
CS 10:
Problem solving via Object Oriented

Programming

String Finding
Dartmouth CS10 Winter 2025

2

Agenda

1. Boyer-Moore algorithm

2. Tries

3

Matching/recognizing patterns in
sequences is a common CS problem

String Finding: Overview

6 6Travis W. Peters Dartmouth College - CS 10

• Matching/recognizing patterns in sequences is a very relevant problem in CS!

• DNA Sequencing

• ex. find GAGATGCTCCAGAAC in Example: Find pattern in DNA data

Task
Find a substring
in this large
string

Query string of
length m

Text of length n

Generally assume m << n
(but doesn’t have to be)

4

A brute force approach starts at index 0
and works forward
Find query of length m=6, in text of length n=12

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

Index

Text

Brute force approach
• Start query string and text at index 0
• Loop over length of query string
• Look for match
• Move query string right one space if find mismatch

Try 0

5

Compare each character in text and query
string, move right if match

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

Index

Text

Try 0

Brute force approach
• Start query string and text at index 0
• Loop over length of query string
• Look for match
• Move query string right one space if find mismatch

Find query of length m=6, in text of length n=12

6

Compare each character in text and query
string, move right if match

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

Index

Text

Try 0

Brute force approach
• Start query string and text at index 0
• Loop over length of query string
• Look for match
• Move query string right one space if find mismatch

Find query of length m=6, in text of length n=12

7

Compare each character in text and query
string, move right if match

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

Index

Text

Try 0

Brute force approach
• Start query string and text at index 0
• Loop over length of query string
• Look for match
• Move query string right one space if find mismatch

Find query of length m=6, in text of length n=12

8

If find characters that do not match, move
query right one space in text and try again

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

Index

Text

Mismatch, slide query one space right and try again

Try 0

Brute force approach
• Start query string and text at index 0
• Loop over length of query string
• Look for match
• Move query string right one space if find mismatch

Find query of length m=6, in text of length n=12

9

Another mismatch, move query right one
space again

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

A B C D E F

Index

Text

1

Mismatch, slide query one space right and try again (and again…)

Try 0

Brute force approach
• Start query string and text at index 0
• Loop over length of query string
• Look for match
• Move query string right one space if find mismatch

Find query of length m=6, in text of length n=12

No need to keep checking
if query string goes past
length of text

10

Continue until hit end of text less length of
query string or find match

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

A B C D E F

A B C D E F

Index

Text

1

…

n-m

Here match found after n-m+1 checks
Each check of length m
Run time complexity?
O(nm)

Try 0

Find query of length m=6, in text of length n=12

11

A brute force approach is inefficient, O(nm)

BoyerMoore.java
Look for pattern in text

• Loop over all characters in
text where pattern can fit

• No need to check beyond
n-m, pattern of length m
can’t fit in remaining text

• O(n-m+1) = O(n) if n >> m

Loop over all characters in
pattern O(m)

If pattern matches text, then
found match, return index in
text where pattern found

Return -1 if loop over text
and do not find pattern

Overall O(nm)
We can do better!

12

Boyer-Moore algorithm is more efficient
and works backwards

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

Index

Text

Try 0

Boyer-Moore
• Start at index m-1
• Loop backward
• If mismatch:

• If text not in query string, move query past current index
• If text in query string, move query to last occurrence of text

Check text at index i=m-1=5, query at k=m-1=5

Find query of length m=6, in text of length n=12

k=5

i=5

13

Boyer-Moore algorithm is more efficient
and works backwards

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

Index

Text

Try 0

Boyer-Moore
• Start at index m-1
• Loop backward
• If mismatch:

• If text not in query string, move query past current index
• If text in query string, move query to last occurrence of text

Find query of length m=6, in text of length n=12

Check text at index i=m-1=5, query at k=m-1=5
If match, then decrement i=4 and k=4

k=4

i=4

14

Boyer-Moore algorithm is more efficient
and works backwards

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

Index

Text

Try 0

Boyer-Moore
• Start at index m-1
• Loop backward
• If mismatch:

• If text not in query string, move query past current index
• If text in query string, move query to last occurrence of text

• Z not in query, so any matches prior
to Z must all fail

• No need to check those
• Move query string one space past

character not in query string (Z here)
• Avoids checks at indices 0-2
• Move i to i+m = 3+6 = 9 and k=m-1=5

Find query of length m=6, in text of length n=12

k=3

i=3

15

On mismatch, slide query to last
occurrence of text, or past mismatch

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

A B C D E F

Index

Text

1

Try 0

Boyer-Moore
• Start at index m-1
• Loop backward
• If mismatch:

• If text not in query string, move query past current index
• If text in query string, move query to last occurrence of text

Find query of length m=6, in text of length n=12

Check text at i=9 with query string at k=5

k=5

i=9

16

On mismatch, slide query to last
occurrence of text, or past mismatch
Find query of length m, in text of length n

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

A B C D E F

Index

Text

1

Try 0

Boyer-Moore
• Start at index m-1
• Loop backward
• If mismatch:

• If text not in query string, move query past current index
• If text in query string, move query to last occurrence of text

