
USENIX Association 	 26th Large Installation System Administration Conference (LISA ’12)  83

XUTools: Unix Commands for Processing Next-Generation Structured Text

Gabriel A. Weaver
Dartmouth College

Sean W. Smith
Dartmouth College

Keywords: Text processing, Configuration Management,
Change Management, Automation, Tools, Unix

Abstract
Traditional Unix tools operate on sequences of chara-
cters, bytes, fields, lines, and files. However, modern
practitioners often want to manipulate files in terms of
a variety of language-specific constructs—C functions,
Cisco IOS interface blocks, and XML elements, to na-
me a few. These language-specific structures quite often
lie beyond the regular languages upon which Unix text-
processing tools can practically compute. In this paper,
we propose eXtended Unix text-processing tools (xuto-
ols) and present implementations that enable practitio-
ners to extract (xugrep), count (xuwc), and compare
(xudiff) texts in terms of language-specific structures.
We motivate, design, and evaluate our tools around real-
world use cases from network and system administrators,
security consultants, and software engineers from a va-
riety of domains including the power grid, healthcare,
and education.

1 Introduction

During our fieldwork, we observed the need to generalize
Unix text processing tools so that practitioners can pro-
cess the right type of string for the job at hand. We thus
need to extend traditional Unix tools because many mo-
dern, structured-text formats break assumptions of tradi-
tional Unix tools.

Traditional Unix tools operate on sequences of cha-
racters, bytes, fields, lines, and files. When lines and
files correspond to language-specific constructs, traditio-
nal Unix tools work well. For example, lines of Apache
log files correspond to HTTP requests.

However, there are many other language-specific con-
structs besides the line. Many file formats found in mar-
kup, configuration, and programming languages enco-

de meaningful structures via nested blocks. Natural-
language documents may be divided up into chapters,
paragraphs, and sentences. Sentences themselves may be
further parsed. Configuration files and programming lan-
guages, similarly, may be divided up into blocks of code.
For example, Cisco IOS interface blocks or C function
blocks are information units that network administrators
and developers reference daily.

The prevalence of multi-line, nested-block-structured
formats has left a capability gap for traditional tools. To-
day, if practitioners want to extract interfaces from a Ci-
sco IOS router configuration file, they must craft an invo-
cation for sed(1)

sed -n ’/ˆinterface
ATM0/,/ˆ!/\{/ˆ\!d;p;\}’

Using our xutools, practitioners need only type

xugrep ’//ios:interface’

We designed and built eXtended Unix text-processing
tools (xutools) so that practitioners could process files in
terms of the language constructs appropriate to the pro-
blem at hand—even if these languages lie beyond regular
expressions.

Besides “eXtending Unix,” we also chose the xu prefix
from the Greek word ξυλον, denoting “tree” or “staff.”
We find the first sense especially appropriate given that
xutools operate on parse trees and process texts (traditio-
nally printed on trees). The second sense is appropriate
because xutools are designed to support IT staff in their
real-world needs. Finally, ξυλον comes from the word
ξυω , meaning to scrape, and our xutools, particularly
xugrep, are well-suited to scraping content from docu-
ment trees.

In order to support a variety of languages, our xutools
rely upon a modular grammar library, as well as xupath, a
general purpose querying language for structured text, w-
hich we based upon XPath. Although xutools may even-
tually encompass a broad range of Unix tools, this paper

1

84  26th Large Installation System Administration Conference (LISA ’12)	 USENIX Association

presents xutools that extract (xugrep), count (xuwc),
and compare (xudiff) structured text formats.

Our xutools generalize the class of languages that w-
e can practically process on the command-line. Recall
(e.g., [33]) that a language is a set of strings and a re-
gular language is a set of strings that can be recognized
by some finite automaton or equivalently, by a regular
expression. In other words, we can write a regular ex-
pression to recognize whether a string is in a given lan-
guage if and only if that language is regular. In contrast,
a context-free language is a set of strings that can be
recognized by a finite automaton with a stack. In practi-
ce, this means that we can write a context-free grammar
to recognize a string in a context-free language. All re-
gular languages are context-free (they just don’t use the
stack)—but not vice-versa. For example, the language of
all strings with properly-nested parentheses is context-
free but not regular. One cannot solve the parenthesis-
matching problem with regular expressions.

In traditional Unix text-processing tools, most of the
types of strings (bytes, fields, characters, files, lines) a-
re either directly matched or indirectly split via a regular
expression. In contrast, many of the languages in which
practitioners are interested (XML elements, JSON sub-
trees, Cisco IOS interfaces, C function blocks), are not
regular—but are context-free. This is no coincidence si-
nce the syntax of many programming languages was tra-
ditionally specified via context-free grammars. Context-
free languages allow practitioners to recognize strings
that possess a recursive or hierarchical structure. Further-
more, as languages evolve and acquire new constructs, a
grammatical description of a language is easily extended
(even for regular languages) [1].

Furthermore, Unix text-processing tools tend to ope-
rate on all the lines in a given input stream. For exam-
ple grep(1) reports lines that contain a substring that
matches a regular expression, diff(1) reports all dif-
ferences between two files, and wc(1) counts all of the
bytes, characters, words or lines in a file [32, 38, 39]. O-
ften, however, practitioners are interested in reporting a
matching line in terms of the block in which that match
occurs; they are interested in reporting line-level differe-
nces between two router configurations in terms of inter-
face blocks; or they are interested in counting the lines
within each function block in C source. We extend Unix
tools to report results in terms of contexts other than the
file.

This Paper: We motivate (Section 2), design and im-
plement (Section 3), evaluate (Section 4), and show the
novelty of (Section 5) our tools relative to real-world e-
xamples. Table 1 illustrates our path through each of the-
se sections. Finally, in Section 6 we discuss future work
and in Section 7 we conclude.

xugrep xuwc xudiff

C

Router
Configs

XML

2.1,3.1
 4.1,5.1

2.2,3.2
4.2,5.2

2.3,3.3
4.3,5.3

Table 1: For each section of our paper, we will discuss
each of our tools relative to one or more real-world use
cases that use the following structured-file formats.

2 Motivating use cases

During our fieldwork we observed the need to generalize
Unix text-processing tools. Specifically, we worked with
various network and system administrators and auditors
of major electrical power utilities in the United States
and discussed their challenges. We have also met with
network administrators at Dartmouth College. In addi-
tion, we received much feedback from a poster on our
tools [42] and recorded and analyzed these interactions at
http://www.xutools.com/. As a result, we have
discussed our work with practitioners from the RedHat
Security Response team. Finally, we have met with the
CEO of a network security company based in Germany
regarding uses for our tools.

The intent of xutools is to help practitioners process
the right type of string for the job at hand. Users (such
as network and system administrators, security consul-
tants, and software engineers) from a variety of domains
(including the power grid, healthcare, and education) ha-
ve emphasized the need for tools that let them operate on
strings in languages that are relevant to them.

Many interesting strings are not in regular langua-
ges. Current Unix text-processing tools do not allow
practitioners to operate on blocks of text nested arbitra-
rily deep or to report results with respect to that nesting.
However, many practitioners must process these blocks
in order to solve problems they encounter.

Figures 1 and 2 illustrate the mismatch between strings
of interest in modern file formats and the strings upon
which current Unix text-processing tools operate.

2.1 Use cases for rethinking grep(1)
NVD-XML: Very recently, practitioners at the Re-
dHat Security Response Team wanted a way to grep
the XML feed for the National Vulnerability Database
(NVD).1 Specifically, they wanted to know how many

2

USENIX Association 	 26th Large Installation System Administration Conference (LISA ’12)  85

cat

csplit

cut

diff grep

head,
tailuniq

wc

xugrep
xudiff

xuwc

xmllintCIMDiff

sgrep

Coccinelle

XyDiff

Regular Context-Free

xutoolstraditional unix tools

Figure 2: Our xutools improve on prior work by systematically extending Unix tools to operate on the broader class
of languages that are encountered in modern file formats.

C

Cisco IOS

paragraphs XML

character, byte,
field, line,

file Troff

JSON

Regular

Perl

Windows Registry
(serialized to text)

Java

YAML
and beyond
Context-Free

Figure 1: The languages upon we which we need to o-
perate are now more general than can be described with
regular expressions.

