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Agenda

1. Pattern matching vs. recognition

2. From Finite Automata to Hidden 
Markov Models

3. Decoding: Viterbi algorithm

4. Training



Email addresses follow a pattern: 
mailbox@domain.TLD  
example: tjp@cs.dartmouth.edu

Finite Automata can represent email address pattern
Sample addresses can be easily verified if in correct form
The email address pattern must be followed exactly
Any deviation results in rejection
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Last class we discussed how to use a Finite 
Automata to match a pattern

a-z @

Start

a-z

com

. edu

org

.

.

.

a-z a-z

mailto:mailbox@domain.TLD
mailto:tjp@cs.dartmouth.edu
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Sometimes our input is noisy and does not 
exactly match a pattern
Pattern matching vs. recognition

Image: duckrace.com

Matching Recognition

Is this a duck?



Matching Recognition

Looks like a 
duck
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Sometimes our input is noisy and does not 
exactly match a pattern
Pattern matching vs. recognition

Image: duckrace.com

Is this a duck?



Matching Recognition

Looks like a 
duck

Quacks like 
a duck
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Sometimes our input is noisy and does not 
exactly match a pattern
Pattern matching vs. recognition

Image: duckrace.com

Is this a duck?



Matching Recognition

Looks like a 
duck

Quacks like 
a duck

Does not 
wear cool 
eyewear
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Sometimes our input is noisy and does not 
exactly match a pattern
Pattern matching vs. recognition

Image: duckrace.com

Is this a duck?



Matching Recognition

Looks like a 
duck

Quacks like 
a duck

Does not 
wear cool 
eyewear

Is it a duck?
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Sometimes our input is noisy and does not 
exactly match a pattern
Pattern matching vs. recognition

Image: duckrace.com

Is this a duck?

Pattern recognition still accepts this as a 
duck, even though not all features match
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Agenda

1. Pattern matching vs. recognition

2. From Finite Automata to Hidden 
Markov Models

3. Decoding: Viterbi algorithm

4. Training
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We can model systems using Finite 
Automata

Sunny

Weather model: possible states

Cloudy

Adapted from: https://pdfs.semanticscholar.org/b328/2eb0509442b80760fea5845e158168daee62.pdf

Rainy

The State of the 
weather can be:
• Sunny
• Cloudy
• Rainy
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We can model systems using Finite 
Automata

Sunny

0.8

Weather model: transitions

Cloudy

Adapted from: https://pdfs.semanticscholar.org/b328/2eb0509442b80760fea5845e158168daee62.pdf

Rainy

0.15

0.05

0.5

0.3

0.2

0.6

0.2 0.2

We can observe 
weather patterns and 
determine probability 
of transition between 
states
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We can model systems using Finite 
Automata

Sunny

0.8

Cloudy

Adapted from: https://pdfs.semanticscholar.org/b328/2eb0509442b80760fea5845e158168daee62.pdf

Rainy

0.15

0.05

0.5

0.3

0.2

0.6

0.2 0.2

Probability a sunny day is 
followed by:

Weather model: Sunny day example
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We can model systems using Finite 
Automata

Sunny

0.8

Weather model: Sunny day example

Cloudy

Adapted from: https://pdfs.semanticscholar.org/b328/2eb0509442b80760fea5845e158168daee62.pdf

Rainy

0.15

0.05

0.5

0.3

0.2

0.6

0.2 0.2

Probability a sunny day is 
followed by:
• Another sunny day 80%
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We can model systems using Finite 
Automata

Sunny

0.8

Cloudy

Adapted from: https://pdfs.semanticscholar.org/b328/2eb0509442b80760fea5845e158168daee62.pdf

Rainy

0.15

0.05

0.5

0.3

0.2

0.6

0.2 0.2

Probability a sunny day is 
followed by:
• Another sunny day 80%
• A cloudy day 15%

Weather model: Sunny day example
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We can model systems using Finite 
Automata

Sunny

0.8

Cloudy

Adapted from: https://pdfs.semanticscholar.org/b328/2eb0509442b80760fea5845e158168daee62.pdf

Rainy

0.15

0.05

0.5

0.3

0.2

0.6

0.2 0.2

Probability a sunny day is 
followed by:
• Another sunny day 80%
• A cloudy day 15%
• A rainy day 5%

Weather model: Sunny day example
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FA model allows us to answer questions 
about the probability of events occurring

Sunny

0.8

Weather model: predict two days in advance

Cloudy

Adapted from: https://pdfs.semanticscholar.org/b328/2eb0509442b80760fea5845e158168daee62.pdf

Rainy

0.15

0.05

0.5

0.3

0.2

0.6

0.2 0.2

Given today is sunny, 
what is the probability it 
will be rainy two days 
from now?
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FA model allows us to answer questions 
about the probability of events occurring

