
CS 10:
Problem solving via Object Oriented

Programming

Introduction
Dartmouth CS10 Winter 2025

2

Agenda

1. You, me, and this course

2. Why Object-Oriented Programming (OOP)

3. Java intro

4. Variables

5. Arrays

3

Let’s start with our backgrounds

Your background
How did you satisfy the pre-reqs?

• CS 1
• ENGS 20
• AP/department exam
• Other

Your plans?
CS majors? Minors? Not sure? Other?

My background

If you never take another CS class, I
hope you’ll be a better consumer of
computer scientist’s/data scientist’s
work products

4

This course is about solving problems with
OOP, not simply how to program in Java
• Focus will be on solving problems with Object Oriented

Programming (OOP), and you’ll learn some Java along the way

• OOP is not the only way to solve problems, but it can be useful

• The course has three main components that overlap somewhat:
1. Object Oriented Programming concepts and Java basics

2. Abstract Data Types (ADTs) such as queues, stacks, trees, and
graphs that form building blocks for solving problems (you’ll see
these ADTs again and again in CS)

3. Solving wide range of real problems (graphics manipulation,
characterize social networks, play Kevin Bacon game, compress
files, analyze text…)

• You will learn far more by actually implementing things than you
will by simply reading the material or only attending lectures

60%

35%

5%

ASSESSMENT

Material will be covered in lecture, section
meetings, homework, and exams

Exams
• Midterm1: 20%
• Midterm2: 20%
• Final: 20%

Homework
• Short assignments (SA): 10%
• Problem sets (PS): 25%

Section (Recitation) meetings
Textbook:
Data Structures &
Algorithms in Java ,
6th ed, by Goodrich,
Tamassia, and
Goldwasser

Syllabus: http://www.cs.dartmouth.edu/~tjp/cs10

Lectures
• Stay home if sick
• Show up on time

LLMs
See course web site

http://www.cs.dartmouth.edu/~tjp/cs10

6

We will also be using Canvas and Slack for
announcements and help
Canvas

• Course announcements and
homework submissions

• Section assignments

Slack (access via Canvas)
• Q&A forum
• Ask questions, get answers
• Don’t post code!

Let me know if you don’t have access!

7

Short Assignment 0 (SA-0) is out, complete
survey before 8:00am tomorrow

SA-0
Find assignment on Canvas
1. Take course survey to understand your background

and assign you to a section
2. Set up development environment

• Instructions and screen shots provided on website
• We will use IntelliJ IDEA for this course

3. Create your first Java class
4. Read and acknowledge course policies and honor

code
Complete survey before 8:00am tomorrow (or risk
getting assigned to inconvenient section time!)

8

Agenda

1. You, me, and this course

2. Why Object-Oriented Programming (OOP)

3. Java intro

4. Variables

5. Arrays

9

OOP relies on four main pillars to create
robust, adaptable, and reusable code
Four “pillars” of OOP

Abstraction
• Name

functionality, not
how to
implement

• Leads to Abstract
Data Types
(ADTs)

Encapsulation
• Bind code and data into one thing called an

object
• Code called methods in OOP (not functions)

Inheritance
• Create specialty versions that

“inherit” functionality of parent
• Reduces code

Polymorphism
Same name,
many meanings

OOP Pillars

Abstraction Encapsulation Inheritance Polymorphism

10

OOP is popular, especially in large
organizations

0 10 20 30 40 50 60 70

Python

C#

C++

Java

Percentage of organizations using language

Top languages used in large organizations

Source: https://www.cloudfoundry.org/wp-content/uploads/Developer-Language-Report_FINAL.pdf (Javascript omitted)

• Each of the
most
common
languages is
object
oriented

• Java is
particularly
popular in
large
organizations

11

Why is OOP in general, and Java in
particular, so popular?

Approved answer: because it makes solving many types of
problems easy (or perhaps easier)

Paul Graham’s answer: it keeps mediocre programmers from
doing too much damage

• In the real world, on a single project you may have dozens
(or hundreds) of programmers working with thousands of
objects – no one knows them all

• People come and go during the course of a non-trivial
project – maintaining corporate knowledge is difficult

• We will see that objects can help prevent well-meaning
people from making costly mistakes

12

Agenda

1. You, me, and this course

2. Why Object-Oriented Programming (OOP)

3. Java intro

4. Variables

5. Arrays

Key point:
• Java is a compiled, strongly typed language

13

We will be using Java, these things may
blow your mind
Depending on your background, this may be weird:

• Must compile a program before it runs (so everything
must be syntactically correct ahead of run time)

• Declare variable and give them a type
• White space/brackets
• For-each loops

Onward to OOP glory!

