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Agenda

1. Balanced Binary Trees

2. 2-3-4 Trees

3. Red-Black Trees

Key points:
1. BSTs keep data sorted in a 

tree structure
2. Each node in the tree has a 

Key and a Value
3. BSTs search by Key and 

return the matching Value
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Review: Binary Search Trees (BSTS) are an 
ordered collection of Key/Value nodes  

D

B

A C

F

E G

Binary Search Tree property
Let x be a node in a binary 
search tree s.t.:

• left.key < x.key
• right.key > x.key
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Review: Binary Search Trees (BSTS) are an 
ordered collection of Key/Value nodes  
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Binary Search Tree property
Let x be a node in a binary 
search tree s.t.:

• left.key < x.key
• right.key > x.key
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Review: Binary Search Trees (BSTS) are an 
ordered collection of Key/Value nodes  

D

B

A C

F

E G

Binary Search Tree property
Let x be a node in a binary 
search tree s.t.:

• left.key < x.key
• right.key > x.key

B < D
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Review: Binary Search Trees (BSTS) are an 
ordered collection of Key/Value nodes  

D

B

A C

F

E G

Binary Search Tree property
Let x be a node in a binary 
search tree s.t.:

• left.key < x.key
• right.key > x.key

B < D F > D

Remember, I’m showing the 
Keys for each node, but there 
is also a Value for each node 
that is not shown
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BSTs do not have to be balanced!  Can not 
make tight bound assumptions

A

B

Find Key “G”
Search process
• Height h = 6 (count 

number of edges to leaf)

• Can take no more than    
h+1 checks, O(h)

• Today we will see how to 
keep trees “balanced”

h=6

Height

C

D

E

F

G
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Could try to “fix up” tree to keep balance 
as nodes are added/removed

50

30

20 40

70

60

Keeping balance is tricky

40

20

10 30

60

50

Insert 10

70

All nodes changed position
O(n) possible on many updates!
Need another way

10

“Fix up”
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We consider two other options to keep 
“binary” trees “perfectly balanced”

1. Give up on “binary” – allow nodes to have 
multiple keys (2-3-4 trees)

2. Give up on “perfect” – keep tree “close” to 
perfectly balanced (Red-Black trees)
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Agenda

1. Balanced Binary Trees

2. 2-3-4 Trees

3. Red-Black Trees

Key points:
1. 2-3-4 trees give up on binary
2. Nodes have 2, 3, or 4 children
3. All leaves at the same level
4. Height of 2-3-4 tree O(log2 n)
5. Ensures O(log n) performance



11

2-3-4 trees (aka 2,4 trees) give up on binary 
but keep tree balanced

Intuition:
• Allow multiple keys to be stored at each node
• A node will have one more child than it has keys:

• leftmost child — all keys less than the first key
• next child — all keys between the first and second keys
• … etc …
• last child — all keys greater than the last key

• We will work with nodes that have 2, 3, or 4 children (nodes are 
named after number of children, not the number of keys)
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2-3-4 trees maintain two properties: Size 
and Depth

Size property
Each node has either 2, 3, or 4 children (1, 2, or 3 keys per node)
Each node type named after number of children, not keys

Depth property
All leaves of the tree (external nodes) are on the same level

2 node 3 node 4 node

Node types

It can be shown that the height of the 
Tree is O(log2 n) if these properties are 
maintained (see book)



13

Inserting into a 2-3-4 Tree must maintain 
Size and Depth properties

Insertion:
1. Begin by searching for Key in 2-3-4 Tree

2. If found, update Value

3. If not found, search terminates at a leaf

4. Do an insert at the leaf 

5. Maintain the Size and Depth properties (next slides)



14

Insert into the lowest node, but do not 
violate the size property
Inserting into 2 or 3 node 

Inserting into a 2 or 3 node:
• Keep keys ordered inside each node
• Can insert key inside a node in O(1) because there are only three 

places where Key could go
• So, we can update a node in constant, O(1) time

Keep Keys 
sorted
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If insert would violate size rule, split 4 node 
into two 2 nodes, then insert new object
Inserting into 4 node 