0.8

Cloudy

Adapted from: https://pdfs.semanticscholar.org/b328/2eb0509442b80760fea5845e158168daee62.pdf

Rainy

0.15

0.05

0.5

0.3

0.2

0.6

0.2 0.2

Given today is sunny, 
what is the probability it 
will be rainy two days 
from now?
• Could be sunny, then 

rainy

Weather model: predict two days in advance

Sunny
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FA model allows us to answer questions 
about the probability of events occurring

0.8

Cloudy

Adapted from: https://pdfs.semanticscholar.org/b328/2eb0509442b80760fea5845e158168daee62.pdf

Rainy

0.15

0.05

0.5

0.3

0.2

0.6

0.2 0.2

Given today is sunny, 
what is the probability it 
will be rainy two days 
from now?
• Could be sunny, then 

rainy

Weather model: predict two days in advance

Sunny
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FA model allows us to answer questions 
about the probability of events occurring

0.8

Cloudy

Adapted from: https://pdfs.semanticscholar.org/b328/2eb0509442b80760fea5845e158168daee62.pdf

Rainy

0.15

0.05

0.5

0.3

0.2

0.6

0.2 0.2

Given today is sunny, 
what is the probability it 
will be rainy two days 
from now?
• Could be sunny, then 

rainy (0.8*0.05)

Weather model: predict two days in advance

Sunny
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FA model allows us to answer questions 
about the probability of events occurring

0.8

Cloudy

Adapted from: https://pdfs.semanticscholar.org/b328/2eb0509442b80760fea5845e158168daee62.pdf

Rainy

0.15

0.05

0.5

0.3

0.2

0.6

0.2 0.2

Given today is sunny, 
what is the probability it 
will be rainy two days 
from now?
• Could be sunny, then 

rainy (0.8*0.05)
• Could be cloudy, then 

rainy

Weather model: predict two days in advance

Sunny
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FA model allows us to answer questions 
about the probability of events occurring

0.8

Cloudy

Adapted from: https://pdfs.semanticscholar.org/b328/2eb0509442b80760fea5845e158168daee62.pdf

Rainy

0.15

0.05

0.5

0.3

0.2

0.6

0.2 0.2

Given today is sunny, 
what is the probability it 
will be rainy two days 
from now?
• Could be sunny, then 

rainy (0.8*0.05)
• Could be cloudy, then 

rainy

Weather model: predict two days in advance

Sunny
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FA model allows us to answer questions 
about the probability of events occurring

0.8

Cloudy

Adapted from: https://pdfs.semanticscholar.org/b328/2eb0509442b80760fea5845e158168daee62.pdf

Rainy

0.15

0.05

0.5

0.3

0.2

0.6

0.2 0.2

Given today is sunny, 
what is the probability it 
will be rainy two days 
from now?
• Could be sunny, then 

rainy (0.8*0.05)
• Could be cloudy, then 

rainy (0.15*0.3)

Weather model: predict two days in advance

Sunny
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FA model allows us to answer questions 
about the probability of events occurring

0.8

Cloudy

Adapted from: https://pdfs.semanticscholar.org/b328/2eb0509442b80760fea5845e158168daee62.pdf

Rainy

0.15

0.05

0.5

0.3

0.2

0.6

0.2 0.2

Given today is sunny, 
what is the probability it 
will be rainy two days 
from now?
• Could be sunny, then 

rainy (0.8*0.05)
• Could be cloudy, then 

rainy (0.15*0.3)
• Could be rainy, then 

rainy

Weather model: predict two days in advance

Sunny
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FA model allows us to answer questions 
about the probability of events occurring

0.8

Cloudy

Adapted from: https://pdfs.semanticscholar.org/b328/2eb0509442b80760fea5845e158168daee62.pdf

Rainy

0.15

0.05

0.5

0.3

0.2

0.6

0.2 0.2

Given today is sunny, 
what is the probability it 
will be rainy two days 
from now?
• Could be sunny, then 

rainy (0.8*0.05)
• Could be cloudy, then 

rainy (0.15*0.3)
• Could be rainy, then 

rainy

Weather model: predict two days in advance

Sunny
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FA model allows us to answer questions 
about the probability of events occurring

0.8

Cloudy

Adapted from: https://pdfs.semanticscholar.org/b328/2eb0509442b80760fea5845e158168daee62.pdf

Rainy

0.15

0.05

0.5

0.3

0.2

0.6

0.2 0.2

Given today is sunny, 
what is the probability it 
will be rainy two days 
from now?
• Could be sunny, then 

rainy (0.8*0.05)
• Could be cloudy, then 

rainy (0.15*0.3)
• Could be rainy, then 

rainy (0.05*0.6)