NVD entries contained the string cpe:/a:redhat,
the vulnerability score of these entries, and how many
XML elements in the feed contain cpe:/a:redhat.

Traditional grep cannot handle this use case because
it requires us to solve the parenthesis-matching problem.
This limitation motivates the capability to be able to re-
port matches with respect to a given context.

In contrast, we need a grep(1) that can handle
strings in context-free languages because when we ex-
tract XML elements, we want to ensure that every ope-
ning tag is matched by a closing tag. Multiple XML
elements may share the same closing tag, and XML e-
lements may be nested arbitrarily deep. Therefore, we
need parenthesis matching to recognize XML elements.
We need a grep(1) that can report matches with respe-
ct to the contexts defined within the NVD-XML vocabu-
lary. (Although xmllint(1)’s shell-mode grep cer-
tainly provides one solution, it is not general enough to
deal with languages other than XML [43]. We will di-
scuss xmllint(1) in more detail in Section 3.)

C: Practitioners may want to be able to recognize (and
thereby extract) all C function blocks in a file. As stated
by one person on Slashdot following our LISA 2011 po-
ster presentation, “it would be nice to be able to grep for
a function name as a function name and not get back any
usage of that text as a variable or embedded in a string,
or a comment” [30, 42]2. Traditional grep(1) cannot
do this.

Alternatively, there may also be other constructs not
explicitly defined via a standard grammar for a file for-
mat or language (such as ANSI C). For example, if we

3

86  26th Large Installation System Administration Conference (LISA ’12)	 USENIX Association

could specify a context-free grammar for a C patch, then
we could extract sections of code that are similar to that
patch. Practitioners at the RedHat Security Response Te-
am, for example, could use this to find all locations of
unpatched code within embedded libraries scattered th-
roughout source distributions.

Traditional grep(1) cannot handle these use ca-
ses. These use cases require us to solve the parenthesis-
matching problem and also motivate a tool that can report
matches with respect to a given context.

A regular expression that directly matches a C block
cannot be created because the language of C blocks is not
regular. Specifically, brackets close C functions, but they
also close other kinds of blocks (such as if-statements)
and so without matching, the closing bracket is ambi-
guous.

Secondly, these examples illustrate the benefits of a
tool that can report matches with respect to the contexts
defined within the C grammar. Practitioners need a sui-
table tool to report lines that contain a call to malloc,
or even functions that contain the match.

2.2 Use cases for rethinking wc(1)
Router Configuration Files Network administrators
want tools to understand their network configuration be-
cause many errors are network configuration errors [23,
35]. The network configuration literature attests that a-
dministrators may want to see how those network con-
figurations change across time [26, 34], but no tools are
available for admins to quickly and easily perform longi-
tudinal studies on their own network data.

The usual metrics employed during longitudinal stu-
dies of network configuration data, such as lines of con-
figuration, are general purpose but do not take other,
language-specific measures into account. One exception
here is Plonka et al. who look at stanzas. A stanza is a
“set of adjacent related lines, or a paragraphs of confi-
gurations with a common purpose,” such as an interface
definition [26].

Network administrators configure and maintain
language-specific constructs, such as interfaces, and
as such, they would like to be able to measure their
configuration files relative to these language-specific
constructs. Administrators might like to measure the
number of interfaces per router, or even the number of
lines or bytes per interface. For example, one network
administrator at Dartmouth Computing Services wanted
to know how many interfaces within the set of campus
routers use a particular active VLAN.

Traditional wc(1) cannot handle this use case. Tra-
ditional wc(1) counts lines in a file and so can calcu-
late lines of configuration. Language-specific measu-
res of configuration files, however, need a tool that can

parse and count relative to language-specific constructs.
wc(1) only counts languages tied to physical units of
storage such as bytes, characters, words, and lines.

We need a wc(1) that can solve the parenthesis-
matching problem. Practitioners want to count how
many lines there are per interface block within a router
configuration file. Since in general the set of block-based
constructs in Cisco IOS is a context-free language, we
must make the Unix wc(1) utility aware of context-free
languages. (In fact, we could accomplish this by using
our xugrep above to extract the interfaces in document
order, escape the newlines in each block, and pipe the
sequence of interfaces into wc -l.)

2.3 Use cases for rethinking diff(1)
Router Configuration Files Current tools such as Re-
ally Awesome New Cisco config Differ (RANCID) [28]
let network administrators view changes to router confi-
guration files in terms of lines. However, administrators,
may want to view changes in the context of other structu-
res defined by Cisco IOS. Alternatively, network admini-
strators may want to compare configurations when they
migrate services to different routers.

For example, if a network administrator moves a netw-
ork interface for a router configuration file, then an edit
script for the router configurations in terms of lines may
report the change as 8 inserts and 8 deletes. However, an
edit script that compares configurations in terms of inter-
faces (“interface X moved”) might be more readable and
less computationally intensive.

Traditional diff(1) cannot handle this use case
because it requires us both to solve the parenthesis-
matching problem, and to process and report changes re-
lative to the context encoded by the parse tree.

Although the full Cisco IOS grammar is context-
sensitive, meaningful subsets of the grammar, such as
interface blocks and other nested blocks, are context-
free [6]. Before we can compare interface blocks, we
need to be able to easily extract them.

In this use case, we are interested in how the seque-
nce of interface blocks changed between two versions of
a router configuration file. If we wanted only to under-
stand how the sequence of lines or sequence of interfaces
changed, then we could use our xugrep to extract the
interfaces or lines in document order, escape the newli-
nes in each block, and pipe the sequence of interfaces or
lines into diff(1) (where each line corresponds to an
interface or line in an interface).

However, we want to understand how the lines in a
configuration change with respect to the contexts defined
by the Cisco IOS language. In this use case, we want
to report changed lines in the context of their containing
interface blocks. Alternatively, we could also choose to

4

USENIX Association 	 26th Large Installation System Administration Conference (LISA ’12)  87

report changes to interface blocks themselves.

Document-Centric XML: A wide variety of docu-
ments ranging from webpages, to office documents, to
digitized texts are encoded according to some XML
schema. Practitioners may want to compare versions of
these documents in terms of elements of that schema. For
example, a security analyst may want to compare ver-
sions of security policies in terms of sections, or subse-
ctions. Although tools exist to compare XML documents
(see above), we offer a general-purpose solution for a wi-
der variety of structured texts.

3 Design and implementation of our tools

We now present the design and implementation of each
of our xutools: xugrep, xuwc, and xudiff. Our tools
are intended to provide extended versions of grep(1),
wc(1), and diff(1) respectively [32, 38, 39]. For
each tool, we will give examples of the command syntax,
describe the algorithm upon which the tool is based, and
discuss our current implementation.

Before we discuss the tools, however, we will first
present the design and implementation of two common
components shared among all of our tools: a library
of language grammars, and xupath, an XPath-like quer-
ying language for structured text in general (not just
XML) [45].

3.1 Grammar library

The goal of our eXtended Unix text-processing tools (xu-
tools) is to allow practitioners to operate on strings in
languages that are relevant to them. Therefore, we want
each of our grammars to be small and lightweight.

Design Although system administrators might not cur-
rently be able to write context-free grammars as quickly
as they would write regular expressions, our strategy is to
provide a library of grammars that satisfy a broad range
of use cases. Just as C developers need to know the name,
purpose, and calling sequence of a function, but not its
implementation, in order to use that function in their o-
wn code, so do our users need to know the name of a pro-
duction in our grammar library, not how the production
is written, in order to process the corresponding constru-
ct with xutools. Since our grammar library’s production
names are aligned with the constructs practitioners use in
practice, we expect our interface to the grammar library
will be relatively easy to learn. For example, the produ-
ction name for an interface in the Cisco IOS grammar is
IOS:INTERFACE while the production name for a section

in a document encoded using the Text Encoding Initiati-
ve’s XML guidelines (TEI-XML) [5] is TEI:SECTION.

Implementation We implement our grammars using
the PyParsing library [21]. We have currently implemen-
ted small grammars for subsets of two XML vocabularies
(NVD-XML and TEI-XML), and for Cisco IOS. We ha-
ve implemented an xupath grammar based upon Zazue-
ta’s Micro XPath grammar [47]. In addition, we are also
using McGuire’s subset-C parser [20]. Finally, we have a
BUILTIN grammar for commonly-used, general-purpose
constructs such as lines.