Would go here

Insert would cause size 
violation for this node

Insert in a two step 
process

Insert: 12
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If insert would violate size rule, split 4 node 
into two 2 nodes, then insert new object
Inserting into 4 node, two step process 

Step 1: split/promote
Promote middle key to 
higher level 
• May become new root
• Parent may have to be 

split also!
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If insert would violate size rule, split 4 node 
into two 2 nodes, then insert new object
Inserting into 4 node, two step process 

Step 1: split/promote
Promote middle key to 
higher level 
• May become new root
• Parent may have to be 

split also!

Step 2: insert 
Insert 12 into 
appropriate node at 
lowest level

12 < 38, 
traverse left

12 < 31, insert 
in node on left
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Continue inserting until need to split nodes

Insert process
19 < 38, 
traverse left

19 between 12 
and 31, insert 
in middle
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Promote middle key to higher level and 
insert new key into proper position
Insert process

Insert: 8

Would go here

Insert would cause size 
violation for this node
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Promote middle key to higher level and 
insert new key into proper position
Insert process
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Always insert new key in lowest level

Insert process



Always insert new key in lowest level

Insert process

Step 1: Split and promote 12
Step 2: Insert 17



Always insert new key in lowest level

Insert process

Step 1: Split and promote 12
Step 2: Insert 17



Always insert new key in lowest level

Insert process



Might have to split multiple nodes to 
ensure parent size property is not violated
Insert process

Insert: 20

Would go here
Insert would cause size violation for this node
Promoting would cause parent size violation
Split parent first, then split child, then insert
Could bubble up all the way to the root



Might have to split multiple nodes to 
ensure parent size property is not violated
Insert process

First split parent

Second split

Insert 20

Performance?
O(h) = O(Log2n)
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2-3-4 work, but are tricky to implement

• Need three different types of nodes

• Create new nodes as you need them, then copy 
information from old node to new node

• Can waste space if nodes have few keys

• Book has more info on insertion and deletion

• There are generally easier ways to implement as a 
Binary Tree
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Agenda

1. Balanced Binary Trees

2. 2-3-4 Trees

3. Red-Black Trees
Key points:
1. Red-Black trees are binary trees
2. Maintain ”close enough” balance 

to ensure O(log n) performance
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Red-Black trees are binary trees 
conceptually related to 2-3-4 trees

• Can think of each 2, 3, or 4 node as miniature binary tree
• “Color” each vertex so that we can tell which nodes belong 

together as part of a larger 2-3-4 tree node 
• Paint node red if would be part of a 2-3-4 node with parent

Overview
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Red-Black trees are binary trees 
conceptually related to 2-3-4 trees

• Can think of each 2, 3, or 4 node as miniature binary tree
• “Color” each vertex so that we can tell which nodes belong 

together as part of a larger 2-3-4 tree node 
• Paint node red if would be part of a 2-3-4 node with parent

Overview

Red node would be in the 
same node as black parent in 
a 2-3-4 Tree
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Red-Black trees are binary trees 
conceptually related to 2-3-4 trees

• Can think of each 2, 3, or 4 node as miniature binary tree
• “Color” each vertex so that we can tell which nodes belong 

together as part of a larger 2-3-4 tree node 
• Paint node red if would be part of a 2-3-4 node with parent

Overview

NOTE: Red-Black trees 
are binary trees!
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You can convert between 2-3-4 trees and 
Red-Black trees and vice versa
Red-Black as related to 2-3-4 trees

NOTE: not all external nodes are on 
the exact same level in Red-Black 
tree, but they are close!
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Red-Black trees maintain four properties

1. Every nodes is either red or black
2. Root is always black, if operation changes it red, turn it black again
3. Children of a red node are black (no consecutive red nodes)
4. All external nodes have the same black depth (same number of 

black ancestor nodes)

