equals node B
nodes A and B areincomparable
model M; refinesto model M

the representation map induced by applying
model M to graph «

the transitive closure of model M

163

77

21

25

53

53

76

76

22

11
11
11
15
13

18

XuyYy

a sequence of unfolding ground-level graphs
representing a computation in progress

the set of ground-level graph sequences that, at
some point, generate 3 through M

aparallel or nonlinear pair; M isthe global
system model and M’ is thelocal process model

the factoring model for pair (M, M)
the process p entry of X

the rollback vector of A

the adjusted rollback vector of A

the timestamp vector of A

the adjusted timestamp vector of A
the timestamp pseudo-vector of A
timedice X precedestimedice Y
themeet of X and Y

thejoinof X and Y’

164

17

17

18, 21

18
31
32
33
32
33
80
32
33
33

References

[ACGS9]] M. Ahuja, T. Carlson, A. Gahlot and D. Shands. Timestamping Events for
Inferring “ Affects’ Relation and Potential Causality. Computer and Information
Science Technical Report OSU-CISRC-5/91-TR13, Ohio State. May 1991.

[AhKs89] M. Ahujaand A. D. Kshemkalyani. Characterization of Global Shapshots and a
Survey of Global Shapshot Algorithms. Computer and Information Science
Technical Report OSU-CISRC-10/89-TR46, Ohio State. October 1989.

[ACGS88] W. Alexi, B. Chor, O. Goldreich and C. P. Schnorr. “RSA and Rabin Functions:
Certain Parts are as Hard as the Whole.” S AM Journal on Computing,
17:194-209. 1988

[AmJao3] P. Amman and S. Jgjodia. “Distributed Timestamp Generation in Planar Lattice
Networks.” ACM Transactions on Computer Systems. Preprint.

[Aw85] B. Awerbuch. “Complexity of Network Synchronization.” Journal of the ACM.
32: 804-823. October 1985.
[Ba93] F. A. Barber. “A Metric Time-Point and Duration-Based Tempora Model.”

SIGART Bulletin, 4 (3): 30-49. 1993.

[BHS93] D. Bayer, S. Haber, and W. S. Stornetta. “Improving the Efficiency and Reliability
of Digital Time-Stamping.” Sequences |1: Methods in Communication, Security,
and Computer Science. Springer Verlag, 1993.

[BhLi88] B. Bhargavaand S. Lian. “Independent Checkpointing and Concurrent Rollback
Recovery for Distributed Systems—An Optimistic Approach.” Seventh
Symposium on Reliable Distributed Systems. 3-12. |EEE, 1988.

[Bi94] K. P. Birman. “A Response to Cheriton and Skeen’s Criticism of Causal and
Totally Ordered Communication.” ACM Operating Systems Review. 28: 11-21.
January 1994.

[BiJo87] K. P.Birmanand T. A. Joseph. “Reliable Communication in the Presence of
Failures.” ACM Transactions on Computer Systems, 5: 47-76. February 1987.

[BIG084] M. Blum and S. Goldwasser. “An Efficient Probabilistic Public-Key Encryption
Scheme which Hides All Partial Information.” Advances in Cryptology:
Proceedings of Crytpo 84. Springer Verlag LNCS 196.

[Bo93]

[BBGS3|

[BBGHSY]

[BCS34]

[CCMPS89]

[Ch8g]

[ChLa85]

[CB89]

[CBO1]

[Chsko3]

[Cig4]

[Cig9]

[Co94]

[CoMag]]

M. Boddy. “ Temporal Reasoning for Planning and Scheduling.” S GART Bulletin,
4 (3): 17-25. 1993.

A. Borg, J. Baumbach and S. Glazer. “A Message System Supporting Fault
Tolerance.” Ninth ACM Symposium on Operating Systems Principles. 90-99.
1983.

A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle. “Fault Tolerance
Under UNIX.” ACM Transactions on Computer Systems. 7 (1): 1-24. February
1989.

D. Briatico, A. Ciuffoletti, and L. Simoncini. “A Distributed Domino Effect Free
Recovery Algorithm.” IEEE Symposium on Reliability in Distributed Software
and Database Systems. October 1984.

R. Cadey, R. Crew, J. Meseguer, and V. Pratt. “Tempora Structures.” Category
Theory and Computer Science. Springer-Verlag LNCS 389, 1989

K. M. Chandy. The Essence of Distributed Shapshots. Computer Science
Technical Report CS TR 89-5, Caltech. March 1989.

K. M. Chandy and L. Lamport. “Distributed Snapshots: Determining Global
States of Distributed Systems.” ACM Transactions on Computer Systems. 3:
63-75. February 1985.

