
CS 10:
Problem solving via Object Oriented

Programming

Synchronization
Dartmouth CS10 Winter 2025

2

Agenda

1. Threads and interleaving execution

2. Producer/consumer

3. Deadlock, starvation

main() {

MyThread t = new MyThread();

//start thread at run method, main

thread keeps running

t.start()

//halt main until thread finishes

t.join()
3

Threads are a way for multiple processes to
run “concurrently”

Main program

MyThread 1

MyThread 2

MyThread n

…

Threads Assume MyThread is a
class that extends
Thread

MyThread must
implement a run

method

Execution begins by
calling start on a
MyThread object, run
method then executes

Can call join to halt
main program until
thread finishes

4

Concurrent threads can access the same
resources; this can cause problems

Main program

MyThread 1

MyThread 2

MyThread n

…

Concurrency

MyThread
static int total

total+=1

total+=1

total+=1

• Threads can be interrupted at any time by the Operating System
and another Thread may run

• When each Thread tries to increment total, it gets a current copy
of total, adds 1, then stores it back in memory

• What can go wrong?

• A static variable is a Class variable,
there is only one

• Every Object of MyThread Class
references the same static variable

5

Let’s make it interesting, what is the final
value of total?
Incrementer.java

One million (not a trick)

What will total be at end?
Top three guesses?

total is static so it is a Class variable
(one total for all Incrementer Objects)

Two Incrementer Objects that
extend Thread (so must
implement run() method)

• start() begins Thread running and calls run() method
• main() continues running after inc1.start(), so inc2

starts immediately after inc1 (main() does not block
and wait for inc1 to finish)

• inc1.join() causes main() to block until inc1.run() finishes
• inc2.join() causes main() to block until inc2.run() finishes

6

Move to next slide only after running
Incrementer.java

Run Incrementer.java before proceeding

7

Threads can be interrupted at any point,
this can cause unexpected behavior
Incrementer.java

8

Threads can be interrupted at any point,
this can cause unexpected behavior
Incrementer.java

Operating System might interrupt a Thread at any point:
• inc1 reads value of total from memory (say it’s 10)
• inc1 gets interrupted and inc2 begins running
• inc2 reads value of total (10), increments and writes

back (total=11)

• Say inc2 runs for 5 iterations (total=15)
• inc2 interrupted and inc1 resumes running
• inc1 increments total to 11 and writes it back
• total now 11 not 16 as expected

Increment total one million times:
• total++ is really 3 operations (looks like 1)

1. Get value of total from memory
2. Add one to total
3. Write total back to memory

9

IncrementerInterleaving.java demonstrates
interruptions (sometimes)
IncrementerInterleaving.java

total static as before
Will loop 5 times in run() method
Each Thread gets a name for clarity

• Printing to console is slooowwww
• Gives more time for OS to interrupt
• Console output shows when read and write

total
• Might expect total to be 10 (5 from inc1

 and 5 from inc2)

• Sometimes total is 10
• Most of the time it is not
• Bugs caused by multiple threads can be

devilishly tricky to find

10

DEMO: IncrementerInterleaving.java

• Run several times

• Interrupted execution causes tricky bugs

• Sometimes it works as expected

• Most of the time it doesn’t…

11

Java provides the keyword synchronized to
make some operations “atomic”

public class IncrementerTotal {
private int total = 0;
public synchronized void inc() {

total++;
}

}

IncrementerTotal.java

• synchronized keyword in front of inc method means only one

thread can be running this code at a time
• If multiple threads try to run synchronized code, one thread

runs, all others block until first one finishes
• Once first thread finishes, OS selects another thread to run
• synchronized makes this code “atomic” (e.g., as if it were one

instruction)
• This synchronized approach is called a “mutex” (or monitor), acts

like a “lock” on static total variable

• IncrementerTotal Class keeps
a total instance variable

• Value of total incremented
via inc() method

• inc() method is synchronized
so only one Thread at a time
can be inside inc()

• IncrementerTotal Class used
on next slide

12

IncrementerSync.java uses atomic
operations to ensure desired behavior
IncrementerSync.java

total now an IncrementerTotal Object
total.inc() is synchronized

• Synchronized total.inc() ensures only one
Thread inside inc() at a time

• inc() runs to completion before another
Thread allowed in

total.total now always 2 million

public class IncrementerTotal {
private int total = 0;
public synchronized void inc() {

total++;
}

}

13

Agenda

1. Interleaving execution

2. Producer/consumer

3. Deadlock, starvation

14

Producers tell Consumers when ready,
Consumers tell Producers when done
Big idea: keep Producers and Consumers in sync

