CS 10:

Problem solving via Object Oriented
Programming

Info Retrieval

ADT Overview

Description

Common use

Implementation

options

Java provided

Keep items
stored in
order by
index

* Growto
hold any
number of
items

* Linked list
* Growing
array

e LinkedList
* ArraylList

ADT Overview

Description

Common use

Implementation

options

Java provided

Keep items
stored in
order by
index

Grow to
hold any
number of
items

Linked list
Growing
array

LinkedList
Arraylist

Keep hierarchical
relationship
between nodes

Find items
quickly by Key
BST generally
faster than List

BinaryTree
 BST
e 2-34
* Red-Black

ADT Overview

Description

Common use

Implementation

options

Java provided

Keep items
stored in
order by
index

Grow to
hold any
number of
items

Linked list
Growing
array

LinkedList
Arraylist

Keep hierarchical
relationship
between nodes

Find items
quickly by Key
BST generally
faster than List

BinaryTree
BST

2-3-4
Red-Black

Keep an
unordered
set of objects

Prevent
duplicates

e List
* Tree
 Hash table

* TreeSet
e HashSet

ADT Overview

Description

Common use

Implementation

options

Java provided

Keep items
stored in
order by
index

Grow to
hold any
number of
items

Linked list
Growing
array

LinkedList
Arraylist

Keep hierarchical
relationship
between nodes

Find items
quickly by Key
BST generally

faster than List

BinaryTree
BST

2-3-4
Red-Black

Keep an
unordered
set of objects

Prevent
duplicates

e List
* Tree
 Hash table

* TreeSet
e HashSet

Keep a set of
Key/Value
pairs

Find items
quickly by
Key

List
Tree
Hash table

TreeMap
HashMap

5

Key points:
1. Sets are an unordered collection of items
. Set ADT . . .
like the mathematical notion of a set
2. Sets prevent duplicates
3. Can be implemented with trees (Java

Ma P ADT provides a TreeSet)

Reading from file/keyboard

. Search

Sets are an unordered collection of items

without duplicates

Set ADT
 Model for mathematical definition of a Set
e Like a List, but:
* Logically unordered (no it item, can’t set/get by index)
* No duplicates allowed
* Operations:
+ add(E e) —adds e to Set if not already present
- contains (E e) — returns true if e in Set, else false
- remove (E e) —removes e from Set
- size() —returns number of elements in Set
- isEmpty () — true if no elements in Set, else false
e Tterator<E> iterator() — returns iterator over Set

Sets start out empty

Initial state

Set ISEmpty: True
size: 0

First item added will always create a new

entry in the Set (item can’t be a duplicate)
add(1)

Set isSEmpty: False
size: 1

Can think of adding items to Set like adding

items to “Bag of items” — no item ordering
add(27)

Set isSEmpty: False
Size: 2

10

Can think of adding items to Set like adding

items to “Bag of items” — no item ordering
add(6)

Set isSEmpty: False
Size: 3

11

Can think of adding items to Set like adding

items to “Bag of items” — no item ordering
add(12)

isEmpty: False
Size: 4

12

Can think of adding items to Set like adding

items to “Bag of items” — no item ordering
add(15)

isEmpty: False
size: 5

13

Adding an item that is already in the Set

does not change the Set
add(6)

isEmpty: False
size: 5

6 already in Set
No change

14

ltems can be removed

remove(1)

isSEmpty: False
size: 5

15

ltems can be removed

remove(1)

Set isSEmpty: False
Size: 4

1 removed
size reduced

16

Can also check to see if item is in Set

contains(12)

True Set isEmpty: False
size: 4

17

Can also check to see if item is in Set

contains(13)

False Set isSEmpty: False
Size: 4

18

Trees are one way to implement the Set

ADT

Sets implemented with Trees

* Could implement as a List, but linear search time

* Trees are a natural way to think about implementation
* If the Set is implemented with a tree

19

Trees are one way to implement the Set

ADT

Sets implemented with Trees
* Could implement as a List, but linear search time

* Trees are a natural way to think about implementation
* If the Set is implemented with a tree

add(e)

O(h)