B. Charron-Bost. “Combinatorics and Geometry of Consistent Cuts. Application
to Concurrency Theory.” InJ. C. Bermond and M. Raynal (ed.), Proceedings of
the Third International Workshop on Distributed Algorithms. Springer-Verlag
LNCS 392, 19809.

B. Charron-Bost. “Concerning the Size of Logical Clocksin Distributed Systems.”
Information Processing Letters. 39: 11-16. July 1991.

D. R. Cheriton and D. Skeen. “Understanding the Limitations of Causally and
Totally Ordered Communication.” Fourteenth ACM Symposium on Operating
Systems Principles. December 1993.

A. Ciuffoletti. “Error Recovery in Systems of Communicating Processes.” |EEE
International Conference on Software Engineering. March 1984.

A. Ciuffoelleti. “La Coordinazione Delle Attivita Di Ripristino Nel Sistemi
Distribuiti.” A.l.C.A. Annual Conference Proceedings. October 1989.

R. Cooper. “Experience with Causally and Totally Ordered Communication
Support—a cautionary tale.” ACM Operating Systems Review. 28: 28-32. January
1994.

R. Cooper and K. Marzullo. *Consistent Detection of Global Predicates.” ACM
SIGPLAN Notices. 26 (12): 167-174. December 1991.

166

[CLBY4]

[CrTa90]

[DaPro0]

[DiHe76]

[EJZ92]

[EIZw92]

[Figg]

[Fi89]

[Fio1]

[GaPr87]

[Gawad4]

[Gold89]

[GoMig2]

[Gr79]

[GrRe93]

C. Cowan, H. Lutfiyya, and M. Bauer. “Increasing Concurrency through
Optimism: A Reason for HOPE.” ACM Computer Science Conference, March
1994.

C. Critchlow and K. Taylor. “The Inhibition Spectrum and the Achievement of
Causal Consistency.” Ninth ACM Symposium on Principles of Distributed
Computing, 1990.

B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge:
Cambridge University Press, 1990.

W. Diffieand M. E. Hellman. “New Directionsin Cryptography.” 1EEE
Transactions on Information Theory. 1T-22: 644-654. November 1976.

E. N. Elnozahy, D. B. Johnson and W. Zwaenepoel. “ The Performance of
Consistent Checkpointing.” Eleventh IEEE Symposium on Reliable Distributed
Systems. 1992.

E. N. Elnozahy and W. Zwaenepoel. “Manetho: Transparent Rollback-Recovery
with Low Overhead, Limited Rollback and Fast Output Commit.” 1EEE
Transactions on Computers. 41 (5): 526-531. May 1992

C. J. Fidge. “ Timestamps in Message-Passing Systems That Preserve the Partial
Ordering.” Eleventh Australian Computer Science Conference. 56-67. February
1988.

C. J. Fidge. “Partial Ordersfor Parallel Debugging.” ACM S GPLAN Notices. 24:
183-194. January 19809.

C. J. Fidge. “Logical Timein Distributed Computing Systems.” |EEE Compulter.
24 (8):28-33. August 1991.

H. Gaifman and V. Pratt. “Partial Order Models of Concurrency and the
Computation of Functions.” Logic in Computer Science, 72-85, 1987.

V. K. Garg and B. Waldecker. “Detection of Weak Unstable Predicatesin
Distributed Systems.” |EEE Transactions on Parallel and Distributed Systems, to
appear. Reprinted in [YaMa94].

O. Goldreich. Foundations of Cryptology. Computer Science Department,
Technion, 1989.

S. Goldwasser and S. Micali. “Probabilistic Encryption and How to Play Mental
Poker Keeping Secret All Partial Information.” Fourteenth ACM Symposium on
Theory of Computing, 1982.

I. G. Greif. Semantics of Communicating Parallel Processes. Ph.D. thesis,
Massachusetts | nstitute of Technology. 1975.

J. Gray and A. Reuter. Transaction Processing. Morgan-Kaufman, 1993.

167

[HaSto1]

[HLMWS7]

[HeTy89]

[He91]

[Jes5]

[JoZwW87]

[J089]

[JoZw9O]

[J093]

[KeKo89]

[KoTo87]

[KsSioO]

[LaYa87]

[La78]

S. Haber and W. S. Stornetta. “How to Time-Stamp a Digital Document.” Journal
of Cryptology. 3 (2): 99-111. 1991.

M. P. Herlihy, N. Lynch, M. Merritt and W. Weihl. On the Correctness of Orphan
Elimination Algorithms. Computer Science Technical Report MIT LCS TM-329,
Massachusetts | nstitute of Technology. 1987.