Producer:
• Tell Consumer when item is

ready (notify or notifyAll)

• Block until woken up by
Consumer that item handled
(wait)

• Tell Consumer when next item
is ready (notify or notifyAll)

• There can be multiple
Producers

Consumer:
• Block until woken up by

Producer that item ready (wait)

• Process item and tell Producer
when done (notify or
notifyAll)

• Block until woken up by
Producer (wait)

• There can be multiple
Consumers

15

Producers and Consumers synchronized
with wait, notify or notifyAll

wait()

• Pauses and removes Thread from synchronized method
• Tells Operating System to put this Thread into a list of Threads waiting

to resume execution
• wait() allows another Thread to enter synchronized method

notify()

• Tells Operating System to pick a waiting Thread and let it run again
(not a FIFO queue, OS decides – take CS58 for more)

• Thread should check that conditions are met for it to continue

notifyAll()

• Wake up all waiting Threads
• Each Thread should check that conditions are met for it to continue

16

Scenario: Producers produce messages for
Consumers, need to keep in sync
Example

Tim
e

• Consumers receive
messages from
Producers

• Can be multiple
Consumers
processing
Producer
messages

• Need a way to make sure Producers don’t create
messages faster than Consumers can process them

• If Producers are too fast, need to make them wait
until Consumers are ready

• Business school term is “WIP” (work in process) to
describe items built up if Producers generate items
faster than Consumers handle them

17

We can use a semaphore to keep
Producers and Consumers in sync
Example

Tim
e

Producers check if
MessageBox empty, wait
if not empty,
otherwise
produce message

Consumers check for
message, wait if empty,

otherwise consume
message in box

• MessageBox Class is acting as a semaphore
• Semaphore can contain data (here one message)
• Unlike a semaphore, a mutex does not contain data
• A mutex is like a lock – a process takes the lock and

no other process can enter until lock returned

18

Producer passing messages to Consumer
using semaphore
Example

MessageBox empty,
Producer puts message
in MessageBox
Object

Tim
e

MessageBox put
method synchronized so
only one Producer
Thread can be in put
method at a time

Consumers wait for
MessageBox notification

MessageBox
holds String
produced by a
Producer and will
provide it to a
Consumer via
take method

19

Producer passing messages to Consumer
using semaphore
Example

Tim
e

• A Producer placed a
message in MessageBox
using put

• put calls
notifyAll to let
other processes
check if they
should run

• All Producers
wake up and check box,
see full box, wait until
box empty again

Consumers wait for
MessageBox notification

• All Consumers
wake up on put
notifyAll and
try to take
message

20

Producer passing messages to Consumer
using semaphore
Example

Tim
e

MessageBox take method synchronized so
only one Consumer Thread can be in take
method at a time

take removes message from MessageBox
Once message removed, take calls notifyAll
to let other processes check if they should run

Producers wait until
MessageBox is empty

All waiting Consumers
try to access message

One succeeds and
removes message,
others wait

21

Producer passing messages to Consumer
using semaphore
Example

Tim
e

Producer waits until
MessageBox is empty

Consumers wait until
MessageBox is full

• take notifies all threads waiting for MessageBox
access using notifyAll

• All Producers and Consumers wake up
• Consumer see empty box and go back to waiting
• Producers wake up and may put message

now, one succeeds and others go back to waiting
• Process repeats with Producers and Consumer in sync

22

MessageBox.java implements a semaphore
that holds one String
MessageBox.java

MessageBox holds one String called message
Producers will fill message using put() method
Consumer will process message using take() method

Synchronized put() makes sure only one Producer at a
time can store message

• Wait until MessageBox is empty
• If woken up (resume running at wait), make

sure to check if MessageBox is empty

• It could be the case that many Producers
were woken up and another Producer
already filled the MessageBox

• An if statement wouldn’t suffice, need a
while to go back to sleep if box filled

Notify all Threads (Producers and
Consumers) to check MessageBox

MessageBox is empty, fill it

Producer

MessageBox

Consumer

23

MessageBox.java implements a semaphore
that holds one String
MessageBox.java

Synchronized ensures only one Consumer
can take message

If woken up, check message:
• If empty, go back to waiting (another

Consumer already took it)
• If not, return message and set to null

MessageBox now empty, notify all
Threads to wake up and check
MessageBox

Producer

MessageBox

Consumer

24

Producers use MessageBox to pass
messages to Consumers
Producer.java MessageBox as parameter

If multiple Producers, all
would get the same
MessageBox

• When Thread starts, wait random interval to
simulate doing work, then try to put a message
in the MessageBox using put()