* Search for node until found or hit leaf

* If not found, add new leaf (if found do nothing)
* Might have to add node on longest path

e Can’t be more than h+1 checks

20

Trees are one way to implement the Set

ADT

Sets implemented with Trees

* Could implement as a List, but linear search time

* Trees are a natural way to think about implementation
* If the Set is implemented with a tree

add(e)

contains(e)

O(h)

O(h)

Search for node until found or hit leaf

If not found, add new leaf (if found do nothing)
Might have to add node on longest path

Can’t be more than h+1 checks

Search for node until found or hit leaf
Might have to search longest path
Can’t be more than h+1 checks

21

Trees are one way to implement the Set

ADT

Sets implemented with Trees

* Could implement as a List, but linear search time

* Trees are a natural way to think about implementation
* If the Set is implemented with a tree

add(e) O(h) * Search for node until found or hit leaf
* If not found, add new leaf (if found do nothing)
* Might have to add node on longest path
 Can’t be more than h+1 checks

contains(e) O(h) * Search for node until found or hit leaf

* Might have to search longest path
 Can’t be more than h+1 checks

remove(e) O(h) * Traverse tree to find element, then delete it

22

Trees are one way to implement the Set

ADT

Sets implemented with Trees

* Could implement as a List, but linear search time

* Trees are a natural way to think about implementation
* If the Set is implemented with a tree

Search for node until found or hit leaf

* If not found, add new leaf (if found do nothing)
* Might have to add node on longest path

e Can’t be more than h+1 checks

add(e) O(h)

contains(e) O(h) * Search for node until found or hit leaf
* Might have to search longest path
 Can’t be more than h+1 checks

remove(e) O(h) Traverse tree to find element, then delete it

* Soon we will see another, more efficient way to
implement a Set using a hash table

23

Can use a Set to easily identify the unique

words in a body of text

Text from which to identify unique words

"Pretend that this string was loaded from a web page. We won't go to all that
trouble here. This string contains multiple words. And multiple copies of multiple
words. And multiple words with multiple copies. Itis to be used as a test to
demonstrate how sets work in removing redundancy by keeping only one copy of
each thing. Is it very very redundant in having more than one copy of some words?”

Pseudocode Set <String> ° Add each wordin
. . text to Set
* Create Set with String as Buoli
* Duplicates not
element maintained
* Loop over each word in text
 Add to Set

 Print Set when done

24

Can use a Set to easily identify the unique

words in a body of text

Text from which to identify unique words

"Pretend that this string was loaded from a web page. We won't go to all that
trouble here. This string contains multiple words. And multiple copies of multiple
words. And multiple words with multiple copies. Itis to be used as a test to
demonstrate how sets work in removing redundancy by keeping only one copy of
each thing. Is it very very redundant in having more than one copy of some words?”

Pseudocode Set <String>

* Create Set with String as Pretend
element

* Loop over each word in text

 Add to Set

 Print Set when done

25

Can use a Set to easily identify the unique

words in a body of text

Text from which to identify unique words

"Pretend that this string was loaded from a web page. We won't go to all that
trouble here. This string contains multiple words. And multiple copies of multiple
words. And multiple words with multiple copies. Itis to be used as a test to
demonstrate how sets work in removing redundancy by keeping only one copy of
each thing. Is it very very redundant in having more than one copy of some words?”

Pseudocode Set <String>

* Create Set with String as Pretend
element that

* Loop over each word in text

 Add to Set

 Print Set when done

26

Can use a Set to easily identify the unique

words in a body of text

Text from which to identify unique words

"Pretend that this string was loaded from a web page. We won't go to all that
trouble here. This string contains multiple words. And multiple copies of multiple
words. And multiple words with multiple copies. Itis to be used as a test to
demonstrate how sets work in removing redundancy by keeping only one copy of
each thing. Is it very very redundant in having more than one copy of some words?”