Weather model: predict two days in advance

Sunny
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FA model allows us to answer questions 
about the probability of events occurring

0.8

Cloudy

Adapted from: https://pdfs.semanticscholar.org/b328/2eb0509442b80760fea5845e158168daee62.pdf

Rainy

0.15

0.05

0.5

0.3

0.2

0.6

0.2 0.2

Given today is sunny, 
what is the probability it 
will be rainy two days 
from now?
• Could be sunny, then 

rainy (0.8*0.05)
• Could be cloudy, then 

rainy (0.15*0.3)
• Could be rainy, then 

rainy (0.05*0.6)

Total = (0.8*0.05) 
+ (0.15*0.3) + 
(0.05*0.6) = 0.115

Weather model: predict two days in advance

Sunny



Given that we can observe 
the state we are in, it 
doesn’t really matter how 
we got there:
• Probability of weather 

at time n, given the 
weather at time n-1, 
and at n-2, and n-3 …

• Is approximately equal 
to the probability of 
weather at time n given 
only the weather at n-1

• P(wn|wn-1,wn-2,wn-3) ≈ 
P(wn|wn-1)

Markov property suggests it doesn’t really 
matter how we got into the current State

Sunny

0.8

Cloudy

Adapted from: https://pdfs.semanticscholar.org/b328/2eb0509442b80760fea5845e158168daee62.pdf

Rainy

0.15

0.05

0.5

0.3

0.2

0.6

0.2 0.2

Given current State, can predict likelihood of future states

Markov property: it doesn’t matter how we got to a state, 
the current state is all we need to predict the next state
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Model works well if we can directly 
observe the state, what if we cannot?
Sometimes we cannot directly observe the state

• You’re being held prisoner and want to know the 
weather outside.  You can’t see outside, but you can 
observe if the guard brings an umbrella.

• You observe photos of your friends.  You don’t know 
what city they were in, but do know something about 
the cities.  Can you guess what cities they visited?

• You want to ask for a raise, but only if the boss is in a 
good mood.  How can you tell if the boss is in a good 
mood if you can’t tell by looking?
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Want to ask the boss for raise when the 
boss’s state is a Good mood

Good Bad

Gather stats about likelihood of states

Start
0.6 0.4

• Can’t know boss’s mood 
for sure simply by 
looking (state is hidden)

• Want to know current 
state (Good or Bad)

• Could ask everyday and 
record statistics about it

• Assume boss answers 
truthfully:
• Ask 100 times
• 60 times good
• 40 times bad

• Boss slightly more likely 
to be in good mood 
(60% chance)

Hidden 
States



Hidden 
States
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In addition to states, find likelihood of 
transitioning from one state to another
Gather stats about state transitions

Start
0.6 0.4

• Watch boss on day 
after asking about 
mood, ask again next 
day

• Calculate probability 
of staying in same 
mood or transitioning 
to another mood 
(hidden state)

• Similar to how 
weather transitioned 
states

0.7 0.6

0.3

0.4
Good Bad



Hidden 
States
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Once have states and transitions, might 
find something we can directly observe
Might be able to observe music playing

Start
0.6 0.4

• Might observe what 
music the boss plays

• Blues, Jazz or Rock

• Record stats about 
music choice when in 
either mood (hidden 
states)

0.7 0.6

0.3

0.4

Blues Jazz Rock

Good Bad

0.1 0.4 0.5



Hidden 
States
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Once have states and transitions, might 
find something we can directly observe
Might be able to observe music playing

Start
0.6 0.4

• Might observe what 
music the boss plays

• Blues, Jazz or Rock

• Record stats about 
music choice when in 
either mood (hidden 
states)

0.7 0.6

0.3

0.4

Blues Jazz Rock

Good Bad

0.1 0.4 0.5

0.6
0.3 0.1



Hidden 
States
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This is a Hidden Markov Model (HMM)

Hidden Markov Model

Start
0.6 0.4

• States (boss’s mood) 
are hidden, can’t be 
directly observed

• But we can observe 
something (music) 
that can help us 
calculate the most 
likely hidden state

0.7 0.6

0.3

0.4

Blues Jazz Rock

Good Bad

0.1 0.4 0.5

0.6
0.3 0.1



Hidden 
States
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So is today a good day to ask for a raise?  

So far we have no music observation

Start
0.6 0.4

• Given no other 
information, it’s a 
pretty good bet the 
boss in Good mood

• Good mood = 0.6

• Bad mood = 0.4

• Yes, on any given day 
boss is slightly more 
likely to be in a good 
mood

0.7 0.6

0.3

0.4

Blues Jazz Rock

Good Bad

0.1 0.4 0.5

0.6
0.3 0.1



Hidden 
States
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By observing music, we might be able to 
get a better sense of the boss’s mood!
Observe Rock music

Start
0.6 0.4

• Say today we observe 
the boss is playing 
Rock music

• Should we ask for a 
raise?