Image: https://www.askideas.com/man-riding-giant-chicken-funny-picture/

14

In keeping with tradition, we’ll start with
“Hello world”

HelloWorld.java
1. Start IntelliJ, create “cs10” Java Project (only need to do this one time)
2. Create “day1” Source folder to logically group your source code (e.g., “PS1” Source folder

holds all the source code for Problem Set 1)
3. Create new “HelloWorld” class in “day1” source folder

• File on disk is “HelloWorld.java”
• Class Name is “HelloWorld”
• IntelliJ “stubs” out “main” method (where program execution starts)

Other items of note:
Javadoc
• Java documentation feature
• Enter description for Class or method
• Starts with “/**”, ends with “*/”
• Can add tags such as “@author” or “@param”
main() is where action starts
Add System.out.println(“Hello World”) to output to the console
Right click on code and choose “Run <class name>.main()” button to run

15

1. Create “cs10” Project to hold source
code (only need to do this one time)

Start IntelliJ, then select “Create new project” or click File->New->Project

1) Enter
project name
cs10

2) Choose
Java and
IntelliJ

3) Choose
Java 16.02

4) Click
Create

16

2. Create Source folder to hold your source
code for day one of class

Click File->New->Directory to create directory for related code (e.g., “day1” or “PS1”)

1) Click File->New->Directory
2) Give directory a name

3) Right click
on new
directory
then select
“Mark
Directory
as” and
“Sources
Root”

Source folders are a useful way to
organize your code (ex. PS1 Source folder
contains all code for Problem Set 1)

17

3. Create new “HelloWorld” class in “day1”
source folder

17

Right click on Source folder and select New->Java Class

1) Right click on Source folder (e.g. “day1”),
then select New->Java Class

2) Give class a name (starting with capital letter)

3) IntelliJ creates file on disk (e.g.,
“HelloWorld.java”) and sets up your new class

18

IntelliJ creates HelloWorld.java
“boilerplate” code

Class is named HelloWorld

File on disk is HelloWorld.java

19

We can flesh out the boilerplate code to
print “Hello World!” to the console

Execution begins at main() method
Type “main” then enter and IntelliJ expands to include the main method declaration

In Java a print statement is System.out.println(“text you want to print goes here”);
Type “sout” then enter to have IntelliJ fill out print statement for you (saves a lot of typing!)

/**
 * Standard 'Hello World' first program
 *
 * @author Everyone who has ever written about programming and Tim Pierson too,
 * Dartmouth CS 10, Winter 2025
 */

public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!");

 }
}

20

We can flesh out the boilerplate code to
print “Hello World!” to the console

Javadoc
• Describes program (or method)
• Begins with “/**” ends with “*/”

Add tags such as
“@author” or “@param”

21

Running the program prints “Hello World!”
to console

Run program by right clicking
on program text and selecting
“Run <class name>.main()”

Output appears in console below

22

Agenda

1. You, me, and this course

2. Why Object-Oriented Programming (OOP)

3. Java intro

4. Variables

5. Arrays

Key points:
1. In Java we declare each variable and give it a data type

2. Data types cannot be changed

23

In Python we declare variables but do not
say what type of data they hold

print(x)

$ python3 python_variables0.py

Traceback (most recent call last):
 File "PythonVariables.py", line 2, in <module>
 print(x)
NameError: name ‘x' is not defined

Python example

Variable x is not defined, Python has no idea
what to print and gives an error message

Code

Output

python_variables0.py

24

In Python we declare variables but do not
say what type of data they hold

x = 5
print(x)

$ python3 python_variables01.py
5

Python example

Give a value to x and Python prints is value

Note: you didn’t tell Python what type of data
x holds, just its value

Python guesses x is an integer based on the
value assigned (called dynamic or duck typing)

Code

Output

python_variables01.py

25

Python’s type function tells us what kind of
data the variable holds

x = 5
print(x)
print(type(x))

$ python3 python_variables02.py
5
<class 'int'>

Python example

Confirm Python thinks variable x is an
integer by printing its data type

Confirmed, Python thinks x is an integer

Code

Output

python_variables02.py

26

In Python a variable’s data type can change

x = 5
print(x)
print(type(x))
x = "Hello World"
print(x)
print(type(x))