Pseudocode Set <String> ° “tlhat’;seen again
. . Already in Set, so Set
* Create Set with String as Pretend Y
does not change

element that * At the end the Set

* Loop over each word in text this will C°"tai“da" thi
. unique words in the

. Ao!d to Set string text
* Print Set when done was

loaded

27

UnigueWords.java: Use a Set to easily

identify the unique words in a body of text

10¢ public static void main(String[] args) { Large amount of text simulates webpage
11| . String page = "Pretend that this string,was loaded from a web page. We
125p_|'t() makes an‘arra@y.,,n't go to all that trc;%bdﬂe,here. This string contains mult
13Wwith entry for each, "words. And multiple copfes of multiple words. And multiple "
14word (including + "words with multiple copies. It is to be used as a test to "
15cthﬁcatesg . - ate how sets work in removing rgdundancy by kgeping C
16 tring[] allWords = page.split("[.,?!1+"); // split on punctuation and

17 Java has Set implementation
18 // Declare new Set to hold unique wogds— based on Red/Black Tree

19 Set<String> uniqueWords = new Tr'eeSet<Str'ing>();|mp|ements Set interface

20 Add all words to Set, discarding duplicates _Set elements are Strings here
21 // Loop over all the words split out of the string, adding to set

22 \\\\‘For (String s: allWords) {

23 uniqueWords.add(s.toLowerCase()); // Calling add() method for duplic
24 }

25

26 System.out.println(allWords.length + " words"); //note: this is not the

27 System.out.printlnCuniqueWords.size() + " unique words"); //this is the

28 System.out.printlnCuniqueWords); //print the unique words

29 No duplicate words

20 Wh\;‘is output alphabetical? i]
} toString does In-order tree traversall Print calls toString on TreeSet class
Problems @ Javada\%ﬁtion &l Console 33 %5 Debug 6%’ Expressions Error Log _2e Call Hierarchy X & 5 B B\ &| & ¢

terminated> UniqueWords [Java Ap@eation] /Library/Java/JavaVirtualMachines/jdk1.8.0_112.jdk/Contents/Home/bin/java (Jan 2, 2018, 6:59:33 AM)

a, all, and, as, be, by, contains, copies, copy, demonstrate, each, from, go, having

1. Set ADT
Key points:
1. Maps look items up by Key and return Value
» 2 Map ADT 2. Python programmers, think dictionaries
3. Can be implemented with trees (Java provides a
TreeMap)
3. Reading from file/keyboard
4. Search

29

Map ADT associates Keys with Values

Map ADT
* Key is used to look up a Value (ex., student ID finds student record)
e Python programmers can think of Maps as Dictionaries
e Value could be an object (e.g., a person object or student record)
* Duplicate Values allowed, but not duplicate Keys
Operations:
- containsKey (K key) —true if key in Map, else false
« containsValue (V value) —true if one or more entries have value
« get (K key) —returns value for specified key or null otherwise
« put (K key, V value) — Store key/valuein Map; overwrite existing
value if key found (NOTE: no add operation in Map ADT)
remove (K key) —removes key from Map and returns value
keySet () —returns set of Keys in Map (which has iterator)
size () —returns number of elements in Map
isEmpty () —true if no elements in Map, else false

30

Like Sets, Maps initially start out empty

ISEmpty: True

Map size: 0

Key <StudentID> Value <Student Name>

31

ltems are adding to a Map using

put(Key,Value)

put(123, “Charlie”)

Map

Key <StudentID>

Value <Student Name>

123

Charlie

isEmpty: False
size: 1

32

ltems are adding to a Map using

put(Key,Value)

put(987, “Alice”)

Map

Key <StudentID>

Value <Student Name>

123

Charlie

987

Alice

isEmpty: False
Size: 2

33

ltems are adding to a Map using

put(Key,Value)

put(456, “Bob”)

Map

Key <StudentID>

Value <Student Name>

123 Charlie
987 Alice
456 Bob

isEmpty: False
size: 3

34

ltems are adding to a Map using

put(Key,Value)

put(456, “Bob”)

Map

Key <StudentID>

Value <Student Name>

123 Charlie
987 Alice
456 Bob

isEmpty: False
size: 3

35

ltems are adding to a Map using

put(Key,Value)

put(456, “Bob”)

iISEmpty: False

Key <StudentID> Value <Student Name> size: 3
123 Charlie

987 Alice

456 Bob

 NOTE: Keys are not necessarily kept in order

* Implementation details left to the designer

 Today we use a tree, but we will discuss another
option next class

36

If an item already exits, put(Key,Value) will

update the Value for that Key

put(987, “Ally”)

isEmpty: False

Map :
Size: 3
Key <StudentID> Value <Student Name>
123 Charlie
087 Alice
456 Bob

37

If an item already exits, put(Key,Value) will

update the Value for that Key

put(987, “Ally”)

