
CS 10:
Problem solving via Object Oriented

Programming

Inheritance
Dartmouth CS10 Winter 2025

2

Agenda

1. Inheritance

2. Comparing objects

3. “Is a” example

4. Access modifiers

Key points:
1. Create and debug base class
2. Create specialty versions of the

of the base class (called
subclasses) that inherit the code
and data from the base class

3. Use the keyword “extends” to
inherit from the base class

4. In Java we can only inherit from
one base class (unlike C++)

3

OOP relies on four main pillars to create
robust, adaptable, and reusable code
Four “pillars” of OOP

Abstraction
• Name

functionality, not
how to
implement

• Leads to Abstract
Data Types
(ADTs)

Encapsulation
• Bind code and data into one thing called an

object
• Code called methods in OOP (not functions)

Inheritance
• Create specialty versions that

“inherit” functionality of parent
• Reduces code

Polymorphism
Same name,
many meanings

OOP Pillars

Abstraction Encapsulation Inheritance Polymorphism

4

Inheritance allows us to reuse code that
has already been written and debugged

Person

Instructor Student

• In a college application, instructors and students are both people
• As people, there are some things that are common groups

• Name
• ID

• We can create a Person class as a “Base class”
• After debugging the person class, we can reuse the code from the base class to

create specialty “subclasses” that inherit the instance variables and methods of the
base class

• Subclasses can override the methods of the base class

College application

5

The Person base class has instance
variables and methods

public class Person {
 String name;
 String id;

 public Person(String name, String id) {
 this.name = name;
 this.id = id;
 }

 public String getName() { return name; }
 public String getId() { return id; }

 public void setName(String name) {this.name = name; }
 public void setId(String id) { this.id = id;}

 /**
 * Returns a String representation of a Person
 * @return String
 */
 public String toString() {
 String s = "Name: " + name + " (" + id + ")";
 return s;
 }
}

Remember: by convention, class names start
with capital letter; variable and method names
use camelCase (not snake_case like Python or C)
I’ll be looking for you to follow this convention

Simple constructor
saves name and id

• Getter and setter methods (note: JavaDoc
removed to fit on slide)

• Could have other methods that do more
complicated things

• Here we keep it simple

Remember: toString
returns a String! Here we add name and id

Don’t forget to return
the String

Person.java

6

Subclasses inherit the instance variables
and methods of the base class

Person

Instructor Student

• If the Person class was a complex class, there could be hundreds of lines of code
• No sense duplicating that code
• With inheritance subclasses get the instance variables and methods already written and

debugged in the base class
• Ever heard of DRY?
• Don’t Repeat Yourself!
• Duplicating code causes problems if you later make a change
• In that case you must remember to change the code everywhere it is duplicated
• With inheritance, changes in the base class are automatically inherited in subclasses
• An Instructor “is a” Person. A Student “is a” Person too! They are just specialty versions

College application

Note: base class, super class, and
parent class all mean the same thing!

Instance variables
• name
• id

Methods
• getters/setters
• toString

7

Subclasses inherit the instance variables
and methods of the base class

Person

Instructor Student

• If the Person class was a complex class, there could be hundreds of lines of code
• No sense duplicating that code
• With inheritance subclasses get the instance variables and methods already written and

debugged in the base class
• Ever heard of DRY?
• Don’t Repeat Yourself!
• Duplicating code causes problems if you later make a change
• In that case you must remember to change the code everywhere it is duplicated
• With inheritance, changes in the base class are automatically inherited in subclasses
• An Instructor “is a” Person. A Student ”is a” Person too! They are just specialty versions

College application

Note: base class, super class, and
parent class all mean the same thing!

Instance variables
• name
• id

Methods
• getters/setters
• toString

8

Use “extends” to inherit instance variables
and methods from base class

public class Instructor extends Person {
 boolean tenured;
 int yearsEmployed;
 String department;

 public Instructor(String name, String id) {
 super(name, id);
 this.tenured = false; //not required, Java initializes boolean instance variables to false
 this.yearsEmployed = 0; //not required, Java initializes numeric values instance variables to 0
 this.department = null; //not required, Java initializes objects to null
 }
 public Instructor(String name, String id, boolean tenured, int yearsEmployed, String department) {
 super(name, id);
 this.tenured = tenured;
 this.yearsEmployed = yearsEmployed;
 this.department = department;
 }

• “extends” keyword tells Java this class inherits
Person’s instance variables and methods

• Note: no name and id instance variables declared
here, but Instructor has them due to “extends”