• put() will cause this Producer to wait() if there
is already a message

• wait() will remove this Thread from put() and
add it to a pool of Threads waiting to run

• When notifyAll() received, this Thread will wake
up and resume running in put() method of
MessageBox

• If MessageBox is empty it will store it’s message
and return here, else go back to waiting

Producer

MessageBox

Consumer

Send EOF
when all
messages
sent

25

Consumers retrieve messages from the
MessageBox
Consumer.java Store same MessageBox that

Producers use

Producer

MessageBox

Consumer

Take message from MessageBox
If no message, take() will cause this
Thread to wait
If this Thread retrieves message,
check for EOF and exit

26

ProducerConsumer uses all three
components to pass messages
ProducerConsumer.java Create a MessageBox, a Producer,

and a Consumer

Pass the same MessageBox Object to
both the Producer and the Consumer
(here 1 producer and 1 consumer)

Producer

MessageBox

Consumer

After creating
ProducerConsumer
Object, call
communicate()

Producer run() will wait a random period, then put a message
in MessageBox, then wait until MessageBox empty
Consumer will wake up on notifyAll() from MessageBox and
take() message

take() issues notifyAll() after taking message, waking
Producer to put() next message

main() thread will complete after starting both
Producer and Consumer Objects

main() ends, but Producers and Consumers threads run to
completion because daemon not set to true

27

Agenda

1. Interleaving execution

2. Producer/consumer

3. Deadlock, starvation

28

Synchronization can lead to two problems:
deadlock and starvation

Deadlock
• Objects lock resources
• Execution cannot proceed

because object needs a
resource another locked

• Object A locks resource 1
• Object B locks resource 2
• A needs resource 2 to

proceed but B has it locked
• B needs resources 1 to

proceed but A has it locked
• A and B are deadlocked

Starvation
• Thread never gets

resource it needs
• Thread A needs

resource 1 to complete
• Other threads always

take resource 1 before
A can get it

• We say A is starved

29

Dinning Philosophers explains deadlock
and starvation
Dinning Philosophers

Problem set up
• Five philosophers (P0-P4) sit at

a table to eat spaghetti
• There are forks between each

of them (five total forks)
• Each philosopher needs two

forks to eat
• After acquiring two forks,

philosopher eats, then puts
both forks down

• Another philosopher can then
pick up and use fork previously
put down (gross!)

30

Dinning Philosophers explains deadlock
and starvation
Dinning Philosophers

Naïve approach
• Each philosopher picks up fork

on left
• Then picks up fork on right
• Deadlock occurs if all

philosophers get left fork, none
get right fork

31

For deadlock to occur four conditions must
be met
Deadlock conditions
1. Mutual exclusion

• At least one resource class must have non-sharable access. That is:
• Either one process is using a resource (and others wait), or
• Resource is free

2. Hold and wait
• At least one process is holding a resource instance, while also waiting to be

granted another resource instance. (e.g., Each philosopher is holding on to
their left fork, while waiting to pick up their right fork)

3. No preemption
• Resources cannot be pre-empted; a resource can be released only voluntarily

by the process holding it (e.g., can't force philosophers to drop their forks.)

4. Circular wait
• There must exist a circular chain of at least two processes, each of whom is

waiting for a resource held by another one. (e.g., each Philosopher[i] is
waiting for Philosopher[(i+1) mod 5] to drop its fork.)

From Coffman, 1971

32

Three ways to ensure deadlock does not
occur

1. Ensure circular wait cannot occur by numbering Forks
and reaching for smallest numbered Fork first

2. Prevent circular wait by making one of the philosophers
wait until at least one other philosopher is finished

3. Prevent hold and wait by making Fork acquisition an
atomic operation (e.g., must get both Forks in one step)

33

We can break the deadlock by ensuring the
“circular wait” does not occur
Dinning Philosophers Eliminate circular wait

• Number each fork in circular
fashion

• Make each philosopher pick up
lowest numbered fork first

• All pick up right fork, except P4
who tries to pick up left fork 0

• Either P0 or P4 get fork 0
• If P0 gets it, P4 waits for fork 0

before picking up fork 4, so P3
eats

• P3 eventually releases both forks
and P2 eats

• Others eat after P2

• Cannot deadlock

Could also force one of the
Philosophers to wait at first

34

Fork.java models forks in the Dining
Philosophers problem
Fork.java available tracks if this Fork

Object is being used

Synchronized acquire() causes
wait if Fork is not available
If acquire Fork, set available false