M. P. Herlihy and J. D. Tygar. “Implementing Distributed Capabilities Without a
Trusted Kernel.” In Avizienis and Laprie (ed.), Dependable Computing for
Critical Applications. Springer-Verlag.

C. A. Heydon. Processing Visual Specifications of File System Security. Ph.D.
thesis, Computer Science, Carnegie Mellon University. 1991.

D. R. Jefferson. “Virtual Time.” ACM Transactions on Programming Languages
and Systems. 7: 404-425. July 1985.

D. B. Johnson and W. Zwaenepoel. “ Sender-Based Message Logging.”
Seventeenth Annual International Symposium on Fault-Tolerant Computing.
14-19. 1987.

D. B. Johnson. Distributed System Fault Tolerance Using Message Logging and
Checkpointing. Ph.D. thesis, Rice University, 1989.

D. B. Johnson and W. Zwaenepoel. “Recovery in Distributed Systems Using
Optimistic Message Logging and Checkpointing.” Journal of Algorithms. 11:
462-491. September 1990.

D. B. Johnson. “Efficient Transparent Optimistic Rollback Recovery for
Distributed Application Programs.” Twelfth IEEE Symposium on Reliable
Distributed Systems. October 1993.

P. Kearns and B. Koodal attupuram. “Immediate Ordered Service in Distributed
Systems.” Ninth |EEE Symposium on Reliable Distributed Systems. 1989.

R. Koo and S. Toueg. “Checkpointing and Rollback-Recovery for Distributed
Systems.” |EEE Transactions on Software Engineering. 13 (1): 23-31. January
1987.

A. D. Kshemkalyani and M. Singhal. Efficient Detection and Resolution of
Generalized Distributed Deadlocks. Computer and Information Science Technical
Report OSU-CISRC-10/90- TR30, Ohio State University. October 1990.

T.H. La and T. H. Yang. “On Distributed Snapshots.” Information Processing
Letters. 25: 153-158. May 1987.

L. Lamport. “Time, Clocks, and the Ordering of Eventsin a Distributed System.”
Communications of the ACM. 21: 558-565. July 1978.

168

[La73]

[LFS93]

[LeBhss]

[LRVST7]

[LNP9O]

[Li81]
[MaM083]

[Ma90d]

[Mag0b]

[MaNe91]

[MaSa91]

[Ma87]

[Mas9]

[Ma93]

B. W. Lampson. “A Note on the Confinement Problem.” Communications of the
ACM. 10: 613-615. October 1973.

J. Leon, A. Fisher and P. Steenkiste. Fail-Safe PVM: A Portable Package for
Distributed Programming with Transparent Recovery. Computer Science
Technical Report CMU-CS-TR-93-124, Carnegie Mellon University.

P. Leu and B. Bhargava. “Concurrent Robust Checkpointing and Recovery in
Distributed Systems.” Fourth International Conference on Data Engineering.
154-163. 1988.

H. F. Li, T. Radhakrishnan and K. Venkatesh. “Globa State Detectionin
Non-FIFO Networks.” Seventh International Conference on Distributed
Computing Systems. 1987.

K. Li, J. F. Naughton and J. S. Plank. “Real-Time, Concurrent Checkpointing for
Parallel Programs.” Second ACM SIGPLAN Symposium on Principles and
Practices of Parallel Programming. 79-88. 1990.

R. Lipton. How to Cheat at Mental Poker. Personal communication. 1981.

M. J. Manthey and B. E. Moret. “ The Computational Metaphor and Quantum
Physics.” Communications of the ACM. 26: 137-144. February 1983.

M. J. Manthey. Synchronization: the Mechanism of Conservation Laws.
Mathematics and Computer Science Technical Report R90-16, the University of
Aalborg. April 1990.

M. J. Manthey. Hierarchy and Convergence: a Computational View. Mathematics
and Computer Science Technical Report R90-25, the University of Aalborg. May
1990.

K. Marzullo and G. Neiger. “Detection of Global State Predicates.” In Toueg,
Spirakis and Kirousis (ed.), Fifth International Workshop on Distributed
Algorithms (WDAG-91). Springer-Verlag LNCS 579. 1991.

K. Marzulloand L. Sabel. “Using Consistent Subcuts for Detecting Stable
Properties.” In Toueg, Spirakisand Kirousis (ed.), Fifth International Workshop
on Distributed Algorithms (WDAG-91). Springer-Verlag LNCS 579. 1991.