Instructors have additional instance variables
that the base class Person does not have

Two overloaded constructors
• One takes two parameters
• The other takes five parameters

• super calls the constructor on the base (aka super) class
• If the constructor in Person was complex, no need to duplicate that code, just call it
• Eliminates code redundancy and reduces likelihood of mistakes
• Get any changes made to base class by calling super, rather than duplicating code here

Instructor.java

• Base class Person does not have
instance variables
• tenured
• yearsEmployed
• department

• Base class also does not have
getters/setters defined by subclass

9

Subclasses can add instance variables and
methods the base class does not have

/**
 * Getters and setters
 */
public boolean getTenuredStatus() { return tenured;}
public int getYearsEmployed() { return yearsEmployed;}
public String getDepartment() { return department; }

public void setTenured(boolean tenured) { this.tenured = tenured; }
public void setYearsEmployed(int yearsEmployed) { this.yearsEmployed = yearsEmployed; }
public void setDepartment(String department) { this.department = department;}

/**
 * Return a String representation of an instructor
 * @return - string representing the instructor
 */
@Override
public String toString() {
 String s = super.toString() + "\n";
 s += "\tTenured: " + tenured + "\n";
 s += "\tYears Employed: " + yearsEmployed + "\n";
 s += "\tDepartment: " + department;
 return s;
}

• Subclasses can change the behavior of methods
defined in the base class

• This change is called overriding the base class
• Here toString is defined in the base class and also

in the subclass
• This version adds additional information to the

String returned
• Calling super.toString calls the base class method
• What if this code didn’t say super, just toString?
• Recursively this method!

Instructor.java

10

Subclasses can add instance variables and
methods the base class does not have

/**
 * Getters and setters
 */
public boolean getTenuredStatus() { return tenured;}
public int getYearsEmployed() { return yearsEmployed;}
public String getDepartment() { return department; }

public void setTenured(boolean tenured) { this.tenured = tenured; }
public void setYearsEmployed(int yearsEmployed) { this.yearsEmployed = yearsEmployed; }
public void setDepartment(String department) { this.department = department;}

/**
 * Return a String representation of an instructor
 * @return - string representing the instructor
 */
@Override
public String toString() {
 String s = super.toString() + "\n";
 s += "\tTenured: " + tenured + "\n";
 s += "\tYears Employed: " + yearsEmployed + "\n";
 s += "\tDepartment: " + department;
 return s;
}

• @Override decorator is not required
• Tells Java, “I intend to override the base

classes method”
• Java will flag an exception if the method

does not appear in the base class
• Perhaps you made a typo and wrote

“toSTring” instead of “toString”
• If there is no “toSTring” method in the base

class, Java will alert you before you run code
• Good habit to include @Override

Instructor.java

11

Dynamic dispatch hunts up the inheritance
chain to find methods

• Calling toString on an Instructor object will run the Instructor’s toString code
• Calling toString on a Person object will run the Person’s toString code
• If a method is called on subclass that the subclass does not define, Java hunts up the

inheritance chain to look for the method
• For example, setName is not defined by Instructor, so calling it on an Instructor object

will cause Java to first examine the Instructor class, when that method is not found, it
will check the base class

• In this case setName is defined on the base class, so Java will run that code
• This hunting upward is called dynamic dispatch
• If the method is never found after hunting upward, Java will throw an exception

Person

Instructor

Instance variables
• name
• id

Methods
• getters/setters for name and id
• toString

Instance variables
• Base class plus
• tenure
• yearsEmployed
• department

Methods
• Base class plus
• getters/setters for new

instance variables
• Overriden toString

12

Dynamic dispatch hunts up the inheritance
chain to find methods

Person

Instructor

public void setName(String name) {this.name = name; }

public String toString() {
 String s = "Name: " + name + " (" + id + ")";
 return s;
 }

@Override
public String toString() {
 String s = super.toString() + "\n";
 s += "\tTenured: " + tenured + "\n";
 s += "\tYears Employed: " + yearsEmployed + "\n";
 s += "\tDepartment: " + department;
 return s;
}

Declare two objects Person alice and Instructor bob

Person alice = new Person("Alice", "f00xzy");
Instructor bob = new Instructor("Bob","f00abc");

DynamicDispatchExample.java

13

Dynamic dispatch starts at the class the
object was declared, runs method if found

Person

Instructor

public void setName(String name) {this.name = name; }

public String toString() {
 String s = "Name: " + name + " (" + id + ")";
 return s;
 }