isEmpty: False

Map :
size: 3
Key <StudentID> Value <Student Name>
123 Charlie
087 Ally
456 Bob

put overwrites Value if item with Key is already in Map

38

Can remove items by Key and get Value for

that Key (or null if Key not found)

remove(987) => “Ally”

isEmpty: False

Map :
size: 3
Key <StudentID> Value <Student Name>
123 Charlie
087 Ally
456 Bob

Removes item with Key and returns Value

39

Can remove items by Key and get Value for

that Key (or null if Key not found)

remove(987) => null

isEmpty: False
Map Size: 2
Key <StudentID> Value <Student Name>
123 Charlie
456 Bob

Returns null if Key not found
Does not throw Exception

40

keyset() returns a Set of Keys in the Map

keyset() => Set {123, 456}

Map

Key <StudentID>

Value <Student Name>

123

Charlie

456

Bob

isEmpty: False
Size: 2

Set has an iterator which can be used to iterate over all Keys in Map

41

get(Key) returns the Value for the Key (or

null if Key not found)

get(456) => “Bob”

Map

Key <StudentID>

Value <Student Name>

123

Charlie

456

Bob

isEmpty: False
Size: 2

42

get(Key) returns the Value for the Key (or

null if Key not found)

get(987) => null

isEmpty: False

Map :
Size: 2
Key <StudentID> Value <Student Name>
123 Charlie
456 Bob

Returns null if Key not found
Does not throw Exception

43

containsKey(Key) returns True if Key in

Map, False otherwise

containsKey(123) => True

Map

Key <StudentID>

Value <Student Name>

123

Charlie

456

Bob

isEmpty: False
Size: 2

44

containsKey(Key) returns True if Key in

Map, False otherwise

containsKey(987) => False

Map

Key <StudentID>

Value <Student Name>

123

Charlie

456

Bob

isEmpty: False
Size: 2

45

containsValue(Value) returns True if Value

in Map, False otherwise

containsValue(“Bob”) => True

isEmpty: False
Map size: 2
Key <StudentID> Value <Student Name>
123 Charlie
456 Bob

46

containsValue(Value) returns True if Value

in Map, False otherwise

containsValue(“Alice”) => False

isEmpty: False
Map size: 2
Key <StudentID> Value <Student Name>
123 Charlie
456 Bob

47

Trees are one way to implement the Map

ADT

Maps implemented with Trees

Could implement as a List, but linear search time
Like Sets, Trees are natural way to think about Map implementation
Problem: no easy way to implement containsvalue () because Tree searches for
Keys not Values (but containskey () is easy!)
* Could search entire Tree for Value
* Problem: linear time

* |dea: keep a Set of values, update on each put and then search Set
* Problem: the same Value could be stored with different keys, so if delete
Key from Map, can’t necessarily delete Value from Set

* Better idea: keep a second Tree with Values as Keys and counts of each Value
* When adding a Value, increment its count in the second Tree
 When deleting a Key, decrement Value count, delete Value in second Tree
if count goes to zero
* Now have O(h) time search for containsvalue ()
 Uses more memory, but has better speed

48

containsValue() keep two trees: trade

memory for speed

Tree with Key and Value Tree with Value and count

Bob

456
Charlie

* Each node has Key and Value Each node has Value and count of
* Duplicate Values allowed, how many times Value in Map
duplicate Keys not allowed * Easyto do containsValue(value)
* Easy to do containsKey(key) e Search Tree for value
* Search Tree for key e Return false if hit leaf and value
* Return false if hit leaf and not found, else true

key not found, else true * Approach trades memory for sp43ed

On put(key,value), add Key/Value to Tree,

increment count (if needed)

put(987, “Bob”)

Tree with Key and Value Tree with Value and count

50

On put(key,value), add Key/Value to Tree,

increment count (if needed)

put(987, “Bob”)

Tree with Key and Value Tree with Value and count

Increment
count

51

On put(key,value), add Key/Value to Tree,

increment count (if needed)

put(987, “Bob”)

Tree with Key and Value Tree with Value and count

Increment
count

52

On remove(key), delete Key/Value and

decrement count

remove(987)