Red-Black trees properties

Black depth: 3

No node more 
than 3 black 
nodes away 
from root
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Red-Black properties ensure depth of tree 
is O(log2n), given n nodes in tree
Informal justification
• Since every path from the root to a leaf has the same number of black nodes (by property 4), 

the shortest possible path would be one which has no red nodes in it
• Suppose k is the number of black nodes along any path from the root to a leaf

• What is the longest possible path?  
• It would have alternating black and red nodes
• Since there can’t be two red nodes in a row (property 3) and root is black (property 2), 

the longest path given k black nodes is 2k or h≤2k, where h is Tree height
• It can be shown that if each path from root to leaf has k black nodes, there must be at least 

2k-1 nodes in the tree
• Since h≤2k, then k≥h/2, so there must be at least  2(h/2)-1 nodes in the tree
• If there are n nodes in the tree then:

• n≥2(h/2)–1

• Adding 1 to both sides gives: n+1≥2(h/2)

• Taking the log (base 2) of both sides gives: 
• log2(n+1)≥h/2

• 2log2(n+1)≥h, which means h is upper bound by 2log2(n+1)= O(log2n)

Run time complexity of a search operation is O(h) in a Binary 
Tree, which we just argued is O(log2 n) in the worst case here
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Searching a Red-Black Tree is O(log n)

• Red-Black tree is a Binary Tree with search time 
proportional to height

• Search time takes O(log2n) since h is O(log2n)

• Hard part is maintaining the tree with inserts and deletes
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Insertion into Red-Black trees must deal 
with several cases

Insert procedures
• As with BSTs, find location in tree where new element goes and insert
• Color new node red – ensures rules 1, 2 and 4 are preserved
• Rule 3 might be violated (red node must have black children)
• Three cases can arise on insert (equivalent to 2, 3, or 4 node inserts)
• Inserting into a 2 or 4 node fairly straightforward
• 3 node is more complex

Four Red-Black Tree properties:
1. Every nodes is either red or black
2. Root is always black, if operation changes it red, turn it black again
3. Children of a red node are black (no consecutive red nodes)
4. All external nodes have the same black depth (same number of 

black ancestors)
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Case 1: Insert into 2 node, no violation

Insert into 2 node causes no violation a a:x

Insert new node <x> as 
child of <a>

Color <x> red

No violations

Each of these Trees are possible 
depending on the value of <x>

x:a
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Case 2: Insert into 4 node is a violation, 
resolve with “color flip”
4 nodes are black with red children

Insert new node <x> as 
child of <b> or <c> 
would cause two red 
nodes in a row

Violates rule 3

b:a:c
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Case 2: Insert into 4 node is a violation, 
resolve with “color flip”

Must split node, promoting middle key  
• Could promote <a> to parent, and 

unjoin <b> and <c> from <a>
• Amounts to a “color flip”

4 nodes are black with red children

Insert new node <x> as 
child of <b> or <c> 
would cause two red 
nodes in a row

Violates rule 3

b:a:c
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Case 2: Insert into 4 node is a violation, 
resolve with “color flip”
4 nodes are black with red children

Must split node, promoting middle key  
• Could promote <a> to parent, and 

unjoin <b> and <c> from <a>
• Amounts to a “color flip”

Insert new node <x> as 
child of <b> or <c> 
would cause two red 
nodes in a row

Violates rule 3

b:a:c a

b c:x
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Case 2: Insert into 4 node is a violation, 
resolve with “color flip”

Black depth not 
changed

Must check <a> 
doesn’t violate 
parent two reds in 
a row

Might bubble up 
color flips to root

4 nodes are black with red children

Insert new node <x> as 
child of <b> or <c> 
would cause two red 
nodes in a row

Violates rule 3

Must split node, promoting middle key  
• Could promote <a> to parent, and 

unjoin <b> and <c> from <a>
• Amounts to a “color flip”

b:a:c a

b c:x
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Case 2: Insert into 4 node is a violation, 
resolve with “color flip”