F. Mattern. “Algorithmsfor Distributed Termination Detection.” Distributed
Computing. 2: 161-175. 1987.

F. Mattern. “Virtual Time and Global States of Distributed Systems.” In Cosnard,
et d, ed., Parallel and Distributed Algorithms. Amsterdam: North-Holland, 1989.
215-226.

F. Mattern. “Efficient Algorithmsfor Distributed Snapshots and Global Virtual
Time Approximation.” Journal of Parallel and Distributed Computing. 18:
423-434. August 1993.

169

[MeRar78]

[Mo85]

[NCSC90]

[NeTo90]

[PBSS9]

[PeK €93]

[PeS0]

[PoPr83]

[Prgg]

[Proz]

[Rar9]

[Ra75]

[ReG093)]

[Re94]

[RSAT7S]

P. M. Merlin and B. Randell. “State Restoration in Distributed Systems.”
International Symposium on Fault-Tolerant Computing. June 1978.

C. Morgan. “Global and Logical Timein Distributed Algorithms.” Information
Processing Letters. 20: 189-194. May 1985.

National Computer Security Center. Trusted Network Interpretation Environments
Guideline NCSC-TG-011. United States Government Printing Office, 1990.

G. Neiger and S. Toueg. Smulating Synchronized Clocks and Common
Knowledge in Distributed Systems. Computer Science Technical Report
TR-90-1086, Cornell University. January 1990.

L. L. Peterson, N. C. Bucholz and R. D. Schlichting. “Preserving and Using
Context Information in Interprocess Communication.” ACM Transactions on
Computer Systems. 7. 217-246. August 1989.

S. L. Peterson and P. Kearns. “Rollback Based on Vector Time.” Twelfth |EEE
Symposium on Reliable Distributed Systems. October 1993.

C. Petri. “Concurrency.” In Brauer, ed., Net Theory and Applications. Springer
Verlag, 1980. Pp. 251-260.

M. L. Powell and D. L. Presotto. “Publishing: A Reliable Broadcast
Communication Mechanism.” Ninth ACM Symposium on Operating Systems
Principles. 100-109. 1983.

V. Pratt. “Modeling Concurrency with Partial Orders.” International Journal of
Parallel Programming. 15 (1): 33-71. 1986.

V. Pratt, personal communication, October 1992.

M. Rabin. Digitalized Sgnatures and Public-Key Functions as I ntractable as
Factorization. Laboratory for Computer Science Technical Report
MIT/LCS/TR-212, Massachusetts Ingtitute of Technology. January 1979.

B. Randell. “System Structure for Fault Tolerance.” |EEE Transactions on
Software Engineering. SE-1: 220-232, 1975.

M. Reiter and L. Gong. “Preventing Denial and Forgery of Causal Relationshipsin
Distributed Systems.” 1993 | EEE Symposium on Research in Security and Privacy.

R. van Renesse. “Why Bother with CATOCS?" ACM Operating Systems Review.
28: 22-27. January 1994.

R. L. Rivest, A. Shamir and L. Aldeman. “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems.” Communications of the ACM. 21 (2):
120-126. February 1978.

170

[Ru80]

[SESS9]

[SECO4]

[Sh79]

[SiKs90]

[SiWes9]

[SmI1]

[SmO3]

[SITY4]

[SMTy91]

[SMTy94]

[SpKes6]

[Sp89]

D. L. Russell. “ State Restoration in Systems of Communicating Processes.” |EEE
Transactions on Software Engineering. 6 (2): 183-194. March 1980.

A. Schiper, J. Eggli and A. Sandoz. “A New Algorithm to Implement Causal
Ordering.” InJ. C. Bermond and M. Raynal (ed.), Proceedings of the 3rd

I nternational Workshop on Distributed Algorithms. Springer-Verlag LNCS 392,
19809.

Securities and Exchange Commission, Division of Market Regulation. Market
2000: An Examination of Current Equity Market Developments. United States
Government Printing Office, 1994.

A. Shamir. “How to Share a Secret.” Commuications of the ACM. 22 (11):
612-613. November 1979.

M. Singhal and A. D. Kshemkalyani. An Efficient Implementation of \Veector
Clocks. Computer and Information Science Technical Report
OSU-CISRC-11/90-TR34, Ohio State University. November 1990.

A. P. Sistlaand J. L. Welch. “Efficient Distributed Recovery Using Message
Logging.” Eighth ACM Symposium on Principles of Distributed Computing, 1989.

S. W. Smith. Secure Clocks for Partial Order Time. Thesis proposal, School of
Computer Science, Carnegie Mellon University. October 30, 1991. (See
[SmTy91].)

S. W. Smith. A Theory of Distributed Time. Computer Science Technical Report
CMU-CS-93-231, Carnegie Mellon University. December 1993.