• Good mood =     
0.6*0.5 = 0.3

• Bad mood =       
0.4*0.1 = 0.04

• Most likely a good day 
to ask!

0.7 0.6

0.3

0.4

Blues Jazz Rock

Good Bad

0.1 0.4 0.5

0.6
0.3 0.1



Hidden 
States
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Bayes theorem can give us the actual 
probabilities of each hidden state
Observe Rock music

Start
0.6 0.4

• Given the boss is playing 
Rock music, use Bayes 
Theorem:

• P(A|B) = P(B|A)*P(A)
 P(B)

• P(G|R) = P(R|G)*P(G)
P(R)

• P(R|G) = 0.5
• P(G) = 0.6
• P(R)=0.6*0.5+0.4*0.1 = 

0.34

• P(G|R) = 0.5*0.6/0.34 = 
0.88

0.7 0.6

0.3

0.4

Blues Jazz Rock

Good Bad

0.1 0.4 0.5

0.6
0.3 0.1

G=Good, B=Bad, R=Rock

88% likely to be in good mood
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Agenda

1. Pattern matching vs. recognition

2. From Finite Automata to Hidden 
Markov Models

3. Decoding: Viterbi algorithm

4. Training
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We can estimate the most likely hidden 
state based on observations

Start

0.6
Good

Bad

0.4

• Viterbi algorithm reconstructs most 
likely historical states given a set of 
observations
• Computes “forward” the most 

likely state given each observation
• Once most likely state computed 

for all observations, back track to 
find most likely sequence of states

• Can update its prior estimates 
based on new observations

• Closely related Forward algorithm 
computes probability of being in all 
states as observations made

Start
0.6 0.4

0.7 0.6

0.3

0.4

Blues Jazz Rock

Good Bad

0.1 0.4
0.5 0.6

0.3 0.1
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We can estimate the most likely hidden 
state based on observations

Start

0.6
Good

Bad

0.4

Given no observations, 
can make a guess at true 
state

Guess state with highest 
score

Start
0.6 0.4

0.7 0.6

0.3

0.4

Blues Jazz Rock

Good Bad

0.1 0.4
0.5 0.6

0.3 0.1
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We can estimate the most likely hidden 
state based on observations

Start

0.6*0.5
Good

Bad

Day 1: 
Observe 
Rock

0.4*0.1

0.3

0.04

If we make an 
observation, we might be 
able to increase our 
accuracy

Multiply previous score 
by likelihood of 
observation

Most likely in a Good 
mood (~8X more likely)

Ask for a raise?
Yes!

Start
0.6 0.4

0.7 0.6

0.3

0.4

Blues Jazz Rock

Good Bad

0.1 0.4
0.5 0.6

0.3 0.1
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We can estimate the most likely hidden 
state based on observations

Start

Good

Bad

Day 1: 
Observe 
Rock

0.4*0.1

0.3

0.04

If we make an 
observation, we might be 
able to increase our 
accuracy

Multiply previous score 
by likelihood of 
observation

Most likely in a Good 
mood (~8X more likely)

Ask for a raise?
Yes!

0.6*0.5

Most likely State 
has highest score

Start
0.6 0.4

0.7 0.6

0.3

0.4

Blues Jazz Rock

Good Bad

0.1 0.4
0.5 0.6

0.3 0.1
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We can estimate the most likely hidden 
state based on observations

Start

Good

Bad

Day 1: 
Observe 
Rock

0.4*0.1

0.3

0.04

Day 2: 
Observe 
Jazz

0.6*0.5

Start
0.6 0.4

0.7 0.6

0.3

0.4

Blues Jazz Rock

Good Bad

0.1 0.4
0.5 0.6

0.3 0.1
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We can estimate the most likely hidden 
state based on observations

Start

Good

Bad

Day 1: 
Observe 
Rock

0.4*0.1

Good

Day 2: 
Observe 
Jazz

Good

0.3

0.04

0.3*0.7*0.4

Update rule on new observation:
Current* Transition* Observation

Most likely state has 
highest value

0.084

0.6*0.5

Current

Transition probability 
from Good to Good

Observation Jazz|Good

New current estimate for 
Good if Good yesterday

Start
0.6 0.4

0.7 0.6

0.3

0.4

Blues Jazz Rock

Good Bad

0.1 0.4
0.5 0.6

0.3 0.1
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We can estimate the most likely hidden 
state based on observations