Python allows the type of a variable to change

Still guesses variable type based on value assigned

Now Python thinks x is a String

$ python3 python_variables03.py
5
<class 'int'>
Hello World
<class 'str'>

Code

Output

Python example python_variables03.py

27

In Python a variable’s data type can change

x = 5
print(x)
print(type(x))
x = "Hello World"
print(x)
print(type(x))

Python allows the type of a variable to change

Still guesses variable type based on value assigned

Now Python thinks x is a String

$ python3 python_variables03.py
5
<class 'int'>
Hello World
<class 'str'>

Code

Output

Python example

Unlike Python we will tell Java
specifically what kind of data
a variable holds

Once we give a variable a
type, we can’t change it to a
different type later (e.g., an
integer variable can’t become
a String variable in Java)

python_variables03.py

28

In Java, we explicitly say what type of data
a variable holds (and can’t change it later!)

Type Description Size Examples

int Integer values (no decimal
component)

32 bits (4 bytes) -104,…1,2,3…107,…5032

double Double precision floating
point (has decimal
component)

64 bits (8 bytes) -123.45, 1.6

boolean true or false 1 bit true, false

char Characters 16 bits (2 bytes for
Unicode)

‘a’,’b’,…’z’

Common primitive types

Note: String are objects, not primitives
We will discuss objects next class

29

In Java, we explicitly say what type of data
a variable holds (and can’t change it!)

public class JavaVariables0 {
 public static void main(String[] args) {
 int x;
 System.out.println("x = "+x);
 }
}

Code

Output

Java knows x is an integer because
we declare it as an integer

We say Java is “strongly typed”
because we tell Java what type of
data a variable holds

When a variable is declared Java
allocates memory for it

Here Java allocates memory for
one integer (4 bytes)

JavaVariables0.java

30

Java does not initialize local variables

Code

Output

This code looks like it should run,
but fails at compile time

Why?

x is not given an initial value

It was also an error in Python
when we didn’t give x a value

$ javac JavaVariables0.java
JavaVariables0.java:4: error: variable x might not have been initialized
 System.out.println("x = "+x);
 ^
1 error

public class JavaVariables0 {
 public static void main(String[] args) {
 int x;
 System.out.println("x = "+x);
 }
}

JavaVariables0.java

31

Java tells us where to find errors, pay
attention to these hints when debugging!

Code

Output

Note: Java tells us what file
contained the error

And also tells us what line number
Thanks Java!

$ javac JavaVariables0.java
JavaVariables0.java:4: error: variable x might not have been initialized
 System.out.println("x = "+x);
 ^
1 error

public class JavaVariables0 {
 public static void main(String[] args) {
 int x;
 System.out.println("x = "+x);
 }
}

JavaVariables0.java

32

We must initialize local variables ourselves

public class JavaVariables01 {
 public static void main(String[] args) {
 int x = 5;
 System.out.println("x = "+x);
 }
}

Code

Output

Initialize x with an integer value

$ javac JavaVariables01.java
$ java JavaVariables01
x = 5

Note: javac from the command line
compiles file name provided

Creates a file with a .class extension with
the byte code (JavaVariables01.class here)

java command runs the byte code (no need to
provide the .class file extension)

JavaVariables01.java

33

Initialization can happen after a variable is
declared

public class JavaVariables02 {
 public static void main(String[] args) {
 int x;
 x = 5;
 System.out.println("x = "+x);
 }
}

Code

Output

Not necessary to give local variables
a value when declared

Just give the variable a value before
using it

$ javac JavaVariables02.java
$ java JavaVariables02
x = 5

JavaVariables02.java

34

Variables can only hold the type of data
they were declared to hold

public class JavaVariables03 {
 public static void main(String[] args) {
 int x;
 x = "Hello world";
 System.out.println("x = "+x);
 }
}

Code

Output

Variables must hold the type of data
they were declared to hold

Here we can’t store a String in an
integer variable!

Java tells us where to find the error
(file name: line number)

$ javac JavaVariables03.java
JavaVariables03.java:4: error: incompatible types: String cannot be converted to int
 x = "Hello world";
 ^
1 error

JavaVariables03.java

35

Agenda

1. You, me, and this course

2. Why Object-Oriented Programming (OOP)

3. Java intro

4. Variables

5. Arrays

Key points:
1. Arrays are just a contiguous block memory,

(that’s all they are!)