Tree with Key and Value Tree with Value and count

53

On remove(key), delete Key/Value and

decrement count

remove(987)
Tree with Key and Value Tree with Value and count

Bob
1

 Know there is still one
“Bob” in the Tree

* Don’t delete node “Bob”
from this tree

456
Charlie

54

On remove(key), delete Key/Value and

decrement count

remove(56)

Tree with Key and Value Tree with Value and count

Remove “Alice”

55

On remove(key), delete Key/Value and

decrement count

remove(56)

Tree with Key and Value Tree with Value and count

Bob

456
Charlie

Because count goes to 0,
remove “Alice” here too

Must also update counts if

a put() replaces a value Key point: trade memory for speed!
56

Can use a Map to count word occurrences

in a body of text

Text from which to identify unique words

"Pretend that this string was loaded from a web page. We won't go to all that
trouble here. This string contains multiple words. And multiple copies of multiple
words. And multiple words with multiple copies. Itis to be used as a test to
demonstrate how sets work in removing redundancy by keeping only one copy of
each thing. Is it very very redundant in having more than one copy of some words?”

Pseudocode
* Create Map with String Key and
Integer Value
* Loop over each word in text
e |f Map contains (word)
* |ncrement count Value
 Else put (word) with Value 1
* Print Map when done

Map

Key <String>

Value <Integer>

Pretend

1

57

Can use a Map to count word occurrences

in a body of text

Text from which to identify unique words

"Pretend that this string was loaded from a web page. We won't go to all that
trouble here. This string contains multiple words. And multiple copies of multiple
words. And multiple words with multiple copies. Itis to be used as a test to
demonstrate how sets work in removing redundancy by keeping only one copy of
each thing. Is it very very redundant in having more than one copy of some words?”

Pseudocode
* Create Map with String Key and
Integer Value
* Loop over each word in text
e |f Map contains (word)
* |ncrement count Value
 Else put (word) with Value 1
* Print Map when done

Map
Key <String> | Value <Integer>
Pretend 1
that 1

58

Can use a Map to count word occurrences

in a body of text

Text from which to identify unique words

"Pretend that this string was loaded from a web page. We won't go to all that
trouble here. This string contains multiple words. And multiple copies of multiple
words. And multiple words with multiple copies. Itis to be used as a test to
demonstrate how sets work in removing redundancy by keeping only one copy of
each thing. Is it very very redundant in having more than one copy of some words?”

Pseudocode
* Create Map with String Key and
Integer Value
* Loop over each word in text
e |f Map contains (word)
* |ncrement count Value
 Else put (word) with Value 1
* Print Map when done

Map
Key <String> | Value <Integer>
Pretend 1
that 1
this 1

59

Can use a Map to count word occurrences

in a body of text

Text from which to identify unique words

"Pretend that this string was loaded from a web page. We won't go to all that
trouble here. This string contains multiple words. And multiple copies of multiple
words. And multiple words with multiple copies. Itis to be used as a test to
demonstrate how sets work in removing redundancy by keeping only one copy of
each thing. Is it very very redundant in having more than one copy of some words?”

Pseudocode
* Create Map with String Key and
Integer Value
* Loop over each word in text
e |f Map contains (word)
* |ncrement count Value
 Else put (word) with Value 1
* Print Map when done

Map
Key <String> | Value <Integer>
Pretend 1
that 2
this 1

60

UnigueWordCounts.java: Use Map to count

word occurrences in a body of text

9 public class UniqueWordsCounts { Large amount of text simulates webpage
10< public static void main(String[] args) {, Split into words (aka tokens)

11 String page = "Pretend that this string was loaded from a web pc

12 String[] allWords = page.split("[.,?!J+"); _ Java has Map based on Trees
13 // Declare new Map to hold count of eac Pd Implements Map interface

14 Map<String,Integer> wordCounts = new TreeMap<String,Integer>();

15 // Loop over all the words split out of the string, adding to mc

16 for (String s: allWords) { String Key, Integer Value

17 Loop over String word = s.toLowerCase();
18 all words // Check to see if we have seen this word before, update wor _
19 if (wordCounts.containsKey(word)) €— Check if word seen previously

20 Ubdate // Have seen this word before, increment the count
21 P wordCounts.put(word, wordCounts.get(word)+1);
22 word } \ We have seen this word before,
23 counts else { increments Value for this Key
24 // Have not seen this word before, add the new word (Ja
SZ 1 wordCounts.put(word, 1); Have not seen this word before, put() into
27 } Map with a value of 1 for word Key
28 // Print word counts A .
: Printing Map calls toString() on TreeMap class
29 System.out.pri ntln(wordCSun’ts_)_;_ & P 9l) P