Start

Good

Bad

Day 1: 
Observe 
Rock

0.4*0.1

Bad

Day 2: 
Observe 
Jazz

Good

0.3

0.04

0.3*0.7*0.4

0.3*0.3*0.3

Update rule on new observation:
Current* Transition* Observation

Most likely state has 
highest value

0.027

0.084

0.6*0.5

Current

Transition probability 
from Good to Bad

Observation Jazz|Bad

New current estimate for Bad if Good yesterday

Good
Do the same for possible 
transition from Good to Bad

Start
0.6 0.4

0.7 0.6

0.3

0.4

Blues Jazz Rock

Good Bad

0.1 0.4
0.5 0.6

0.3 0.1
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We can estimate the most likely hidden 
state based on observations

Start

Good

Bad

Day 1: 
Observe 
Rock

0.4*0.1

Bad

Day 2: 
Observe 
Jazz

Good

0.3

0.04

0.3*0.7*0.4

0.3*0.3*0.3

0.04*0.4*0.4

0.04 *0.6*0.3

0.027

0.084

Update rule:
Current* Transition* Observation

Most likely state has 
highest value

0.6*0.5

• Repeat process for 
estimate from Bad State

• Keep highest estimate as 
most likely State

0.04*0.4*0.4=0.0064 < 0.084
Keep 0.084 as most likely

0.04*0.6*0.3=0.0072 < 0.027 so keep 0.027

Good

Sum for Forward 
algorithm

Start
0.6 0.4

0.7 0.6

0.3

0.4

Blues Jazz Rock

Good Bad

0.1 0.4
0.5 0.6

0.3 0.1
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We can estimate the most likely hidden 
state based on observations

Start

Good

Bad

Day 1: 
Observe 
Rock

0.4*0.1

Good

Bad

Day 2: 
Observe 
Jazz

Good

0.3

0.04

0.3*0.7*0.4

0.3*0.3*0.3

0.04*0.4*0.4

0.04 *0.6*0.3

0.027

0.084

Update rule:
Current* Transition* Observation

Most likely state has 
highest value

0.6*0.5

• Most likely current State 
has highest score

• Most likely path given 
Observations of Rock 
then Jazz was Good 
mood yesterday, Good 
mood today

• Now only about 3X more 
likely to be in Good mood

• Previously 8X more likely
• Structure called a trellis

NOTE: score gets smaller 
with each observation!

Start
0.6 0.4

0.7 0.6

0.3

0.4

Blues Jazz Rock

Good Bad

0.1 0.4
0.5 0.6

0.3 0.1
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We can estimate the most likely hidden 
state based on observations

Start

Good

Bad

Day 1: 
Observe 
Rock

0.4*0.1

Good

Bad

Day 2: 
Observe 
Jazz

Good

0.3

0.04

0.3*0.7*0.4

0.3*0.3*0.3

0.04*0.4*0.4

0.04 *0.6*0.3

0.027

0.084

Day 3: 
Observe 
Blues

0.6*0.5

Start
0.6 0.4

0.7 0.6

0.3

0.4

Blues Jazz Rock

Good Bad

0.1 0.4
0.5 0.6

0.3 0.1
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We can estimate the most likely hidden 
state based on observations

Start

Good

Bad

Day 1: 
Observe 
Rock

0.4*0.1

Good

Bad

Day 2: 
Observe 
Jazz

Good

0.3

0.04

0.3*0.7*0.4

0.3*0.3*0.3

0.04*0.4*0.4

0.04 *0.6*0.3

0.027

0.084

Good

Bad

0.084*0.7*0.1

0.084*0.3*0.6

0.027*0.4*0.1

0.01512

0.00588

Day 3: 
Observe 
Blues

0.6*0.5

Start
0.6 0.4

0.7 0.6

0.3

0.4

Blues Jazz Rock

Good Bad

0.1 0.4
0.5 0.6

0.3 0.1

0.027 *0.6*0.6



49

We can estimate the most likely hidden 
state based on observations

Start

Good

Bad

Day 1: 
Observe 
Rock

0.4*0.1

Good

Bad

Day 2: 
Observe 
Jazz

Good

0.3

0.04

0.3*0.7*0.4

0.3*0.3*0.3

0.04*0.4*0.4

0.04 *0.6*0.3

0.027

0.084

Good

Bad

0.084*0.7*0.1

0.084*0.3*0.6

0.027*0.4*0.1

0.01512

0.00588

Day 3: 
Observe 
Blues

0.6*0.5

Sometimes path 
estimate changes on 
new observations

Start
0.6 0.4

0.7 0.6

0.3

0.4

Blues Jazz Rock

Good Bad

0.1 0.4
0.5 0.6

0.3 0.1

0.027 *0.6*0.6
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Viterbi algorithm back tracks to find most 
likely state sequence given observations