3.2 xupath
Our goal for xupath is to implement a powerful and
general-purpose querying syntax for structured texts, i-
ncluding but not limited to XML.

Our intent is for practitioners to use this syntax to ex-
tract a set of high-level-language constructs that they w-
ant to process. Elements in an xupath query result set ha-
ve the following fields: text, production-name, and label.
The value of an element’s text field is the string extra-
cted from the text. The value of an element’s production-
name field is the sequence of productions applied to ex-
tract that string. Finally, the value of an element’s label
field depends upon the grammar. In our TEI-XML secu-
rity policies, the value of a label is that node’s passage
header, for example Introduction. In our Cisco IOS se-
curity policies, the label corresponds to the network pri-
mitive’s name such as interface GigabitEthernet0/2.

Design Our eXtended Unix text-processing tools ge-
neralize traditional Unix tools to (1) match context-free
strings in the language of a context-free grammar, and (2)
describe the context in which processing and reporting
should occur. We observed that the XPath Query lan-
guage [45] performs this function for XML documents.
Therefore, we use an XPath-like syntax to express our
queries on texts. This design decision offers us the addi-
tional benefit of not having to re-invent the wheel when
thinking about how to select nodes from a set of parse
trees.

Consider, for example, our first use case from the Re-
dHat Security Response team. The team member w-
anted to know (1) how many NVD entries contain the
cpe:/a:redhat string, (2) the vulnerability score
of these entries, and (3) how many elements in the NVD-
XML feed contain the cpe:/a:redhat string.

If all of our queries were on XML document tre-
es, then we could answer these by using XPath within
xmllint. For example, we could answer the third que-
stion by issuing the grep a:redhat command wi-
thin the xmllint shell.

5

88  26th Large Installation System Administration Conference (LISA ’12)	 USENIX Association

Practitioners, however, want to process Cisco IOS, C,
JSON, or other languages (see Figure 1) and none of the-
se languages are XML. Our xupath provides XPath-like
functionality to context-free languages.

Consider these examples. Just as the XPath //DE-
FAULT:ENTRY selects all entry elements in the DEFAULT
namespace, so does our xupath //NVD:ENTRY select all
strings in the language of the ENTRY production within
the NVD grammar. If we are concerned about name-
spaces, then we can prefix the production name with the
appropriate namespace within the NVD grammar. Just
as the XPath

//DEFAULT:ENTRY /CPSS:SCORE

references all score elements from all entry elements, so
does our xupath

//NVD:ENTRY/NVD:SCORE

select all strings in the language of the score production
from the set of all strings in the language of the entity
production in the NVD grammar. Just as the XPath

//DEFAULT:ENTRY
[.//*[contains(*,’cpe:/a:redhat’)]]

selects all entry elements whose descendants contain the
string cpe:/a:redhat, so does our xupath

//NVD:ENTRY
[re:testsubtree(’cpe:/a:redhat’)]
/NVD:SCORE

select all strings in the language of the entry production
in the NVD grammar that contain a match to the regular
expression cpe:/a:redhat.

Our xupath generalizes such queries beyond XML to
context-free languages in general such as subsets of Ci-
sco IOS and C.

In Cisco IOS, we can use an xupath to reference all
strings in the language of the interface production in our
Cisco IOS grammar: //IOS:INTERFACE. We can al-
so use an xupath to select all interfaces that contain an
access-group:

//IOS:INTERFACE
[re testsubtree(’access-group’)].

The xupath syntax also gives us an easy way to answer
queries such as where is acl 23 used?.

In C, we can use an xupath to reference all strings
in the language of the function production in a C
subset grammar: //CSPEC:FUNCTION. We can al-
so, however, grab all the lines within those fu-
nctions with an xupath that mixes productions from the
C specification grammar and our BUILTIN grammar:
//CSPEC:FUNCTION/BUILTIN:LINE.

Implementation: Since the xupath syntax is based u-
pon XPath, we implemented xupath in Python as a modi-
fied MicroXPath [47] grammar ported to PyParsing [21].
Given an xupath query, our grammar generates a parse
tree of six types of nodes. Xupath parse trees are im-
plemented using Python dictionaries. Consider the follo-
wing examples in NVD and C shown in Figure 3.

//NVD:ENTRY/
 [re:testsubtree('cpe:/a:redhat','gi')]

XUPATH:PATH

XUPATH:STEP

XUPATH:PRODUCTION

XUPATH:RE_MATCH

XUPATH:NEXT_STEPS

XUPATH:PREDICATE= NVD:ENTRY

= cpe:/a:redhat

//CSPEC:FUNCTION/
 BUILTIN:LINE
 [re:testsubtree('malloc','gi')]

XUPATH:STEP
XUPATH:NEXT_STEPS

XUPATH:PREDICATE

= CSPEC:FUNCTION XUPATH:PREDICATE

XUPATH:STEP

= BUILTIN:LINE

XUPATH:RE_MATCH
= malloc

XUPATH:NEXT_STEPS

XUPATH:NEXT_STEPS

XUPATH:PATH

XUPATH:PRODUCTION

XUPATH:PRODUCTION

Figure 3: Two sample parse trees for xupath queries on
NVD-XML and C.

3.3 xugrep

Our xugrep generalizes grep(1); xugrep extracts
all strings in a set of files that match an xupath.

Design: Traditional Unix grep(1) extracts all lines
in a file that contain strings in the language of a regu-
lar expression. Grep(1) outputs each line containing
a substring that matches a regular expression. The posi-
tions of those strings are line numbers.

Our xugrep generalizes the class of languages that
we can practically extract on the Unix command-line
from regular to context-free. A call to xugrep reports
all strings that satisfy the given xupath within the con-
text of the input files. The -1 option tells our tool to

6

USENIX Association 	 26th Large Installation System Administration Conference (LISA ’12)  89

bash-ex1$ xugrep -1 "//nvd:entry[re:testsubtree('cpe:/a:redhat','gi')]/nvd:score"
 nvdcve-2.0-2012.xml

file_path nvd:entry nvd:score region
nvdcve-2.0-2012.xml CVE-2012-2110 1 <cvss:score>7.5</cvss:score>

bash-ex2$ xugrep -1 "//cspec:function" example.c

file_path cspec:function region
example.c putstr int/nputstr(char *s)/n{/n ... putchar(*s++);/n}
example.c fac int/nfac(int n)/n{/n if (n == 0) ... n*fac(n-1);/n}
example.c putn int/nputn(int n)/n{/n if (9 < n)... putchar((n%10) + '0');/n}
example.c facpr int/nfacpr(int n)/n{/n ... putstr("\n");/n}
example.c main int/nmain()/n{/n int i;/n ... return 0;/n}

xugrep example input/output

Table 3: We can use xugrep on XML files as well as C source files to extract language-specific regions of text.

xugrep [-1] <xupath> <input_file>+

xugrep usage

Table 2: Our xugrep will report all strings that satisfy
the given xupath within the context of the input files. Re-
sults may be reported in a one-line-per-match format via
the -1 option.

escape newlines within each of the result strings so that
each match fits neatly on a single line.

The use cases of Section 2 motivate the need to be
able to extract strings ranging from XML elements to C
function blocks. We designed xugrep for practitioners to
satisfy both these requirements as shown in Table 3.

Algorithm: xugrep generates a result set for the xu-
path query as it traverses the query’s parse tree. As we
traverse the xupath parse tree, we create a set of elements
whose corresponding strings (stored in each element’s
text field) satisfy the query. We update the query result
set when we encounter nodes whose production names
are XUPATH:PRODUCTION and XUPATH:RE MATCH in
the xupath parse tree. When we encounter an XUPa-
th parse-tree node whose production-name has the value
XUPATH:PRODUCTION, we update the query result set to
only include strings in the language specified by the pro-
duction specified by the grammar corresponding to that
parse-tree node. Similarly, when we encounter an XU-
PATH:RE MATCH node, we update the query result set to
only include strings that contain matches in the language
of the corresponding regular expression for that node.

Implementation: We implemented xugrep in Py-
thon using a functional programming style. We have one
function for every type of xupath parse tree node. Our
current implementation of xugrep is 191 lines.

3.4 xuwc

Our xuwc generalizes wc(1) to count the number or
size of strings in an xupath result set relative to some
context.