Mismatch, but D is in query string so move the last
occurrence of D in query string to text index (e.g.,
move query so D is at index 9)
Don’t go backward!

k=5

i=9

17

On mismatch, slide query to last
occurrence of text, or past mismatch

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

A B C D E F

A B C D E F

Index

Text

Try 0

1

2

Boyer-Moore
• Start at index m-1
• Loop backward
• If mismatch:

• If text not in query string, move query past current index
• If text in query string, move query to last occurrence of text

If had moved to first occurrence
of text in query string, might
cause a move too far right, have
to move to last occurrence

Find query of length m=6, in text of length n=12

k=5

i=11

18

On mismatch, slide query to last
occurrence of text, or past mismatch

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

A B C D E F

A B C D E F

Index

Text

1

Match found

2

Try 0

Boyer-Moore
• Start at index m-1
• Loop backward
• If mismatch:

• If text not in query string, move query past current index
• If text in query string, move query to last occurrence of text

3 checks vs. 7 for brute force
Not greatly different for small strings,
but very different for large strings!

Find query of length m=6, in text of length n=12

19

Boyer-Moore can be O(n)

• Our version is simplified version of original Boyer-Moore

• Full Boyer-Moore algorithm is O(m+n), but since normally
n >> m, O(n) on “reasonable” text (e.g., not long strings of
same character)

• Does require pre-processing step to store last index of
each character in query. Easy way:
• Loop over each character in query string
• Store characters in Map with current index as value
• At end, Map will have the last index for each character

20

Boyer-Moore algorithm
BoyerMoore.java Look for pattern in text

Preprocess: create Map last
and set all distinct characters
in text to -1

Update to hold last occurrence
of character in pattern

Loop backward over pattern

Return index in text if
pattern found

Jump past character not in pattern (i += m-0)
or move by min of index into query (k) and
last position of text character in pattern so
do not go backwardReturn -1 if not found

From Goodrich, Tamassia, Goldwasser

21

Agenda

1. Boyer-Moore algorithm

2. Tries

22

How would you implement autocomplete?

• Consider autocomplete text boxes

• A user starts typing, autocomplete
shows possible words user might
want given only a couple of
characters

• How would you implement that?

• One way is with a Trie
(pronounced “try” to differentiate
from Tree, comes from “retrieve”)

Typed in “compu” into Google,
Google guesses what I want

23

Tries can find all substrings in text that
begin with a prefix string
Alphabet of d characters, and string length n • Trie is a multi-way tree

where each node is a letter
• Store set of words S in Trie

with one node per letter
and one leaf for each word

• To match prefix, start at
root and follow children
until find stop character ($)

• Example: type “ca” and find
cart, car, and cat

• To find string of length m,
must go down m levels

• If alphabet has d = |Σ|
characters, then O(dm) to
find or insert

• Height is length of longest string
• Can be used to implement Set or

Map, not just autocomplete

24

Compressed tries save memory

Alphabet of d characters, and string length n
• Compressed trie stores

substrings if no branches (e.g.,
no branches after “ant” so put
“ibody” in one node, not five)

• Number of nodes reduced
from O(|n|) – total number of
letters in S, to O(|s|) – number
of words in S

• Saves memory, book shows
how to store indices to make
each node constant size

• Can be used for sorting
• Add all words into trie
• Do a pre-order traversal

25

Tries works on prefixes, we can also work
on suffixes with a Suffix trie

Suffix tries
• Store data by suffixes (end of words)
• Add node for each substring X[j..n-1], for j=0,1,..n-1
• Use compressed trie (algorithm complicated, stores in O(n) time)
• Search for suffixes; start at root and work downward
• See course web page for more details

26

	Slide 1
	Slide 2: Agenda
	Slide 3: Matching/recognizing patterns in sequences is a common CS problem
	Slide 4: A brute force approach starts at index 0 and works forward
	Slide 5: Compare each character in text and query string, move right if match
	Slide 6: Compare each character in text and query string, move right if match
	Slide 7: Compare each character in text and query string, move right if match
	Slide 8: If find characters that do not match, move query right one space in text and try again
	Slide 9: Another mismatch, move query right one space again
	Slide 10: Continue until hit end of text less length of query string or find match
	Slide 11: A brute force approach is inefficient, O(nm)
	Slide 12: Boyer-Moore algorithm is more efficient and works backwards
	Slide 13: Boyer-Moore algorithm is more efficient and works backwards
	Slide 14: Boyer-Moore algorithm is more efficient and works backwards
	Slide 15: On mismatch, slide query to last occurrence of text, or past mismatch
	Slide 16: On mismatch, slide query to last occurrence of text, or past mismatch
	Slide 17: On mismatch, slide query to last occurrence of text, or past mismatch
	Slide 18: On mismatch, slide query to last occurrence of text, or past mismatch
	Slide 19: Boyer-Moore can be O(n)
	Slide 20: Boyer-Moore algorithm
	Slide 21: Agenda
	Slide 22: How would you implement autocomplete?
	Slide 23: Tries can find all substrings in text that begin with a prefix string
	Slide 24: Compressed tries save memory
	Slide 25: Tries works on prefixes, we can also work on suffixes with a Suffix trie
	Slide 26