S. W. Smith, D. B. Johnson, and J. D. Tygar. Asynchronous Optimistic Rollback
Recovery using Secure Distributed Time. Computer Science Technical Report
CMU-CS-94-130, March 1994.

S. W. Smithand J. D. Tygar. Sgned Vector Timestamps. A Secure Protocol for
Partial Order Time. Computer Science Technical Report CMU-CS-93-116,
Carnegie Mellon University. October 1991; version of February 1993. (The
majority of [SmTy91] is drawn verbatim from [Sm91].)

S. W. Smithand J. D. Tygar. “Security and Privacy for Partial Order Time.”
Seventh International Conference on Parallel and Distributed Computing Systems.
October 1994. (A preliminary version is available as Computer Science Technical
Report CMU-CS-94-135, Carnegie Méellon University, April 1994.)

M. Spezialetti and P. Kearns. “Efficient Distributed Snapshots.” Sxth
International Conference on Distributed Computing Systems. 1986.

M. Spezialetti. A Generalized Approach to Monitoring Distributed Computations
for Event Occurrences. Ph.D. thesis, University of Pittsburgh, 1989.

171

[StYess5]

[Tal091]

[Ta89]

[ToGag3]

[Ts87]
[TyYe93]

[Vag3]

[Va94]
[Ves9]

[Wein87]

[Wein91]

[WWAP91]

[Wing9]

[YaAlo3]

[YaMag3]

R. Stromand S. Yemini. “Optimistic Recovery in Distributed Systems.” ACM
Transactions on Computer Systems. 3: 204-226. August 1985.

Y. C. Tay and W. T. Loke. A Theory for Deadlocks. Computer Science Technical
Report CS-TR-344-91, Princeton University. August 1991.

K. Taylor. “The Role of Inhibition in Asynchronous Consistent-Cut Protocols.” In
J. C. Bermond and M. Raynal (ed.), Proceedings of the Third International
Workshop on Distributed Algorithms. Springer-Verlag LNCS 392, 1989.

A. 1. Tomlinson and V. K. Garg. “Detecting Relational Global Predicatesin
Distributed Systems.” ACM SIGPLAN Notices. 28 (12): 21-31. December 1993.

E. P. K. Tsang. “Time Structuresfor Al.” Proceedings | JCAI-87. 456-461.

J.D. Tygar and B. S. Yee. “Dyad: A System for Using Physically Secure
Coprocessors.” Proceedings of the Joint Harvard-MIT Workshop on Technological
Strategies for the Protection of Intellectual Property in the Network Multimedia
Environment. April 1993. (A preliminary version is available as Computer
Science Technical Report CMU-CS-91-140R, Carnegie Mellon University.)

C. Valot. “Characterizing the Accuracy of Distributed Timestamps.” ACM
SIGPLAN Notices. 28 (12): 43-52. December 1993.

L. Van Valkenburgh, personal communication, July 12, 1994.

S. Venkatesan. “Message-Optimal Incremental Snapshots.” Ninth International
Conference on Distributed Computing Systems. 1989.

S. H. Weingart. “Physical Security for the ntABY SS System.” Proceedings of the
|EEE Computer Society Conference on Security and Privacy. 1987.

S. H. Weingart. Physical Security Devices for Computer Subsystems. A Survey of
Attacks and Defenses. IBM, internal use only. March 1991.

S. R. White, S. H. Weingart, W. C. Arnold, and E. R. Palmer. Introduction to the
Citadel Architecture: Security in Physically Exposed Environments. Technical
Report, Distributed Security Systems Group, IBM Thomas J. Watson Reserch
Center. March 1991.

G. Winskel. An Introduction to Event Sructures. Computer Science Technical
Report 278, Aarhus University. April 1989.

E. Yampratoom and J. F. Allen. *Performance of Temporal Reasoning Systems.”
S GART Bulletin, 4 (3): 26-29.

Z.Yangand T. A. Mardand. “Annotated Bibliography on Global States and Times
in Distributed Systems.” ACM Operating Systems Review. 27 (3): 55-74. July
1993.

172

[YaMa94]

[Yeeo4]

[Zw8S]

Z.Yangand T. A. Mardland. Global States and Time in Distributed Systems. |EEE
Computer Science Press, 1994.

B. S. Yee. Using Secure Coprocessors. Ph.D. thesis. Computer Science Technical
Report CMU-CS-94-149, Carnegie Mellon University. May 1994.

W. Zwaenepoel. A Theoretical Framework for Optimistic Recovery in Distributed
Systems. Computer Science Technical Report TR88-64, Rice University. February
1988.

173