Design: As stated by the Unix man pages, traditio-
nal wc(1) counts the number of words, lines, chara-
cters, or bytes contained in each input file or standard in-
put [32]. Our xuwc generalizes wc(1) to count strings
in context-free languages and to report those counts rela-
tive to language-specific contexts.

First, xuwc lets practitioners match strings in context-
free languages. Section 2 reported how practitioners may
want to count the size and number of language-specific
structures within a Cisco IOS router configuration, C
source file, or some other language. In the first two e-
xamples in Table 5 (bash-ex1 and bash-ex2), xuwc al-
lows practitioners to perform these tasks. xuwc does
not have wc(1)’s -clmw flags because practitioners can
specify their own structures to count (including bytes, li-
nes, characters, and words) via the --count option.

Second, xuwc generalizes wc(1) to report counts re-
lative to language-specific contexts. The Unix wc(1)
utility counts the number of bytes, characters, words, or
lines relative to a file. However, instead of reporting the
number of lines in each router configuration file, we mi-
ght prefer to report the number of lines in each interface.
Alternatively, we may also want to count the number of
entries in an Access Control List (ACL). The last two e-
xamples in Table 5 (bash-ex3 and bash-ex4) illustrate

7

90  26th Large Installation System Administration Conference (LISA ’12)	 USENIX Association

xuwc [--count=<grammar:production> | --re_count=<regexp>]
 [--context=<grammar:production>]
 <xupath> <input_file>+

xuwc usage

Table 4: Given an xupath and a set of files, xuwc will count all matches in the result set in the context of the file.

bash-ex1$ xuwc "//cspec:function" example.c
5 cspec:function example.c
5 cspec:function 1 file_path TOTAL

bash-ex2$ xuwc "//ios:interface/builtin:line" router.example
37 builtin:line router.example
37 builtin:line 1 file_path TOTAL

xuwc example input/output

bash-ex3$ xuwc --context=ios:interface "//ios:interface/builtin:line" router.example
8 builtin:line router.example.GigabitEthernet4/1
3 builtin:line router.example.Null0
18 builtin:line router.example.GigabitEthernet4/2
8 builtin:line router.example.Loopback0
37 builtin:line 4 ios:interface TOTAL

bash-ex4$ xuwc --count=builtin:byte --context=builtin:line "//ios:interface/builtin:line"
 router.example
 ...
24 builtin:byte router.example.GigabitEthernet4/2.10
31 builtin:byte router.example.GigabitEthernet4/2.11
13 builtin:byte router.example.GigabitEthernet4/2.12
761 builtin:byte 37 builtin:line TOTAL

Table 5: Four examples of our xuwc tool applied to C source code and Cisco IOS configuration files. Note our ability
to drill down into the sizes of interfaces and then lines in Examples 3 and 4 (bash-ex3 and bash-ex4) respectively.

8

USENIX Association 	 26th Large Installation System Administration Conference (LISA ’12)  91

the former scenario as well as the ability to combine the-
se two generalizations of counting and context.

Algorithm: We implement xuwc by processing an
xugrep report for the provided xupath. By default, if
the --count parameter is unspecified, xuwc counts the
number of strings that are in the language of the last pro-
duction name in the xupath. If --context is unspeci-
fied, then xuwc reports counts relative to the entire file.

Our xuwc proceeds as follows. First, we call xugrep
on the xupath to obtain a query result set. One of two
cases follows next.

In the first case, we count the number of strings in the
languages of the following productions–BUILTIN:BYTE,
BUILTIN:CHARACTER, BUILTIN:WORD–or a regular ex-
pression, then we iterate through each element in the
query result set. For each element, we scan the string
stored in the element’s text field and count the number of
matches in the language of the production. Note that the
context here must be that of the last production name in
the xupath since these are the only strings stored in the
result set elements.

Otherwise, we are counting strings in the language re-
cognized by some other grammar production. This pro-
duction name must be in our xupath or else an exception
is thrown. For each element in the query result set, we
scan the string stored in the element’s text field and count
the number of matches in the language of the production
relative to the context in which it occurs.

Implementation: We implemented xuwc in Python.
The method that implements our algorithm is 96 lines.
The total number of lines for xuwc is 166 lines.

3.5 xudiff

xudiff generalizes diff(1) to compare two files (or
the contents of two files) in terms of higher-level langua-
ge constructs specified by productions in a context-free
grammar.

Design: Traditional Unix diff(1) computes an edit
script between the sequences of lines in a file. diff(1)
outputs an edit script that describes how to transform the
sequence of lines in the first file into the sequence of li-
nes in the second file via a sequence of edit operations
(insert, delete, update) [38]. All of these edit operations
are performed upon lines in the context of the entire file.

While traditional diff(1) lets practitioners compa-
re files in terms of the line, our xudiff allows practi-
tioners to be able to compare files in terms of higher-
level language constructs specified by productions in a
context-free grammar.

xudiff [--count=<grammar:production>]
 <xupath> <input_file1> <input_file2>

xudiff usage

Table 6: Our xudiff compares two files in terms of the
parse trees generated by applying an xupath to each file.
Practitioners may also specify units in which to calculate
edit costs.

Our xudiff lets practitioners compare files in terms
of high-level language constructs. In Section 2, we sa-
w that practitioners need to be able to compare both se-
ctions and subsections in TEI-XML documents as well
as interface blocks in Cisco IOS router configurations.
We designed xudiff so that practitioners could easily
make such comparisons as shown in Table 8. In these
examples, we show the output from comparing two ver-
sions of a router configuration file in Table 7.

Our xudiff also allows practitioners to specify the
units that they want to use to compute the cost of a chan-
ge. Example 1 (bash-ex1) issues the same query as E-
xample 2 (bash-ex2), but the first example counts the
cost of changes in terms of lines (for a distance of 4) w-
hereas the second example computes the cost of changes
in terms of words (for a distance of 9). The I, D, and
U characters stand for insert, delete, and update respecti-
vely while the first number in the square brackets corre-
sponds to the running edit cost, and the second number
to cost of a particular edit. Alternatively, if we computed
the cost of changes in terms of characters, then we would
see that only 3 characters were changed in the second li-
ne of the Loopback0 interface.

Algorithm and Implementation We have implemen-
ted the Zhang and Shasha tree edit distance algori-
thm [48] that is the basis for our xudiff. As a result,
we can currently compute edit scripts for parse trees in
TEI-XML, Cisco IOS, and C. The above examples are
based upon the edit scripts we currently compute. Our
Python implementation of the algorithm is 254 lines.

4 Evaluation

In this section we evaluate each of our tools qualitatively
and quantitatively. The qualitative evaluation consists of
anecdotal feedback regarding our tools from real-world
practitioners. The quantitative evaluation includes the
worst-case time complexity of our tools, lines of code,
and test coverage.3

In addition to the above evaluation, Section 5 com-
pares our xutools against existing tools that handle the
formats we discuss in Section 2.

9

92  26th Large Installation System Administration Conference (LISA ’12)	 USENIX Association

interface Loopback0
 description really cool description
 ip address 333.444.1.185 255.255.255.255
 no ip redirects
 no ip unreachables
 ip pim sparse-dense-mode
 crypto map azalea
!
interface GigabitEthernet4/2
 description Core Network
 ip address 444.555.2.543 255.255.255.240
 ip access-group outbound_filter in
 ip access-group inbound_filter out
 no ip redirects
 no ip unreachables
 no ip proxy-arp
!

router.v0.config
interface Loopback0
 description really cool description
 ip address 333.444.1.581 255.255.255.255
 no ip redirects
 no ip unreachables
 ip pim sparse-dense-mode
 crypto map daffodil
!
interface GigabitEthernet4/2
 description Core Network
 ip address 444.555.2.543 255.255.255.240
 ip access-group outbound_filter in
 no ip redirects
 no ip unreachables
 no ip proxy-arp
 ip flow ingress
!

router.v1.config

Table 7: The two Cisco IOS router interfaces upon which examples 2 through 4 are based. Changes are highlighted in
bold.

xudiff example input/output

bash-ex2$ xudiff --count=builtin:word "//ios:config" router.v0.config router.v1.config