Start

Good

Bad

Day 1: 
Observe 
Rock

0.4*0.1

Good

Bad

Day 2: 
Observe 
Jazz

Good

0.3

0.04

0.3*0.7*0.4

0.3*0.3*0.3

0.04*0.4*0.4

0.04 *0.6*0.3

0.027

0.084

Good

Bad

0.084*0.7*0.1

0.084*0.3*0.6

0.027*0.4*0.1

0.027 *0.6*0.6

0.01512

0.00588

Day 3: 
Observe 
Blues

Given observations of {Rock, Jazz, Blues} 
The boss’s mood mostly likely was {Good, Good, Bad}

Viterbi algorithm: 
process all 
observations

Start at last 
observation and 
track back to start

Start
0.6 0.4

0.7 0.6

0.3

0.4

Blues Jazz Rock

Good Bad

0.1 0.4
0.5 0.6

0.3 0.1

0.6*0.5
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HMMs and Viterbi algorithm used in a 
number of fields such a monitoring health

Start

Good

Unhealthy

Day 1: 
Sensor 
input

Healthy

Unhealthy

Day 2: 
Sensor 
input

Healthy Healthy

Unhealthy

Day 3: 
Sensor 
input

Prof. Campbell’s BeWell 
app uses smart phone 
sensor data and HMM 
to estimate health 
behavior of users over 
time

Given sequence of 
sensor data, what was 
the subject’s most likely 
health state on each day

Lane N, Mohammod M, Lin M, Yang X, Lu H, Ali S, et al. BeWell: A smartphone application to monitor, model and 
promote wellbeing. International Conference on Pervasive Computing Technologies for Healthcare; 2011. 
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Viterbi allow us to determine the most 
likely sequence of state transitions

We can’t directly observe the hidden state so we can’t 
know the true state with certainty

If there is something we can observe, we might be able 
to infer the true state with greater accuracy than 
guessing

With Viterbi’s algorithm, given a sequence of 
observations we can determine the most likely state 
transitions over time

Key points
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Agenda

1. Pattern matching vs. recognition

2. From Finite Automata to Hidden 
Markov Models

3. Decoding: Viterbi algorithm

4. Training
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First we build a model, then we use it to 
make predictions on new data

Build Model

Training data annotated 
with actual outcome 
(e.g., weather was Hot, 
I ate 3 ice cream cones)

Want many samples of 
training data to learn 
system’s behavior

Assume future like past

Use Model

New data not 
seen in training 
(e.g., I ate 2 ice 
cream cones, 
what was the 
weather?)

Prediction

Predict outcome of 
new data  (e.g., based 
on behavior in the 
training data, the 
weather was most 
likely Hot)

Simplified machine learning pipeline
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To build an HMM we start with previous 
observations called training data
Annotated training data gives transition probabilities

Situation:
Have a diary with of number of ice cream cones eaten each 
day when the weather was Hot or Cold

Diary provides the annotated training data to build a HMM  

Later we will use the model to make predictions (e.g., given 
the number of cones eaten on a different set of days, 
predict weather for those days)

Cones eaten is observable, weather is the hidden State
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Training data provides data on what has 
actually occurred in the past
Annotated training data gives transition probabilities

Diary entries:
1. Hot day today! I chowed down three whole cones.
2. Hot again. But I only ate two cones; need to run to the store and get more 

ice cream.
3. Cold today. Still, the ice cream was calling me, and I ate one cone.
4. Cold again. Kind of depressed, so ate a couple cones despite the weather.
5. Still cold. Only in the mood for one cone.
6. Nice hot day. Yay! Was able to eat a cone each for breakfast, lunch, and 

dinner.
7. Hot but was out all day and only had enough cash on me for one ice 

cream.
8. Brrrr, the weather turned cold really quickly. Only one cone today.
9. Even colder. Still ate one cone.
10. Defying the continued coldness by eating three cones.

We will use this data to build our model
We will use the model to make predictions assuming the future observations behave 
as the training data does
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Identify the hidden States and count the 
number of times each hidden State occurs
Annotated training data gives transition probabilities

Diary entries:
1. Hot day today! I chowed down three whole cones.
2. Hot again. But I only ate two cones; need to run to the store and get more 

ice cream.
3. Cold today. Still, the ice cream was calling me, and I ate one cone.
4. Cold again. Kind of depressed, so ate a couple cones despite the weather.
5. Still cold. Only in the mood for one cone.
6. Nice hot day. Yay! Was able to eat a cone each for breakfast, lunch, and 

dinner.
7. Hot but was out all day and only had enough cash on me for one ice 

cream.
8. Brrrr, the weather turned cold really quickly. Only one cone today.
9. Even colder. Still ate one cone.
10. Defying the continued coldness by eating three cones.