2. Arrays are different from Java’s ArrayLists
and Python’s lists! We will soon see how
they are different

36

We can use multiple variables to store
multiple values

public class MultipleVariables {
 public static void main(String[] args) {
 int score1 = 5, score2 = 7;
 System.out.println(”score1 = "+ score1 + ", score2 = " + score2);
 }
} Here both score1 and score2 are integers,

initialized with different values

This approach becomes cumbersome if we
want to track many values

Code

Output

$ javac MultipleVariables.java
$ java MultipleVariables
score1 = 5, score2 = 7

MulitpleVariables.java

Say we wanted to track multiple quiz scores

Can declare multiple variables on one line

37

Arrays provide a better way to store many
values in a contiguous block of memory

public class MultipleVariablesArray {
 public static void main(String[] args) {
 double[] scores = new double[5]; //store quiz scores
 scores[0] = 10; //zero indexed in Java
 scores[1] = 3.2;
 scores[2] = 6.5;
 scores[3] = 7.8;
 scores[4] = 8.8; //valid indices are 0..4
 scores[5] = 9; //error, index out of bounds!
 System.out.println(scores);
 }
}

Use an array to store multiple quiz scores

OS allocates a contiguous block of memory

Here enough room to hold 5 doubles
(5 doubles * 8 bytes/double = 40 bytes)

Arrays are zero-indexed in Java (unlike Matlab)

Keyword new allocates memory for array (we
will see soon this is an object)

Code 0 1 2 3 4

Index

38

Finding an index in an array is two math
operations: 1 addition and 1 multiplication

public class MultipleVariablesArray {
 public static void main(String[] args) {
 double[] scores = new double[5]; //store quiz scores
 scores[0] = 10; //zero indexed in Java
 scores[1] = 3.2;
 scores[2] = 6.5;
 scores[3] = 7.8;
 scores[4] = 8.8; //valid indices are 0..4
 scores[5] = 9; //error, index out of bounds!
 System.out.println(scores);
 }
}

Set values in the array with square
brackets

First item is at index 0

Where is the last item?
At size-1 (index 4 here because array
size is 5)

Code

10 3.2 6.5

0 1 2 3 4

Index

39

Java throws an exception if try to access
memory outside the contiguous block

public class MultipleVariablesArray {
 public static void main(String[] args) {
 double[] scores = new double[5]; //store quiz scores
 scores[0] = 10; //zero indexed in Java
 scores[1] = 3.2;
 scores[2] = 6.5;
 scores[3] = 7.8;
 scores[4] = 8.8; //valid indices are 0..4
 scores[5] = 9; //error, index out of bounds!
 System.out.println(scores);
 }
}

Java throws an exception if you try to
access an element before or after the
array’s block of memory

Code

Output

$ javac MultipleVariablesArray.java
S java MultipleVariablesArray
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: Index 5 out of bounds for length 5
at MultipleVariablesArray.main(MultipleVariablesArray.java:9)

10 3.2 6.5 7.8 8.8

0 1 2 3 4

Index

40

Memory outside the contiguous block may
be used for other purposes

public class MultipleVariablesArray {
 public static void main(String[] args) {
 double[] scores = new double[5]; //store quiz scores
 scores[0] = 10; //zero indexed in Java
 scores[1] = 3.2;
 scores[2] = 6.5;
 scores[3] = 7.8;
 scores[4] = 8.8; //valid indices are 0..4
 scores[5] = 9; //error, index out of bounds!
 System.out.println(scores);
 }
}

Can you assume the memory before or
after the allocated block is available for
your use?

Code

Output

$ javac MultipleVariablesArray.java
S java MultipleVariablesArray
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: Index 5 out of bounds for length 5
at MultipleVariablesArray.main(MultipleVariablesArray.java:9)

10 3.2 6.5 7.8 8.8

0 1 2 3 4

Index

? ?

NO! The OS allocated the block of
memory for the array and may be using
the memory before or after for other
purposes!

C programmers can access memory
before or after, this often causes bugs!