Distance: 9.0 builtin:word
I [9.0, 3.0] _.GigabitEthernet4/2.ip flow ingress (line)
D [6.0, 4.0] _.GigabitEthernet4/2.ip access-group inbound_filter out (line)
U [2.0, 1.0] _.Loopback0.crypto map azalea (line) -> _.Loopback0.crypto map daffodil (line)
U [1.0, 1.0] _.Loopback0.ip address 333.444.1.185 255.255.255.255 no ip redirects (line) -> _.Loopback0.ip
address 333.444.1.581 255.255.255.255 no ip redirects (line)

bash-ex1$ xudiff "//ios:config" router.v0.config router.v1.config

Distance: 4.0
I [4.0, 1.0] _.GigabitEthernet4/2.ip flow ingress (line)
D [3.0, 1.0] _.GigabitEthernet4/2.ip access-group inbound_filter out (line)
U [2.0, 1.0] _.Loopback0.crypto map azalea (line) -> _.Loopback0.crypto map daffodil (line)
U [1.0, 1.0] _.Loopback0.ip address 333.444.1.185 255.255.255.255 no ip redirects (line) -> _.Loopback0.ip
address 333.444.1.581 255.255.255.255 no ip redirects (line)

Table 8: Output of our xudiff utility when comparing the two versions of the Cisco IOS file in Table 7. Notice the
ability to express the same set of changes in terms of lines (bash-ex1) or in terms of words (bash-ex2).

10

USENIX Association 	 26th Large Installation System Administration Conference (LISA ’12)  93

4.1 Grammar Library

The goal of our grammar library was to provide a com-
mon interface by which all of our xutools could parse
text in terms of language-specific constructs. We reco-
gnize that system administrators want to avoid writing
grammars, but desire the power and convenience of pro-
cessing blocks of markup, configuration, and program-
ming languages. Therefore, we wanted to create a mo-
dular, lightweight approach to parsing language-specific
constructs.

Qualitative: Some of our grammars such as Cisco IOS
and TEI-XML were handwritten, while others, such as
C, were adapted from extant work. We realize that the
utility of our tools depends heavily upon the kinds of
languages for which a xutools-friendly grammar exists.
Therefore, our ongoing work on this problem considers
three strategies based upon feedback from practitioners
in order to grow the library of grammars.

First we are writing a library of grammars for
commonly-used languages. In last year’s LISA poster
session, practitioners suggested that we cover a few u-
seful languages such as C, Java, Perl, XML, JSON, and
YAML. Furthermore a repository of grammars for a va-
riety of languages may also improve system security in
the long run according to LangSec, Language-Theoretic
Security, researchers [4].

Second, we could write a parser for languages used to
specify grammars. This strategy would allow us to reuse
work done to write grammars for traditional parsers such
as Yacc and ANTLR, cutting-edge configuration tools li-
ke Augeas, and grammars for XML vocabularies such as
XSD and RELAX-NG [19, 24, 29, 44, 46].

Finally, practitioners might be able to parse a text w-
ritten in one language using a grammar for a very similar
language. For example, if you try to open a Perl file in
emacs’ bash mode, then it looks decent. This approxima-
te matching strategy could be a mechanism for xutools to
handle languages that they haven’t seen before.4

Quantitative: Our goal is to let practitioners write or
use small, lightweight grammars to extract and process
language-specific structure. The size of our grammars
(shown in Table 9) illustrates that we can process texts in
a variety of languages, in meaningful ways with gram-
mars that are relatively small in terms of total number of
productions, number of production names, and the num-
ber of lines needed to encode the grammar.

We currently use the PyParsing [21] library to imple-
ment our grammars and parse files according to these
grammars. PyParsing implements a recursive-descent
parser. In the worst-case, recursive descent parsing may

Grammar # productions # production
names # lines

NVD-XML 6 3 8
TEI-XML 19 8 26

Cisco IOS 8 7 23
C 26 1 55

XUPath 11 0 28
Builtin 1 1 2

Table 9: The sizes of the grammars used by our xuto-
ols in terms of total number of productions, production
names, and number of lines to encode the grammar.

require backtracking and so the time complexity may be-
come exponential in the length of the input string (althou-
gh this can be mitigated to some extent by memoization).
Although we have not encountered any practical issues
in using our tools on natural-language security policies
and configuration files, we can improve our performance
by using a different kind of parser. As stated by Aho,
Sethi, and Ullman, “linear algorithms suffice to parse es-
sentially all languages that arise in practice” [1].

4.2 xupath

We designed and implemented xupath so that practitio-
ners could query a broader class of structured texts than
XML. We only provide a qualitative evaluation of xupa-
th.

Qualitative: xupath provides a consistent interface be-
tween language constructs and how those constructs a-
re encoded within text. Encoding formats will continue
to change. The SGML of the 80s is the XML of today.
Although XML allows one to repurpose information, it
may be an unreadable and/or bloated format for system
administrators to directly edit. Furthermore, it is unne-
cessary (and potentially expensive in terms of resources)
to convert C, Java, or some other format into XML.

Our tools use the xupath syntax to specify references
to high-level language constructs so that the encoding of
these constructs is transparent to the practitioner.

Since the encodings of meaningful constructs will
change over time, we want to build tools to operate in
terms of references to those constructs. Consider the hi-
storical transmission of text in which books and lines of
Homer’s Odyssey migrated from manuscripts, to books,
to digital formats. The encoding of the text changed, but
the constructs of book and line survived. In other words,
the way in which people referenced the information re-
mained stable although the encoding changed.5

11

94  26th Large Installation System Administration Conference (LISA ’12)	 USENIX Association

Furthermore, formats such as CFEngine and Apache
httpd configurations hint that there are structured text for-
mats that are “in-between” traditional line-based formats
and XML. In addition, there may be multiple ways to
parse a text. Since our xupath syntax allows one to query
a text using a sequence of production names from dif-
ferent grammars, practitioners can reference and parse
these “in-between” formats in a variety of ways.

Finally, because xupath’s syntax is based on XPath,
we argue that the learning curve for xupath is lower than
other querying languages might have been.

4.3 xugrep

xugrep extracts all strings in a set of files that match a
xupath.

Qualitative: In Section 2 we motivated xugrep with
two (of several) real-world use cases. We now briefly
discuss how xugrep satisfied each of those use cases.

In Table 3 of Section 3 we presented actual output of
how xugrep satisfies the two use cases of Section 2.

Our first xugrep use case was inspired by practitio-
ners at the RedHat Security Response Team. They wan-
ted a way to parse and query XML feeds of the National
Vulnerability Database. During our discussion of xupath,
we showed that xmllint(1) could satisfy this use ca-
se but that our xugrep tool operates on a more general
class of languages.

Our second xugrep use case allows practitioners to
extract blocks of C code and is based upon discussions
we had with practitioners at the LISA 2011 poster ses-
sion as well as the subsequent discussions on Slash-
dot [30, 42].

Quantitative: We implemented xugrep as a postor-
der traversal of the xupath parse tree and so this takes
linear time in the number of nodes in the xupath query.
For the examples we have considered in this paper, an
xupath query resolves to a handful of nodes. Nonethe-
less, when we visit a node whose production name is of
type XUPATH:PRODUCTION or XUPATH:RE MATCH, we
must iterate through each element in our query result set
and scan for matches. As previously noted in our evalua-
tion of our grammar library, we use the PyParsing library
which is a recursive-descent parser [21]. The worst-case
time complexity for recursive-descent parsing is expo-
nential in the size of the input string [1]. Therefore, we
can probably improve our practical performance by re-
implementing our tools with a linear-time parser.

Our implementation of xugrep is 191 lines of Py-
thon. This is small enough to quickly port to other lan-
guages if desired. Furthermore, we have 438 lines of unit

tests for this tool that validate behavior for example que-
ries for subsets of TEI-XML, NVD-XML, Cisco IOS,
and C.

4.4 xuwc

Our xuwc allows practitioners to count the number of
language-specific constructs within a file (or another
language-specific context).

Qualitative: Section 2 motivates xuwcwith a use case
involving Cisco IOS. In Table 5 of Section 3 we presen-
ted actual output of how xuwc satisfies this use case as
well as a use case involving C function blocks.

Our xuwc allows network administrators to perform
longitudinal studies upon their router-configuration files.
For example, we could look at how the total number of
lines per interface evolved over multiple versions of a
router configuration. Alternatively, we could chart the
number of ACLs over time.