Hidden states: Hot (4 days) or Cold (6 days)
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Identify observable States (cones eaten) 
and count number of times each occurs
Annotated training data gives transition probabilities

Diary entries:
1. Hot day today! I chowed down three whole cones.
2. Hot again. But I only ate two cones; need to run to the store and get more 

ice cream.
3. Cold today. Still, the ice cream was calling me, and I ate one cone.
4. Cold again. Kind of depressed, so ate a couple cones despite the weather.
5. Still cold. Only in the mood for one cone.
6. Nice hot day. Yay! Was able to eat a cone each for breakfast, lunch, and 

dinner.
7. Hot but was out all day and only had enough cash on me for one ice 

cream.
8. Brrrr, the weather turned cold really quickly. Only one cone today.
9. Even colder. Still ate one cone.
10. Defying the continued coldness by eating three cones.

Hidden states: Hot (4 days) or Cold (6 days)
Observations: 1, 2, or 3 ice cream cones eaten

Real world: normally have 
to pre-process data to get 
something like:
1 | Hot | 3 cones
2 | Hot | 2 cones
3 | Cold| 1 cone
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Begin at Start, add vertex for each hidden 
State with counts from training data
Count observations: 4 Hot days, 6 Cold days

Start
4 6

Hot Cold
Hidden 
States

There were a total of 10 
observations:
• 4 Hot days
• 6 Cold days
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Add transitions between hidden States 
using count of next day’s hidden State
Count observations: transitions between hidden states (e.g., Hot->Hot)

Start
4 6

Hot Cold

2 4

2

1

Hidden 
States

When it was Hot:
• How many times was the 

next day also Hot (2)
• How many times was the 

next day Cold (2)

When it was Cold:
• How many times was the 

next day also Cold (4)
• How many times was the 

next day Hot (1)

Note: one fewer Cold transitions 
because last day was Cold and 
no observation for the following 
day
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For each hidden State, count the number 
of occurrences of each observation
Count observations: cones eaten when Hot

Start
4 6

Hot Cold

1 
cone

2 
cones

3 
cones

1 1 2

2 4

2

1

Hidden 
States

From each hidden State count 
how many times we see each 
observation

Hot:
• 1 cone seen 1 time
• 2 cones seen 1 time
• 3 cones seen 2 times
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For each hidden State, count the number 
of occurrences of each observation
Count observations: cones eaten when Cold

Start
4 6

Hot Cold

1 
cone

2 
cones

3 
cones

1 1 2 4 1 1

2 4

2

1

Hidden 
States

From each hidden State count 
how many times we see each 
observation

Hot:
• 1 cone seen 1 time
• 2 cones seen 1 time
• 3 cones seen 2 times

Cold
• 1 cones seen 4 times
• 2 cones seen 1 time
• 3 cones seen 1 time
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Convert observations counts into 
probabilities by dividing by total count
Convert to probabilities

Start
4 6

Hot Cold

1 
cone

2 
cones

3 
cones

1 1 2 4 1 1

2 4

2

1

Hidden 
States

Probability = count/total count

Example from Hot days:
Total of 4 cones eaten when Hot

• 1 cone eaten 1 time
• 2 cones eaten 1 time
• 3 cones eaten 2 times
• Total 4 cones eaten

Probability:
• 1 cone = 1/4 = 0.25
• 2 cones = 1/4 = 0.25
• 3 cones = 2/4 = 0.5

Convert all transitions to 
probabilities
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Convert observations into probabilities by 
dividing count by total count
Probabilities based on observations 

Start
0.4 0.6

Hot Cold

1 
cone

2 
cones

3 
cones

0.25 0.25 0.5 0.17

0.5 0.8

0.5

0.2

Hidden 
States

0.66 0.17

All counts now converted into 
probabilities

We would like to use the 
probabilities in the update rule 
covered previously: 
(current*transition*observation)

Problem: repeatedly multiplying 
numbers less than 1 quickly 
leads to numerical precision 
problems
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Use logarithms to help with numerical 
precision problem
Probabilities based on observations

Start
0.4 0.6

Hot Cold

1 
cone

2 
cones

3 
cones

0.25 0.25 0.5 0.17

0.5 0.8

0.5

0.2

Hidden 
States

0.66 0.17

A fact about logarithms can help 
us avoid precision issues:

log(mn) = log(m) + log(n)

To calculate score, add logs of 
each factor instead of 
multiplying probabilities
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Use logarithms to help with numerical 
precision problem
Log probabilities based on observations

Start
-0.4 -0.22

Hot Cold

1 
cone

2 
cones

3 
cones

-0.6 -0.6 -0.3 -0.77

-0.3 -0.97

-0.3

-0.7

Hidden 
States

-0.18 -0.77

A fact about logarithms can help 
us avoid precision issues:

log(mn) = log(m) + log(n)

To calculate score, add logs of 
each factor instead of 
multiplying probabilities

Take log (base 10 here, natural 
log in PS-5) of each probability

Negative numbers are ok, we 
will soon choose largest score 
(least negative)
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Model built: given number of cones eaten, 
calculate most likely weather on each day

Observations {Two cones, three cones, two cones}

Day 1:
Two cones

Weather
Hot or Cold?