Problems @ Javadoc Declaration E Console g% '—:i; Debug &1 Expressions Error Log o Call Hierarchy b4 & |
terminated> UniqueWordsCounts [Java Application] /Library/Java/JavaVirtualMachines/jdk1.8.0_112.jdk/Contents/Home/bin/java (Jan 2, 2018, 7:53:53 AM)

61
a=2, all=1l, and=2, as=1, be=1, by=1, contains=1, copies=2, copy=2, demonsti

Maps can also contain Objects such as a

List as their Value

Track position where each word appears (first word is at index 0)
Word may appear in multiple positions (e.g., 7" and 41 index)
Need a way to track many items for each word (word is Key in Map)

Use Map with a List as the Value instead of Object representation of a
primitive type (e.g., Integer)
Map will hold many Lists, one List for each Key

Here each List element is Integer, represents index where word found

Values as objects is a

powerful concept indeed!

Map
Key<String> | Value <List <Integer>>
Pretend head ~
that head -
this head —

62

UnigueWordPositions.java: Maps can also

contain Objects such as a List as their Value

9 public class UniqueWordsPositions { Create Map with String as Key and List of

10= public static void main(String[] args) { ntegers as Value

11 String page = "Pretend that this steifig was loaded from a web page. We wo
12 String[] allWords = page.split&PT .,7!]+");

13 // Declare new Map, eac ry in the Map is a List that will hold the ind
14 Map<String,List<Integer>> wordPositions = new TreeMap<String,List<Integer>
15 // Loop over all the words split out of the string, adding their positions
16 for (int 1=0; i<allWords.length; i++) {

17 String word = allWords[i].toLowerCase()ﬂ

18 Loop over // Check to see if we have seen this word before, update wordCounts ap

19 if (wordPositions.containsKey(word)) €—— Check if word seen previously
all words . . : . .
20 // Now each item in the Map is a LlS.t of |{)itegﬁr‘s, rlaldd the aomtui(
21 wordPositions.get(word).add(i); €— f Map has this word as a Key then add()
22 Update 1} position where word found to List
23 else { o s .
24 Wor.d_ // Add the new word with a new list co g% rqgt}'urs st ?!s.ugo‘é{tﬂ%ﬂ is a List here
25 positions List<Integer> positions = new ArraylList<Integer>();
26 positions.add(i); L ,
27 wordPositions.put(word, positions)}\ ¢ Create a new List if we haven’t seen
gg) } this word before
30 System.out.println(wordPositions); * add() word to new List
31 } * Then put(word, List) into Map
32 }
Problems i@ Javadoc Declaration & Console 33 15 Debug 69 Expressions] Error Leg Call Hierarchy b4 % EN Eﬁ =] E' @

@rminated> UniqueWordsPositions [Java Application] /Library/Java‘davaVirtualMachines/jdk1.8.0_112.jdk/Contents/Home/bin/java (Jan 2, 2018, 11:00:25 AM)

a=[7, 41], all=[14], and=[23, 29], as=[40], be=[38], by=[51], contains=[20@], copies=[Z

63

1. Set ADT
2. Map ADT
» 3. Reading from file/keyboard
Key points:
1. Java provides a FileReader class for reading files
4 Sea rCh 2. Java provides a Scanner class for reading from the