Furthermore, xuwc may also be useful for looking at
code complexity over time. Analogous to network con-
figuration complexity, we can start to look at the number
of lines per function or even the number of functions per
module over the entire lifetime of software.

Quantitative: We implemented xuwc as a routine to
process the query result set returned by xugrep. The-
refore, the time-complexity of xuwc includes that of
xugrep. If xugrep returns a result set of m elements,
then in the worst case xuwc loops through all the e-
lements in the result set exactly once. Therefore, the
worse-case time complexity of our xuwc, not including
the time xugrep takes to generate the query result set,
is linear in the size of that result set.

Our Python implementation of xuwc is 96 lines and
so we can easily port this to another language if desired.
We have 408 lines of unit tests for this tool that cover
examples in TEI-XML, NVD-XML, Cisco IOS, and C.

4.5 xudiff

Our xudiff allows practitioners to compare two files in
terms of higher-level constructs specified by productions
in a context-free grammar.

Qualitative: Section 2 motivates xudiff with RA-
NCID as well as document-centric XML. In Table 8 of
Section 3 we demonstrated how our xudiff satisfies
the former of these use cases (although it currently has
the capability to satisfy the latter use case as well).

We should note that one benefit of xudiff is the abi-
lity for practitioners to choose the right level of abstra-
ction with which to summarize a change. Parse trees

12

USENIX Association 	 26th Large Installation System Administration Conference (LISA ’12)  95

encode recursive or hierarchical structure and this hie-
rarchy often reflects levels of abstraction within a lan-
guage. For example, a developer could generate a high-
level edit script by reporting changes in the context of
functions or modules. In contrast, if an implementation
of an API method changed, then perhaps the developer
would want to generate an edit script that describes chan-
ges in terms of lines within interfaces.

Quantitative: Our xudiff design relies upon
the Zhang and Shasha algorithm to compute e-
dit scripts. The time complexity for this algori-
thm is O(|T1| ∗ |T2| ∗ min(depth(T1), leaves(T1)) ∗
min(depth(T2), leaves(T2))) and its space complexity is
O(|T1| ∗ |T2|) [48]. In these formulae, |T1| is the number
of nodes in the first tree and |T2| is the number of nodes
in the second tree.

Our Python implementation of Zhang and Shasha’s al-
gorithm is currently 254 lines. We have 563 lines of unit
tests for this algorithm that tests every iteration of the e-
xample instance given in the Zhang and Shasha paper as
well as an additional example based upon our TEI-XML
dataset.

4.6 Overall xutools evaluation

Overall, we tried to design our xutools in a modular fa-
shion so as to make them extensible and usable while a-
voiding needless complexity. The same grammars can be
used by all of our tools. We have a simple, unified quer-
ying interface (xupath) shared among xugrep, xuwc,
and xudiff. In the past, when we presented designs
for our tools, practitioners warned us not to develop a set
of command line flags that was too complex. We believe
that the syntax for our current tools is straightforward.

Our xutools need not only run on Unix. Since we ha-
ve implemented xutools in Python, we can also run these
tools on a Windows’ command prompt. In fact, we have
documented and tested the full installation of an earlier
version of xugrep on Windows. This is especially use-
ful in the context of electrical power control systems in
which Windows machines are common.

5 Related work

We now discuss our xutools in the context of prior w-
ork done in both industry and academia. We break out
the relevant work discussion so as to make it clear what
is novel about our work from an academic perspective
as well as the gain in utility over the currently-available
tools in industry. Furthermore, this section gives us an
opportunity to compare our xutools against existing to-
ols that handle the formats we discuss in Section 2.

5.1 xugrep

Industry: Currently, there are a variety of tools availa-
ble to extract regions of text based upon their structure.
The closest tool we have found to our design of xugrep
is sgrep [18]. sgrep is suitable for querying structu-
red document formats like mail, RTF, LaTeX, HTML, or
SGML. Currently, an SGML/XML/HTML scanner is a-
vailable but it does not produce a parse tree. Moreover,
sgrep does not allow one to specify the context in wh-
ich to report matches. Nonetheless, the querying model
of sgrep is worth paying attention to.

If one is processing XML, XSLT may be used to tran-
sform and extract information based upon the structu-
re of the XML. We have already mentioned libxml2’s
xmllint(1) [43] and its corresponding shell for tra-
versing a document tree. Furthermore xmlstarlet has be-
en around for a while and can also be used to search in
XML files [17].

Cisco IOS provides several commands for extracting
configuration files. For example, the include (and
exclude) commands enable network administrators to
find all lines in a configuration file that match (and don’t
match) a string. Cisco IOS also supports regular expres-
sions and other mechanisms such as begin to get to the
first interface in the configuration [8]. In contrast, our
xugrep enables practitioners to extract matches in the
context of arbitrary Cisco IOS constructs.

Windows Powershell has a Where-Object Cmdlet
that allows queries on the properties of an object. An
object may be created from a source file by casting it as
a type (such as XML) [27].

Pike’s structural regular expressions allow users to w-
rite a program to refine matches based on successive ap-
plications of regular expressions [25]. Our approach is
different because we extract matches based upon whe-
ther a string is in the language of the supplied grammar.

Academia: Although Grunschlag has built a context-
free grep [16], this classroom tool only extracts matches
with respect to individual lines. Coccinelle [10] is a se-
mantic grep for C. In contrast, we want our tool to have
a general architecture for several languages used by sy-
stem administrators.

As noted in Section 2, our xudiff complements re-
search in network configuration management. For exam-
ple, Sun et al. argue that the block is the right level of
abstraction for making sense of network configurations
across multiple languages. Despite this, however, they
only look at correlated changes in network configura-
tions in Cisco [34]. Similarly, Plonka et al. look at stan-
zas in their work [26].

13

96  26th Large Installation System Administration Conference (LISA ’12)	 USENIX Association

5.2 xuwc

Our xuwc tool allows practitioners to count the number
or size of a language-specific construct within an xupath
result set.

Academia: The general implication of xuwc is that it
will allow practitioners to easily compute statistics about
structures within a corpus of files in language-specific
units of measure. We were unable to find prior work that
attempts to generalize wc(1).

Industry: Certainly there are a number of word count
tools used every day in word processors such as Word
and emacs. These allow practitioners to count words,
lines, and characters within a file.

There are also several programming-language utilities
to compute source-code metrics. The Metrics plugin for
Eclipse allows one to count the number of packages, me-
thods, lines of code, Java interfaces, and lines of code
per method within a set of source files [22]. Vil provi-
des metrics, visualization, and queries for C#, .NET, and
VisualBasic.NET and can count methods per class and
lines of code [41]. Code Analyzer is a GPL’d Java ap-
plication for C, C++, Java, assembly, and HTML and it
can calculate the ratio of comments to code, the lines of
code, whitespace and even user-defined metrics [11].

Finally, Windows Powershell has a nice CmdLet cal-
led Measure-Object that allows people to gather statistics
about an object [27].

5.3 xudiff

The goal of our xudiff is to produce a general-purpose
tool to compare multiple versions of a file in terms of a
specified structure and to report changes relative to some
parent structure. Our tool is unique because we seek to
build a tool that can do a structural comparison of files in
general. In fact, we could use our xudiff to compare
Cisco IOS configuration files as well as C source code,
Troff, JSON, or XML vocabularies.

Industry: The SmartDifferencer, produced by Se-
mantic Designs, compares source code in a variety of
programming languages in terms of edit operations ba-
sed on language-specific constructs [13]. Unfortunately,
the SmartDifferencer is proprietary. Finally, TkDiff [37],
available for Windows, improves upon line-based units
of comparison by highlighting character differences wi-
thin a changed line.

Academia: The various components of our hierarch-
ical diff tool use and improve upon the state-of-the-art
in computer science. Computing changes between two

trees is an instance of the tree diffing problem and has
been studied by theoretical computer science [3]. Resea-
rchers have investigated algorithms such as subtree hash-
ing, and even using XML IDs to align subtrees between
two versions of a structured document and generate an
edit script [7, 9]. Zhang and Shasha [48] provide a very
simple algorithm for solving edit distance between trees
that we currently use in xudiff.