• release() makes Fork available to others
• Use notifyAll() to tell Philosophers a Fork is

free

35

Philosophers try to eat by getting both the
left and right Forks
Philosopher.java Philosopher runs on a Thread and is

passed left and right Fork (also passed a
philosopher number)

Philosophers try to eat three meals

• eat() tries to acquire() the left and right fork
(after universe contemplation of course)

• Always tries to get Fork on left first (could be
a problem if Forks not numbered properly)

• acquire() will cause a wait if Fork not
available

• Once philosopher has both Forks, he can eat
• Philosopher releases both Forks after eating

36

DiningPhilosophers.java uses five
Philosophers and five Forks
DiningPhilosopher.java Will hold multiple Philosophers in

ArrayList

Set up five Fork
Objects in
ArrayList

Create five Philosophers and pass the left
and right Fork Objects
P0 left = F0, right = F1

P4 left = F4, right = F0

Could deadlock!
Reverse Forks for P4 and won’t deadlock

Start each Philosopher dining
(calls run() on previous slide)

P0

P1

P2
P3

P4

L

L

L

L

L

R

R

R

R
R

F0F1

F2
F3

F4

37

DEMO: DiningPhilosophers.java

• Run several times

• Sometimes deadlocks

• Try adjusting pause time to longer to make
it less likely to deadlock

38

Another approach is to prevent “hold and
wait” by picking up both forks atomically
Dinning Philosophers Eliminate hold and wait

• Make picking up both forks an
atomic operation

• Forks no longer control their
destiny as in prior code

• Now we lock both with a mutex
• Could lead to starvation if one

philosopher always picks up
before another

• In this case starvation will
eventually end because the
philosophers only eat a limited
number of meals

39

Prevent deadlocks by making getting both
Forks an atomic operation
MonitoredDiningPhilosopher.java

• Move acquire() and release() to main program,
not controlled by individual Forks now

• Synchronized only allows one Philosopher in
acquire() at a time, wait if left and right Forks
not available

• Pick up both Forks while here

• release() also synchronized
• Drop both Forks while here
• notifyAll() when Forks are available

40

	Slide 1
	Slide 2: Agenda
	Slide 3: Threads are a way for multiple processes to run “concurrently”
	Slide 4: Concurrent threads can access the same resources; this can cause problems
	Slide 5: Let’s make it interesting, what is the final value of total?
	Slide 6: Move to next slide only after running Incrementer.java
	Slide 7: Threads can be interrupted at any point, this can cause unexpected behavior
	Slide 8: Threads can be interrupted at any point, this can cause unexpected behavior
	Slide 9: IncrementerInterleaving.java demonstrates interruptions (sometimes)
	Slide 10: DEMO: IncrementerInterleaving.java
	Slide 11: Java provides the keyword synchronized to make some operations “atomic”
	Slide 12: IncrementerSync.java uses atomic operations to ensure desired behavior
	Slide 13: Agenda
	Slide 14: Producers tell Consumers when ready, Consumers tell Producers when done
	Slide 15: Producers and Consumers synchronized with wait, notify or notifyAll
	Slide 16: Scenario: Producers produce messages for Consumers, need to keep in sync
	Slide 17: We can use a semaphore to keep Producers and Consumers in sync
	Slide 18: Producer passing messages to Consumer using semaphore
	Slide 19: Producer passing messages to Consumer using semaphore
	Slide 20: Producer passing messages to Consumer using semaphore
	Slide 21: Producer passing messages to Consumer using semaphore
	Slide 22: MessageBox.java implements a semaphore that holds one String
	Slide 23: MessageBox.java implements a semaphore that holds one String
	Slide 24: Producers use MessageBox to pass messages to Consumers
	Slide 25: Consumers retrieve messages from the MessageBox
	Slide 26: ProducerConsumer uses all three components to pass messages
	Slide 27: Agenda
	Slide 28: Synchronization can lead to two problems: deadlock and starvation
	Slide 29: Dinning Philosophers explains deadlock and starvation
	Slide 30: Dinning Philosophers explains deadlock and starvation
	Slide 31: For deadlock to occur four conditions must be met
	Slide 32: Three ways to ensure deadlock does not occur
	Slide 33: We can break the deadlock by ensuring the “circular wait” does not occur
	Slide 34: Fork.java models forks in the Dining Philosophers problem
	Slide 35: Philosophers try to eat by getting both the left and right Forks
	Slide 36: DiningPhilosophers.java uses five Philosophers and five Forks
	Slide 37: DEMO: DiningPhilosophers.java
	Slide 38: Another approach is to prevent “hold and wait” by picking up both forks atomically
	Slide 39: Prevent deadlocks by making getting both Forks an atomic operation
	Slide 40