Black depth not 
changed

Must check <a> 
doesn’t violate 
parent two reds in 
a row

Might bubble up 
color flips to root

4 nodes are black with red children

Insert new node <x> as 
child of <b> or <c> 
would cause two red 
nodes in a row

Violates rule 3

Must split node, promoting middle key  
• Could promote <a> to parent, and 

unjoin <b> and <c> from <a>
• Amounts to a “color flip”

b:a:c a

b c:x

If root red, flip 
root back to 
black (rule 2)
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Case 3: Insert into 3 node, might be 
violation
3 nodes are black with one red child

With a 3 node there are three places where node 
could be added: <1>, <2>, or <3>
<3> is easy
<1> involves a single rotation (2 reds in straight line)
<2> involves a double rotation (2 reds in zig-zag)
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Case 3: Inserting at position <3> is easy

Inserting into position <3> makes a 4 node
• No problem if inserting at position <3>
• Makes a 4 node

b:a b:a:x3 nodes are black with one red child
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Case 3: Inserting at position <1> (two red in 
straight line) causes single rotation

Inserting at <1> do a single rotation
• Violation of no two red nodes in a straight line
• Since x < b < a or x > b > a, could fix by rotating whole structure
• Lift <b> to root (color black), while dropping down <a> (color red) 

to be child of <b>

b:a3 nodes are black with one red child



Inserting at <1> do a single rotation
• Violation of no two red nodes in a straight line
• Since x < b < a or x > b > a, could fix by rotating whole structure
• Lift <b> to root (color black), while dropping down <a> (color red) 

to be child of <b>
• Still maintains ordered property
• Called a single rotation

46

Case 3: Inserting at position <1> (two red in 
straight line) causes single rotation

b:a x:b:a3 nodes are black with one red child
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Case 3: Inserting at position <2> (two red in 
zig-zag) causes double rotation

Inserting at <2>, do double rotation
• Two red nodes in zig-zag pattern
• Lift <x> to root (color black) and have <a> and <b> as 

children (colored red)
• Called a double rotation

b:a3 nodes are black with one red child
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Case 3: Inserting at position <2> (two red in 
zig-zag) causes double rotation

Inserting at <2>, do double rotation
• Two red nodes in zig-zag pattern
• Lift <x> to root (color black) and have <a> and <b> as 

children (colored red)
• Called a double rotation

b:a b:x:a3 nodes are black with one red child
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Case 3: Inserting at position <2> (two red in 
zig-zag) causes double rotation

Inserting at <2>, do double rotation
• Two red nodes in zig-zag pattern
• Lift <x> to root (color black) and have <a> and <b> as 

children (colored red)
• Called a double rotation
• Rotate once around <b>, then again around <x>

b:a b:x:a3 nodes are black with one red child
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Insert run time is O(log2n)

• Worse case we only have to fix colors along the path 
between new node and root, O(log2n) path length

• Each operation is constant time
• It can be shown we only need to do at most one 

single-rotation or one double-rotation to fix the 
tree, O(1)

• All other changes done with color flips, O(1)
• But, might have to traverse up to root

• Leads to O(log2n) insert run-time complexity

See textbook for 
details on delete 
operations
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Summary

• Binary Search Trees performance suffers if they are unbalanced
• Two options to keep O(log2n) find, insert, and delete performance: 

1. 2-3-4 trees – give up on binary
• All leaves are at the same level, all paths the same length
• Memory inefficient if nodes have small number of keys
• Difficult to implement due to different node types

2. Red-Black trees – give up on perfectly balanced
• Conceptually think of 2-3-4 nodes as “mini trees”
• Nodes colored to indicate they are conjoined with their parent
• Use rotations and color flips to keep tree in approximate 

balance
• Find, insert and delete take no more than O(log2n)
• All Map operations O(log2n) using Red-Black tree
• Java uses for Red-Black Trees for TreeMap
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Key Points

1. BSTs keep data sorted in a tree structure
2. Each node in the tree has a Key and a Value
3. BSTs search by Key and return the matching Value
4. 2-3-4 trees give up on binary
5. Nodes have 2, 3, or 4 children
6. All leaves at the same level
7. Height of 2-3-4 tree O(log2 n)
8. Ensures O(log n) performance
9. Red-Black trees are binary trees
10.Maintain ”close enough” balance to ensure O(log n) performance