Furthermore Tekli et al. in a comprehensive 2009 re-
view of XML similarity note that a future research dire-
ction in the field woiuld be to explore similarity methods
that compare “not only the skeletons of XML documents
. . . but also their information content” [36]. Other resea-
rchers have looked at techniques to compare CIM-XML
for compliance [31], XML trees for version control [2],
and Puppet network configuration files based upon their
abstract syntax trees [40]. Recently, our poster that pro-
posed xutools [42] was cited in the context of differential
forensic analysis [15].

5.4 xutools in general
Our xutools operate on parse trees so that practitioners
can process texts in terms of high-level language con-
structs.

Industry: Augeas [19] is similar in spirit to our tools
as it focuses on ways to configure Linux via an API that
manipulates abstract syntax trees. This library includes
a canonical tree representation, and path expressions for
querying such trees. The goals of Augeas and xutools a-
re complimentary, Augeas provides an API to manipula-
te configuration files safely and xutools extends existing
text-processing tools so that practitioners can operate and
analyze a variety of texts in terms of their high-level stru-
ctures.

6 Future work

Our xutools set the stage for a variety of future research
directions and tool development beyond the scope of this
paper. First we discuss three ways in which we want to
improve and extend our xutools. We then will describe
two second-order services built on top of our xutools to
demonstrate the potential broader impact of our research.

6.1 Improvements and extensions
First, we want to extend the library of grammars on whi-
ch our current xutools operate. In Section 4 we discussed
three strategies to build up the grammar library for stan-
dard languages. For non-standard languages we want to
consider how one might construct a grammar to recogni-
ze strings similar to a patch. As discussed in Section 2

14

USENIX Association 	 26th Large Installation System Administration Conference (LISA ’12)  97

this would allow us to extract code that is similar to a
known vulnerability.

Second, we want to collect more feedback on our
currently-implemented xutools and then re-implement
them in C with a more efficient parser. Once this is done,
we can benchmark our xutools against traditional Unix
tools.

Third, we want to think about extensions to current xu-
tools, new xutools, and how both interact with traditional
Unix. As mentioned earlier, we could think about head
and tail as extensions of xugrep in which we only re-
port structures within a given range of nodes on our parse
trees. Traditional grep(1) has an --invert-match
option, the analogue of which in xugrep would also be
quite useful. Other practitioners have suggested that a
context-free sed(1) might be useful. We also have be-
en thinking about how Unix pipelines and existing Unix
tools interoperate with our xutools. Our -1 option in
xugrep for example, allows us to map newline-escaped
strings in context-free languages to a set of lines that o-
ther Unix tools can use.

6.2 Second-order xutools services
Even if a system administrator has no interest in working
directly with XML, C, Java, or some other configuration
format on the command line, our xutools can still provide
useful functionality. We now provide two examples to
illustrate our claim.

A Structural Difference Engine for Version-Control
Systems: If we used xudiff as a difference engine
for version-controlled configuration files, then we could
provide useful debugging information to a system admi-
nistrator when used in concert with bug reports. In esse-
nce, xudiff gives us an easy way to create a heatmap
for the most volatile regions of configuration files and
this is a useful tool for debugging. In LISA 2011, W-
orkshop 8: Teaching System Administration stated that
the parts of the system that break down historically are
the first places to look for bugs. Our tools would allo-
w practitioners to pinpoint the regions of configuration
that were changed when the bugs first were reported. W-
e also think such an application of our tools would help
organizations understand legacy networks acquired via
mergers.6

Measuring the Evolution of Terms-of-Service Poli-
cies: An important part of evaluating a web-based se-
rvice is to understand its terms and conditions. These
terms and conditions are described in a service’s terms
of service agreement. Casual readers, however, often do
not read these terms, but rather agree by using the se-
rvice. Despite this, enterprises and individual consumers

Figure 4: The structural evolution of Facebook Privacy
Policies recorded by the EFF TOSBack from May 2006
until December 2010. We notice a spike in November
2009 when Facebook introduced major changes to their
privacy policy that received enough attention to merit a
subsection in Wikipedia’s article: Criticism of Facebo-
ok [12].

need to be able to compare terms of service so that they
can reliably evaluate the risks of using a service. The Ele-
ctronic Frontier Foundation (EFF) recognizes the impor-
tance of understanding changes to security policies and
so built a terms of service tracker, the TOSBack [14].

As a proof-of-concept, we downloaded 24 Facebook
policies recorded by EFF’s TOSBack between May 5,
2006 and December 23, 2010. Using a simple metric ba-
sed upon the Zhang-Shasha tree edit distance [48], we
were able to quantify and thereby visualize the evolution
of the Facebook privacy policy. In Figure 4, we notice
a that our change metric (content churn) reaches a maxi-
mum on November 19, 2009. This policy revision was
significant enough to merit an entire subsection in the
following Wikipedia article: Criticism of Facebook. The
article states that in November 2009, Facebook proposed
a new privacy policy and new controls. These changes
were protested and even caused the Office of the Privacy
Commissioner of Canada to launch an investigation into
Facebook’s privacy policies [12]. This initial pilot study
suggests that our xutools-based change metrics seem to
be able to pinpoint important events in the “big-picture”
history of a terms-of-service policy. Moreover, we can
use our xudiff tool to “drill-down” and find specific
policy changes.

15

98  26th Large Installation System Administration Conference (LISA ’12)	 USENIX Association

7 Conclusions

Structured-text file formats break many of the assum-
ptions upon which Unix text-processing tools were ba-
sed. We have designed and built xutools, specifi-
cally xugrep, xuwc, and xudiff, to process texts in
language-specific constructs. In effect, we have extended
the class of languages upon which Unix text-processing
tools operate. These generalizations are directly motiva-
ted by real-world problems faced by network and system
administrators, software engineers, and other IT profes-
sionals who demand tools to process structured-text file
formats.

8 Acknowledgments

The authors would like to thank Doug McIlroy for his e-
ncyclopaedic knowledge about Unix, his encouragement
and advice. We would like to thank Tom Cormen, for his
encyclopaedic knowledge about algorithms and insisting
on a more rigorous mathematical model for our work. W-
e would like to thank Rakesh Bobba and Edmond Rogers
for their work to apply these tools in the domain of the
power grid. We would like to thank Sergey Bratus for his
insights into workflow patterns in Unix. We would also
like to thank Kurt Seifried, Paul Schmidt, and many other
practitioners for their real-world feedback. Finally, we
would like to thank our LISA shepherd, Mike Ciavarella.
This work was supported in part by the TCIPG project
from the DOE (under grant DE-OE0000097). Views are
the authors’ alone.

9 Availability

Our xutools are available under the GPLv3 at http://
www.xutools.net/. Our repository contains several
use cases as well as relevant literature suggested by those
we met as a result of our poster presentation at LISA
2011.7

References
[1] AHO, A. V., SETHI, R., AND ULLMAN, J. D. Compilers: Pri-

nciples, Techniques, and Tools. Addison-Wesley, Reading, Mas-
sachusetts, 1988.

[2] APEL, S., LIEBIG, J., LENGAUER, C., KASTNER, C., AND CO-
OK, W. R. Semistructured merge in revision control systems. In
Proceedings of the Fourth International Workshop on Variability
Modeling of Software Intensive Systems (VaMoS 2010) (January
2010), University of Duisburg-Essen, pp. 13–20.

[3] BILLE, P. A survey on tree edit distance and related problems.
Theoretical Computer Science 337, unknown (June 2005), un-
known.

[4] BRATUS, S., LOCASTO, M. E., PATTERSON, M. L., SASSA-
MAN, L., AND SHUBINA, A. Exploit programming: From buffer
overflows to weird machines and theory of computation. USENIX
;login: (December 2011), 13–21.

[5] BURNARD, L., AND BAUMAN, S. TEI P5: Guidelines for Ele-
ctronic Text Encoding and Interchange, 5 ed., 2007.

[6] CALDWELL, D., LEE, S., AND MANDELBAUM, Y. Adaptive
parsing of router configuration languages. In Internet Network
Management Workshop, 2008. (INM 2008) (October 2008), IEE-
E, pp. 1–6.

[7] CHAWATHE, S. S., RAJARAMAN, A., GARCIA-MOLINA, H.,
AND WIDOM, J. Change detection in hierarchically structured
information. In Proceedings of the 1996 ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD ’96) (June
1996), ACM, pp. 493–504.