Day 2:
Three cones

Weather
Hot or Cold?

Day 3:
Two cones

Weather
Hot or Cold?

New set of observations
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Begin at Start State with 0 current score

# Observation nextState currrentState currScore + transScore
+ observation

nextScore

Start n/a Start n/a 0 0

Observations {Two cones, three cones, two cones}
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First observation is two cones eaten, 
calculate score for each possible next State

# Observation nextState currrentState currScore + transScore
+ observation

nextScore

Start n/a Start n/a 0 0

0 Two cones Cold Start 0-0.22-0.77 -0.99

Hot Start 0-0.4-0.6 -1.0

Observations {Two cones, three cones, two cones}
Most likely {Cold} (largest score)

Could transition to Cold or to Hot from Start, 
keep track of both possibilities

Calculate nextScore for each 
hidden State by adding 
logarithms 

Store nextScore for 
each hidden State, 
largest score is 
most likely (Cold)

Best 
guess is 
first day 
is Cold
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Next observation is three cones eaten, 
calculate score for each possible next State

# Observation nextState currrentState currScore + transScore
+ observation

nextScore

Start n/a Start n/a 0 0

0 Two cones Cold Start 0-0.22-0.77 -0.99

Hot Start 0-0.4-0.6 -1.0

1 Three cones Cold Cold -0.99-0.97-0.77 -2.73

Cold Hot -1-0.3-0.77 -2.07

Hot Cold -0.99-0.7-0.3 -1.99

Hot Hot -1-0.3-0.3 -1.6

Observations {Two cones, three cones, two cones}
Most likely {Hot Hot }

Current State could be Cold or Hot, next State could 
be Cold or Hot, keep track of all possibilities

Calculate nextScore for each hidden State by 
adding logarithms 

Keep largest score for 
each nextState
Largest most likely (Hot)
Prior was also Hot
Estimate of prior day 
changed from Cold to 
Hot
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Next observation is two cones eaten, 
calculate score for each possible next State

# Observation nextState currrentState currScore + transScore
+ observation

nextScore

Start n/a Start n/a 0 0

0 Two cones Cold Start 0-0.22-0.77 -0.99

Hot Start 0-0.4-0.6 -1.0

1 Three cones Cold Cold -0.99-0.97-0.77 -2.73

Cold Hot -1-0.3-0.77 -2.07

Hot Cold -0.99-0.7-0.3 -1.99

Hot Hot -1-0.3-0.3 -1.6

2 Two cones Cold Cold -2.07-0.97-0.77 -3.81

Cold Hot -1.6-0.3-0.77 -2.67

Hot Cold -2.07-0.7-0.6 -3.37

Hot Hot -1.6-0.3-0.6 -2.5

Observations {Two cones, three cones, two cones}
Most likely {Hot Hot Hot }

Current State could 
be Cold or Hot, next 
State could be Cold 
or Hot, keep track 
of all possibilities Largest most likely (Hot)

Prior was also Hot then
Prior prior also Hot
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Because estimates can change, start at end 
and work backward to find most likely path

# Observation nextState currrentState currScore + transScore
+ observation

nextScore

Start n/a Start n/a 0 0

0 Two cones Cold Start 0-0.22-0.77 -0.99

Hot Start 0-0.4-0.6 -1.0

1 Three cones Cold Cold -0.99-0.97-0.77 -2.73

Cold Hot -1-0.3-0.77 -2.07

Hot Cold -0.99-0.7-0.3 -1.99

Hot Hot -1-0.3-0.3 -1.6

2 Two cones Cold Cold -2.07-0.97-0.77 -3.81

Cold Hot -1.6-0.3-0.77 -2.67

Hot Cold -2.07-0.7-0.6 -3.37

Hot Hot -1.6-0.3-0.6 -2.5

Observations {Two cones, three cones, two cones}
Most likely {Hot Hot Hot }

Back track to largest 
where nextState is Hot

Most likely nextState at end 
was Hot

Previous came from Hot
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The weather was most likely Hot, Hot, Hot

Day 1:
Two cones

Weather
Hot

Day 2:
Three cones

Weather
Hot

Day 3:
Two cones

Weather
Hot

Observations {Two cones, three cones, two cones}
Most likely {Hot Hot Hot }

Best estimates of hidden State given new set of observations
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