keyboard

64

UnigueWordPositionsFile.java: Read words

from a file instead of hard coded String

rows exception

12 public class UniqueWordsPositionsFile { .
13/ . What would happen if file not found?
14 * Collects all the lines from a file into a single string .
15 */ * Here would pass exception to caller
16¢ private static String loadFileIntoString(String filename) throws Exception { :
17 BufferedReader in = new BufferedReader(new FileReader(filename)); (may end exeCUtlon)
18 String str = "", line; €
19 while ((line = in.readLine()) != null) str += line; — BufferedReader can read from
20 in.close();
- / return str. \ Append each line from fileonto a file on disk
22 A .. String str
2Don’t forget to close file ™ . _» Load String page from a file
24 public static void main(String[] args) throws Exception {]
25 String page = IoadFiIeIntoStﬁng("inputs/text.txt"); * Rest of the code is the same as
26 Stri 11Words = split('[L, 200+ . . .
- ringl] allWords = page.split("L .,711+%) UniqueWordsPosition.java
28 // Declare new Map, each entry in the Map is a List that will hold the index w
29 Map<String,List<Integer>> wordPositions = new TreeMap<String,List<Integer>>();
30
31 // Loop over all the words split out of the string, adding their positions in
32 for (int 1=0; i<allWords.length; i++) {
33 String word = allWords[1i].toLowerCase();
34
35 // Check to see if we have seen this word before, update wordCounts approp
36 if (wordPositions.containsKey(word)) {
37 // Now each item in the Map is a List of Integers, add the position of
38 wordPositions.get(word).add(i);
39 }
40 else {
*! Problems @ Javadoc Declaration [E] Console 52 #= Debug €Y Expressions @ Error Log Call Hierarchy
d> UnigueWerdsPositionsFile [Java Application] /Library/Javas/davaVirtualMachines/jdk1.8.0_112.jdk/Centents/Heme/binjava (Jan 2, 2018, 11:25:26 AM) 65

{a-[? 25, 50], all=[14], and=[32, 38], as=[49], at=[18], be=[47], by=[60], contains=[29],

A scanner can be used to read input from

keyboard

1 import java.util.Scanner;

2
3 public class ScannerTest { Declare Scanner to read
4 , S _ from keyboard
Se public static void pai args) {
L 6 Scanner in = new Scanner(System.in);
7 String line;
8 int 1i;
9 //scanners read from the keyboard Parses input to match assigned
10 //they can parse input for different types .
11 System.out.println("EM type (e.g., read input as a
L Line = in.nextLine(); _ _ String with nextLine())
13 System.out.println("Got String: " + line); .
14 //now try reading an integer Execute pauses until user
15 System.out.println("Enter integer"D;
. D2 in nextInt(): presses Enter key
17 System. out.println("Got
18 }
;3 } Parse input as an integer with

nextint()

IE:?_ Problems @@ Javadoc @, Dreclaration E Console 53 7&& Debug f,}’: Expressions @ Error Log :*0 Call Hierarchy
<terminated> ScannerTest [Java Application] /Library/Java/JavaVirtualMachines/jdk1.8.0_112.jdk/CententssHeme/bin/java (Jan 2, 2018,

Enter String

Got String: test
Enter integer

Got int: 7 66

1. Set ADT
2. Map ADT

3. Reading from file/keyboard

» 4. Search

67

Search.java: Make different data structures

to help answer questions

Hamlet

Julius Caesar

King Lear

Macbeth

Midsummer

Othello

Romeo & Juliet

Tempest

Shakespeare works

Read

hamlet.txt forbear

the

juliusCaesar.txt the

hamlet.txt 32,831

juliusCaesar.txt 21,183

numfFiles: # of files word is in

forbear 3
forsooth 3

the 8

file2WordCounts
e Use filename
1 as Key
* Store how
many times
each word
606 appears in file

numWords Map of Maps!

 Map filename to
number of words in file

totalCounts: How many
total times word appears

forbear 6
forsooth 5
the 5,716

Demo: Search.java uses Scanner and data

structures to answer questions

Type a word to see how many times it appears in each file
* Love
* Forbear
* Forsooth
e Audience suggestion

n to get n most common words
 Trytop 10 words with # 10, then # 100
* Try bottom 10 words with # -10, then #-100
Can restrict to just a single file with # n (e.g., # 10 hamlet.txt)

Search multiple words, does an AND

Play around on your own °?