	Slide 1
	Slide 2: Agenda
	Slide 3: Review: Binary Search Trees (BSTS) are an ordered collection of Key/Value nodes  
	Slide 4: Review: Binary Search Trees (BSTS) are an ordered collection of Key/Value nodes  
	Slide 5: Review: Binary Search Trees (BSTS) are an ordered collection of Key/Value nodes  
	Slide 6: Review: Binary Search Trees (BSTS) are an ordered collection of Key/Value nodes  
	Slide 7: BSTs do not have to be balanced!  Can not make tight bound assumptions
	Slide 8: Could try to “fix up” tree to keep balance as nodes are added/removed
	Slide 9: We consider two other options to keep “binary” trees “perfectly balanced”
	Slide 10: Agenda
	Slide 11: 2-3-4 trees (aka 2,4 trees) give up on binary but keep tree balanced
	Slide 12: 2-3-4 trees maintain two properties: Size and Depth
	Slide 13: Inserting into a 2-3-4 Tree must maintain Size and Depth properties
	Slide 14: Insert into the lowest node, but do not violate the size property
	Slide 15: If insert would violate size rule, split 4 node into two 2 nodes, then insert new object
	Slide 16: If insert would violate size rule, split 4 node into two 2 nodes, then insert new object
	Slide 17: If insert would violate size rule, split 4 node into two 2 nodes, then insert new object
	Slide 18: Continue inserting until need to split nodes
	Slide 19: Promote middle key to higher level and insert new key into proper position
	Slide 20: Promote middle key to higher level and insert new key into proper position
	Slide 21: Always insert new key in lowest level
	Slide 22: Always insert new key in lowest level
	Slide 23: Always insert new key in lowest level
	Slide 24: Always insert new key in lowest level
	Slide 25: Might have to split multiple nodes to ensure parent size property is not violated
	Slide 26: Might have to split multiple nodes to ensure parent size property is not violated
	Slide 27: 2-3-4 work, but are tricky to implement
	Slide 28: Agenda
	Slide 29: Red-Black trees are binary trees conceptually related to 2-3-4 trees
	Slide 30: Red-Black trees are binary trees conceptually related to 2-3-4 trees
	Slide 31: Red-Black trees are binary trees conceptually related to 2-3-4 trees
	Slide 32: You can convert between 2-3-4 trees and Red-Black trees and vice versa
	Slide 33: Red-Black trees maintain four properties
	Slide 34: Red-Black properties ensure depth of tree is O(log2n), given n nodes in tree
	Slide 35: Searching a Red-Black Tree is O(log n)
	Slide 36: Insertion into Red-Black trees must deal with several cases
	Slide 37: Case 1: Insert into 2 node, no violation
	Slide 38: Case 2: Insert into 4 node is a violation, resolve with “color flip”
	Slide 39: Case 2: Insert into 4 node is a violation, resolve with “color flip”
	Slide 40: Case 2: Insert into 4 node is a violation, resolve with “color flip”
	Slide 41: Case 2: Insert into 4 node is a violation, resolve with “color flip”
	Slide 42: Case 2: Insert into 4 node is a violation, resolve with “color flip”
	Slide 43: Case 3: Insert into 3 node, might be violation
	Slide 44: Case 3: Inserting at position <3> is easy
	Slide 45: Case 3: Inserting at position <1> (two red in straight line) causes single rotation
	Slide 46: Case 3: Inserting at position <1> (two red in straight line) causes single rotation
	Slide 47: Case 3: Inserting at position <2> (two red in zig-zag) causes double rotation
	Slide 48: Case 3: Inserting at position <2> (two red in zig-zag) causes double rotation
	Slide 49: Case 3: Inserting at position <2> (two red in zig-zag) causes double rotation
	Slide 50: Insert run time is O(log2n)
	Slide 51: Summary
	Slide 52: Key Points