41

Printing an array prints the starting
memory address

public class MultipleVariablesArray {
 public static void main(String[] args) {
 double[] scores = new double[5]; //store quiz scores
 scores[0] = 10; //zero indexed in Java
 scores[1] = 3.2;
 scores[2] = 6.5;
 scores[3] = 7.8;
 scores[4] = 8.8; //valid indices are 0..4
 //scores[5] = 9; //error, index out of bounds!
 System.out.println(scores);
 }
}

By default, printing an array prints a value
based on the array’s starting memory address

Code

Output

$ javac MultipleVariablesArray.java
S java MultipleVariablesArray
[D@1dbd16a6

10 3.2 6.5 7.8 8.8

0 1 2 3 4

Index

42

One way to loop over array elements is to
use a C-style for loop

public class MultipleVariablesArray {
 public static void main(String[] args) {
 int numberOfScores = 5;
 double[] scores = new double[numberOfScores]; //store quiz scores
 scores[0] = 10; //zero indexed in Java
 scores[1] = 3.2;
 scores[2] = 6.5;
 scores[3] = 7.8;
 scores[4] = 8.8; //valid indices are 0..4
 //scores[5] = 9; //error, index out of bounds!
 System.out.println(scores);

 System.out.print("[");
 for (int i= 0; i < numberOfScores-1; i++) {
 System.out.print(scores[i] + ", ");
 }
 System.out.println(scores[numberOfScores-1] + "]");
 }
}

Commonly use a variable to declare array size

Code

Output

$ javac MultipleVariablesArray.java
$ java MultipleVariablesArray
D@1dbd16a6
[10.0, 3.2, 6.5, 7.8, 8.8]

10 3.2 6.5 7.8 8.8

0 1 2 3 4

Index

C-style for loop
Three components:
1. Initialization
2. Conditional
3. Increment

43

One way to loop over array elements is to
use a C-style for loop

public class MultipleVariablesArray {
 public static void main(String[] args) {
 int numberOfScores = 5;
 double[] scores = new double[numberOfScores]; //store quiz scores
 scores[0] = 10; //zero indexed in Java
 scores[1] = 3.2;
 scores[2] = 6.5;
 scores[3] = 7.8;
 scores[4] = 8.8; //valid indices are 0..4
 //scores[5] = 9; //error, index out of bounds!
 System.out.println(scores);

 System.out.print("[");
 for (int i= 0; i < numberOfScores-1; i++) {
 System.out.print(scores[i] + ", ");
 }
 System.out.println(scores[numberOfScores-1] + "]");
 }
}

Code

Output

$ javac MultipleVariablesArray.java
$ java MultipleVariablesArray
D@1dbd16a6
[10.0, 3.2, 6.5, 7.8, 8.8]

10 3.2 6.5 7.8 8.8

0 1 2 3 4

Index

Access array element at index i
using square brackets

Note: using print not println here
println adds a new line character

44

Java also has multidimensional arrays

public class MultidimensionalArray {
 public static void main(String[] args) {
 int numberOfStudents = 10;
 int numberOfQuizes = 5;
 double scores[][] = new double[numberOfStudents][numberOfQuizes];

 //set score for student 3 on quiz 2
 scores[2][1] = 9.2; //remember zero-indexing!

 //print all scores
 int quiz;
 for (int student = 0; student < numberOfStudents; student++) {
 for (quiz = 0; quiz < numberOfQuizes-1; quiz++) {
 System.out.print(scores[student][quiz] + ", ");
 }
 System.out.println(scores[student][quiz]);
 }
 }
}

Code
Store quiz scores for several
students in 2-dimensional array
One row for each student
One column for each quiz

Remember zero indexing!
Student 3 is at index 2
Quiz 2 is at index 1

Nested loops
Loop over each student
 loop over each quiz
 print quiz score for student

Can declare variable outside for loop so its scope goes beyond for loop

Because quiz declared outside for loop, it is still in scope
here (would be out of scope if declared as part of for loop)

MultidimensionalArray.java

45

Arrays holding numeric values are
initialized to zero

public class MultidimensionalArray {
 public static void main(String[] args) {
 int numberOfStudents = 10;
 int numberOfQuizes = 5;
 double scores[][] = new double[numberOfStudents][numberOfQuizes];

 //set score for student 3 on quiz 2
 scores[2][1] = 9.2; //remember zero-indexing!