[8] Cisco IOS configuration fundamentals command refe-
rence. Retrieved September 19, 2012 from http:
//www.cisco.com/en/US/docs/ios/12_1/
configfun/command/reference/frd1001.html.

[9] COBÉNA, G., ABITEBOUL, S., AND MARIAN, A. Detecting
changes in XML documents. In Proceedings of the 18th Inter-
national Conference on Data Engineering (February and March
2002), IEEE, pp. 41–52.

[10] Coccinelle: A program matching and transformation tool for sy-
stems code, 2011. Retrieved November 11, 2011 from http:
//coccinelle.lip6.fr/.

[11] Codeanalyzer. Retrieved May 17, 2012 from http://
sourceforge.net/projects/codeanalyze-gpl/.

[12] Criticism of Facebook. Wikipedia: The Free Encyclo-
pedia (2012). Retrieved September 19, 2012 from
http://en.wikipedia.org/wiki/Criticism_
of_Facebook#November.2FDecember_2009.

[13] DESIGNS, S. Semantic designs: Smart differencer tool. Retrie-
ved May 16, 2012 from http://www.semdesigns.com/
Products/SmartDifferencer/.

[14] TOSBack — the Terms-Of-Service Tracker. Retrieved Septem-
ber 19, 2012 from http://www.tosback.org/.

[15] GARFINKEL, S., NELSON, A. J., AND YOUNG, J. A gene-
ral strategy for differential forensic analysis. In Proceedings of
the 12th Conference on Digital Research Forensics (DFRWS ’12)
(August 2012), ACM, pp. 550–559.

[16] GRUNSCHLAG, Z. cfgrep - context free grammar egrep variant,
2011. Retrieved November 11, 2011 from http://www.cs.
columbia.edu/˜zeph/software/cfgrep/.

[17] GRUSHINSKIY, M. XMLStarlet command line XML toolkit,
2002. Retrieved May 15, 2012 from http://xmlstar.
sourceforge.net/.

[18] JAAKKOLA, J., AND KILPELAINEN, P. Using sgrep for quer-
ying structured text files. In Proceedings of SGML Finland 1996
(October 1996), unknown, p. unknown.

16

USENIX Association 	 26th Large Installation System Administration Conference (LISA ’12)  99

[19] LUTTERKORT, D. Augeas–a configuration API. In Proceedings
of the Linux Symposium (July 2008), pp. 47–56.

[20] MCGUIRE, P. Subset C parser (BNF taken from the 1996
international obfuscated C code contest). Retrieved May
16, 2012 from http://pyparsing.wikispaces.com/
file/view/oc.py.

[21] MCGUIRE, P. pyparsing, 2012. Retrieved September 19, 2012
from http://pyparsing.wikispaces.com.

[22] Metrics 1.3.6. Retrieved May 17, 2012 from http://
metrics.sourceforge.net/.

[23] OPPENHEIMER, D., GANAPATHI, A., AND PATTERSON, D. W-
hy do internet services fail, and what can be done about it? In
Proceedings of the 4th USENIX Symposium on Internet Techno-
logies and Systems (USITS ’03) (March 2003), USENIX Asso-
ciation, p. unknown.

[24] PARR, T. ANTLR parser generator. Retrieved May 17, 2012
from http://www.antlr.org/.

[25] PIKE, R. Structural regular expressions.

[26] PLONKA, D., AND TACK, A. J. An analysis of network confi-
guration artifacts. In The 23rd Conference on Large Installation
System Administration (LISA ’09) (November 2009), USENIX
Association, p. unknown.

[27] Windows PowerShell. Retrieved February 3, 2012 from
http://technet.microsoft.com/en-us/library/
bb978526.aspx.

[28] RANCID - Really Awesone New Cisco Config Differ, 2010. Re-
trieved December 1, 2010 from http://www.shrubbery.
net/rancid/.

[29] RELAX NG home page. Retrieved May 17, 2012 from http:
//www.relaxng.org/.

[30] Researchers expanding diff, grep Unix Tools, 2011.
Retrieved May 17, 2012 from http://tech.
slashdot.org/story/11/12/08/185217/
researchers-expanding-diff-grep-unix-tools.

[31] ROUTRAY, R., AND NADGOWDA, S. CIMDIFF: Advanced dif-
ference tracking tool for CIM compliant devices. In Proceedings
of the 23rd Conference on Large Installation System Administra-
tion (LISA ’09) (October and November 2009), USENIX Asso-
ciation, p. unknown.

[32] RUBIN, P., AND MACKENZIE, D. wc(1) Manual Page, October
2004. Retrieved May 16, 2012.

[33] SIPSER, M. Introduction to the Theory of Computation. Thom-
son Course Technology, Boston, Massachusetts, 2006.

[34] SUN, X., SUNG, Y. W., KROTHAPALLI, S., AND RAO, S. A
systematic approach for evolving VLAN designs. In Proceedings
of the 29th IEEE Conference on Computer Communications (IN-
FOCOM 2010) (March 2010), IEEE Computer Society, pp. 1–9.

[35] SUNG, Y.-W. E., RAO, S., SEN, S., AND LEGGETT, S. Ex-
tracting network-wide correlated changes from longitudinal con-
figuration data. In Proceedings of the 10th Passive and Active
Measurement Conference (PAM 2009) (April 2009), unknown,
pp. 111–121.

[36] TEKLI, J., CHBEIR, R., AND YETONGNON, K. An overview
on XML similarity: Background, current trends and future dire-
ctions. Computer Science Review 3, 3 (August 2009), 151–173.

[37] TkDiff. Retrieved February 3, 2012 from http://tkdiff.
sourceforge.net/.

[38] UNKNOWN. diff(1) Manual Page, September 1993. Retrieved
May 17, 2012.

[39] UNKNOWN. grep(1) Manual Page, January 2002. Retrieved May
17, 2012.

[40] VANBRABANT, B., JORIS, P., AND WOUTER, J. Integrated ma-
nagement of network and security devices in it infrastructures. In
The 25th Conference on Large Installation System Administration
(LISA ’11) (December 2011), USENIX Association, p. unknown.

[41] Vil. Retrieved May 17, 2012 from http://www.1bot.com/.

[42] WEAVER, G. A., AND SMITH, S. W. Context-free grep and h-
ierarchical diff (poster). In Proceedings of the 25th Large Instal-
lation System Administration Conference (LISA ’11) (December
2011), USENIX Association, p. unknown.

[43] xmllint. Retrieved May 16, 2012 from http://xmlsoft.
org/xmllint.html.

[44] W3C XML Schema. Retrieved May 17, 2012 from http://
www.w3.org/XML/Schema.

[45] XML Path language (XPath), 1999. Retrieved May 15, 2012 from
http://www.w3.org/TR/xpath/.

[46] The LEX and YACC Page. Retrieved May 17, 2012 from http:
//dinosaur.compilertools.net/.

[47] ZAZUETA, J. Micro XPath grammar translation into ANTLR.
Retrieved May 16, 2012 from http://www.antlr.org/
grammar/1210113624040/MicroXPath.g.

[48] ZHANG, K., AND SHASHA, D. Simple fast algorithms for the e-
diting distance between trees and related problems. SIAM Jounal
of Computing 18, 6 (December 1989), 1245–1262.

Notes
1http://nvd.nist.gov/download.cfm#CVE_FEED
2Thanks to Tanktalus for the Slashdot post.
3Our qualitative evaluation does not include performance bench-

marks against traditional Unix tools, we see this as future work for after
we get practitioner feedback on our tools and re-implement them in C.
Once we have implemented them in C, we can do a fair comparison
between our xutools operating on files in terms of lines and traditional
Unix tools.

4Thanks to David Lang and Nicolai Plum at the LISA 2011 poster
session.

5In fact, the notion of managing and measuring changes to multi-
versioned texts over time is based upon our previous work in the Clas-
sics at Holy Cross, Harvard’s Center for Hellenic Studies, and the Per-
seus Project at Tufts University.

6According to Doug McIlroy, this idea is reminiscent of a visuali-
zation of change activity for switching code at Bell Labs. This visua-
lization was possible because every change was manually registered in
their source code control system. xudiff enables one to summarize
such changes directly from the source.

7We received a lot of interest in our LISA 2011 poster [42],
including worldwide press coverage of our work. See http://www.
cs.dartmouth.edu/˜gweave01/grepDiff/Press.html
for details.

17