Key points

0N U A WN

Sets are an unordered collection of items like the mathematical
notion of a set

. Sets prevent duplicates

Can be implemented with trees (Java provides a TreeSet)
Maps look items up by Key and return Value

Python programmers, think dictionaries

Can be implemented with trees (Java provides a TreeMap)
Java provides a FileReader class for reading files

Java provides a Scanner class for reading from the keyboard

70

	Slide 1
	Slide 2: ADT Overview
	Slide 3: ADT Overview
	Slide 4: ADT Overview
	Slide 5: ADT Overview
	Slide 6: Agenda
	Slide 7: Sets are an unordered collection of items without duplicates
	Slide 8: Sets start out empty
	Slide 9: First item added will always create a new entry in the Set (item can’t be a duplicate)
	Slide 10: Can think of adding items to Set like adding items to “Bag of items” – no item ordering
	Slide 11: Can think of adding items to Set like adding items to “Bag of items” – no item ordering
	Slide 12: Can think of adding items to Set like adding items to “Bag of items” – no item ordering
	Slide 13: Can think of adding items to Set like adding items to “Bag of items” – no item ordering
	Slide 14: Adding an item that is already in the Set does not change the Set
	Slide 15: Items can be removed
	Slide 16: Items can be removed
	Slide 17: Can also check to see if item is in Set
	Slide 18: Can also check to see if item is in Set
	Slide 19: Trees are one way to implement the Set ADT
	Slide 20: Trees are one way to implement the Set ADT
	Slide 21: Trees are one way to implement the Set ADT
	Slide 22: Trees are one way to implement the Set ADT
	Slide 23: Trees are one way to implement the Set ADT
	Slide 24: Can use a Set to easily identify the unique words in a body of text
	Slide 25: Can use a Set to easily identify the unique words in a body of text
	Slide 26: Can use a Set to easily identify the unique words in a body of text
	Slide 27: Can use a Set to easily identify the unique words in a body of text
	Slide 28: UniqueWords.java: Use a Set to easily identify the unique words in a body of text
	Slide 29: Agenda
	Slide 30: Map ADT associates Keys with Values
	Slide 31: Like Sets, Maps initially start out empty
	Slide 32: Items are adding to a Map using put(Key,Value)
	Slide 33: Items are adding to a Map using put(Key,Value)
	Slide 34: Items are adding to a Map using put(Key,Value)
	Slide 35: Items are adding to a Map using put(Key,Value)
	Slide 36: Items are adding to a Map using put(Key,Value)
	Slide 37: If an item already exits, put(Key,Value) will update the Value for that Key
	Slide 38: If an item already exits, put(Key,Value) will update the Value for that Key
	Slide 39: Can remove items by Key and get Value for that Key (or null if Key not found)
	Slide 40: Can remove items by Key and get Value for that Key (or null if Key not found)
	Slide 41: keyset() returns a Set of Keys in the Map
	Slide 42: get(Key) returns the Value for the Key (or null if Key not found)
	Slide 43: get(Key) returns the Value for the Key (or null if Key not found)
	Slide 44: containsKey(Key) returns True if Key in Map, False otherwise
	Slide 45: containsKey(Key) returns True if Key in Map, False otherwise
	Slide 46: containsValue(Value) returns True if Value in Map, False otherwise
	Slide 47: containsValue(Value) returns True if Value in Map, False otherwise
	Slide 48: Trees are one way to implement the Map ADT
	Slide 49: containsValue() keep two trees: trade memory for speed
	Slide 50: On put(key,value), add Key/Value to Tree, increment count (if needed)
	Slide 51: On put(key,value), add Key/Value to Tree, increment count (if needed)
	Slide 52: On put(key,value), add Key/Value to Tree, increment count (if needed)
	Slide 53: On remove(key), delete Key/Value and decrement count
	Slide 54: On remove(key), delete Key/Value and decrement count
	Slide 55: On remove(key), delete Key/Value and decrement count
	Slide 56: On remove(key), delete Key/Value and decrement count
	Slide 57: Can use a Map to count word occurrences in a body of text
	Slide 58: Can use a Map to count word occurrences in a body of text
	Slide 59: Can use a Map to count word occurrences in a body of text
	Slide 60: Can use a Map to count word occurrences in a body of text
	Slide 61: UniqueWordCounts.java: Use Map to count word occurrences in a body of text
	Slide 62: Maps can also contain Objects such as a List as their Value
	Slide 63: UniqueWordPositions.java: Maps can also contain Objects such as a List as their Value
	Slide 64: Agenda
	Slide 65: UniqueWordPositionsFile.java: Read words from a file instead of hard-coded String
	Slide 66: A scanner can be used to read input from keyboard
	Slide 67: Agenda
	Slide 68: Search.java: Make different data structures to help answer questions
	Slide 69: Demo: Search.java uses Scanner and data structures to answer questions
	Slide 70: Key points