 //print all scores
 int quiz;
 for (int student = 0; student < numberOfStudents; student++) {
 for (quiz = 0; quiz < numberOfQuizes-1; quiz++) {
 System.out.print(scores[student][quiz] + ", ");
 }
 System.out.println(scores[student][quiz]);
 }
 }
}

Code

Output

$ javac MultidimensionalArray.java
$ java MultidimensionalArray
0.0, 0.0, 0.0, 0.0, 0.0

0.0, 0.0, 0.0, 0.0, 0.0
0.0, 9.2, 0.0, 0.0, 0.0
0.0, 0.0, 0.0, 0.0, 0.0
0.0, 0.0, 0.0, 0.0, 0.0
0.0, 0.0, 0.0, 0.0, 0.0

0.0, 0.0, 0.0, 0.0, 0.0
0.0, 0.0, 0.0, 0.0, 0.0
0.0, 0.0, 0.0, 0.0, 0.0
0.0, 0.0, 0.0, 0.0, 0.0

Java initializes numeric
array values to zero

Value set

MultidimensionalArray.java

46

Short Assignment 0 (SA-0) is out, complete
survey before 8:00am tomorrow

SA-0
Find assignment on Canvas
1. Take course survey to understand your background

and assign you to a section
2. Set up development environment

• Instructions and screen shots provided on website
• We will use IntelliJ IDEA for this course

3. Create your first Java class
4. Read and acknowledge course policies and honor

code
Complete survey before 8:00am tomorrow (or risk
getting assigned to inconvenient section time!)

47

Key points

1. Java is a compiled, strongly typed language

2. In Java we declare each variable and give it a data type

3. Data types cannot be changed

4. Arrays are just a contiguous block memory, (that’s all
they are!)

5. Arrays are different from Java’s ArrayLists and Python’s
lists! We will soon see how they are different

	Slide 1
	Slide 2: Agenda
	Slide 3: Let’s start with our backgrounds
	Slide 4: This course is about solving problems with OOP, not simply how to program in Java
	Slide 5: Material will be covered in lecture, section meetings, homework, and exams
	Slide 6: We will also be using Canvas and Slack for announcements and help
	Slide 7: Short Assignment 0 (SA-0) is out, complete survey before 8:00am tomorrow
	Slide 8: Agenda
	Slide 9: OOP relies on four main pillars to create robust, adaptable, and reusable code
	Slide 10: OOP is popular, especially in large organizations
	Slide 11: Why is OOP in general, and Java in particular, so popular?
	Slide 12: Agenda
	Slide 13: We will be using Java, these things may blow your mind
	Slide 14: In keeping with tradition, we’ll start with “Hello world”
	Slide 15: 1. Create “cs10” Project to hold source code (only need to do this one time)
	Slide 16: 2. Create Source folder to hold your source code for day one of class
	Slide 17: 3. Create new “HelloWorld” class in “day1” source folder
	Slide 18: IntelliJ creates HelloWorld.java “boilerplate” code
	Slide 19: We can flesh out the boilerplate code to print “Hello World!” to the console
	Slide 20: We can flesh out the boilerplate code to print “Hello World!” to the console
	Slide 21: Running the program prints “Hello World!” to console
	Slide 22: Agenda
	Slide 23: In Python we declare variables but do not say what type of data they hold
	Slide 24: In Python we declare variables but do not say what type of data they hold
	Slide 25: Python’s type function tells us what kind of data the variable holds
	Slide 26: In Python a variable’s data type can change
	Slide 27: In Python a variable’s data type can change
	Slide 28: In Java, we explicitly say what type of data a variable holds (and can’t change it later!)
	Slide 29: In Java, we explicitly say what type of data a variable holds (and can’t change it!)
	Slide 30: Java does not initialize local variables
	Slide 31: Java tells us where to find errors, pay attention to these hints when debugging!
	Slide 32: We must initialize local variables ourselves
	Slide 33: Initialization can happen after a variable is declared
	Slide 34: Variables can only hold the type of data they were declared to hold
	Slide 35: Agenda
	Slide 36: We can use multiple variables to store multiple values
	Slide 37: Arrays provide a better way to store many values in a contiguous block of memory
	Slide 38: Finding an index in an array is two math operations: 1 addition and 1 multiplication
	Slide 39: Java throws an exception if try to access memory outside the contiguous block
	Slide 40: Memory outside the contiguous block may be used for other purposes
	Slide 41: Printing an array prints the starting memory address
	Slide 42: One way to loop over array elements is to use a C-style for loop
	Slide 43: One way to loop over array elements is to use a C-style for loop
	Slide 44: Java also has multidimensional arrays
	Slide 45: Arrays holding numeric values are initialized to zero
	Slide 46: Short Assignment 0 (SA-0) is out, complete survey before 8:00am tomorrow
	Slide 47: Key points