@Override
public String toString() {
 String s = super.toString() + "\n";
 s += "\tTenured: " + tenured + "\n";
 s += "\tYears Employed: " + yearsEmployed + "\n";
 s += "\tDepartment: " + department;
 return s;
}

Person alice = new Person("Alice", "f00xzy");
Instructor bob = new Instructor("Bob","f00abc");
System.out.println(alice);

• Printing Person object alice calls toString behind
the scenes

• Person class toString runs because alice is
declared as a Person object

• NOTE: this is an example of Polymorphism (same
name, many meanings)

• Same name toString, different results

Look for toString here
Found! Run this code

DynamicDispatchExample.java

14

Dynamic dispatch hunts up the inheritance
chain if method is not found

Person

Instructor

public void setName(String name) {this.name = name; }

public String toString() {
 String s = "Name: " + name + " (" + id + ")";
 return s;
 }

@Override
public String toString() {
 String s = super.toString() + "\n";
 s += "\tTenured: " + tenured + "\n";
 s += "\tYears Employed: " + yearsEmployed + "\n";
 s += "\tDepartment: " + department;
 return s;
}

Person alice = new Person("Alice", "f00xzy");
Instructor bob = new Instructor("Bob","f00abc");
System.out.println(alice);
bob.setName("Bobby");

• Call setName on Instructor bob
• Instructor does not define setName

First look for setName here
Not found
Check base class

DynamicDispatchExample.java

15

Dynamic dispatch hunts up the inheritance
chain if method is not found

Person

Instructor

public void setName(String name) {this.name = name; }

public String toString() {
 String s = "Name: " + name + " (" + id + ")";
 return s;
 }

@Override
public String toString() {
 String s = super.toString() + "\n";
 s += "\tTenured: " + tenured + "\n";
 s += "\tYears Employed: " + yearsEmployed + "\n";
 s += "\tDepartment: " + department;
 return s;
}

Person alice = new Person("Alice", "f00xzy");
Instructor bob = new Instructor("Bob","f00abc");
System.out.println(alice);
bob.setName("Bobby");

• Call setName on Instructor bob
• Instructor does not define setName

First, look for setName here
Not found
Check base class

Second, look for setName here
Found! Run this code

DynamicDispatchExample.java

16

Run subclass code if a method is overriden

Person

Instructor

public void setName(String name) {this.name = name; }

public String toString() {
 String s = "Name: " + name + " (" + id + ")";
 return s;
 }

@Override
public String toString() {
 String s = super.toString() + "\n";
 s += "\tTenured: " + tenured + "\n";
 s += "\tYears Employed: " + yearsEmployed + "\n";
 s += "\tDepartment: " + department;
 return s;
}

Person alice = new Person("Alice", "f00xzy");
Instructor bob = new Instructor("Bob","f00abc");
System.out.println(alice);
bob.setName("Bobby");
System.out.println(bob);

Printing Instructor bob
Instructor class overrides toString
Use the most specific method
Here use Instructor’s toString method

First look for toString here
Found!
Run this code

DynamicDispatchExample.java

17

Dynamic dispatch starts at the class the
object was declared, runs method if found

Person

Instructor

public void setName(String name) {this.name = name; }

public String toString() {
 String s = "Name: " + name + " (" + id + ")";
 return s;
 }

@Override
public String toString() {
 String s = super.toString() + "\n";
 s += "\tTenured: " + tenured + "\n";
 s += "\tYears Employed: " + yearsEmployed + "\n";
 s += "\tDepartment: " + department;
 return s;
}

Person alice = new Person("Alice", "f00xzy");
Instructor bob = new Instructor("Bob","f00abc");
System.out.println(alice);
bob.setName("Bobby");
System.out.println(bob);

Output
Name: Alice (f00xzy)
Name: Bobby (f00abc)
 Tenured: false
 Years Employed: 0
 Department: null

From Instructor toString
Name changed to Bobby by
Person’s setName

DynamicDispatchExample.java

18

Multiple classes can inherit the same base
class, each providing a specialty version

Person

Instructor Student

College application

Instance variables
• name
• iD

Methods
• getters/setters
• toString

Instance variables
• Person plus
• graduationYear
• studyHours
• classHours

Methods
• Person plus
• New getters/setters
• study
• attendClass

19

The Student class also inherits from the
Person class, but behaves differently

public class Student extends Person {
 protected Integer graduationYear;
 double studyHours;
 double classHours;

 public Student(String name, String id) {
 super(name, id);
 graduationYear = null;
 studyHours = 0;
 classHours = 0;
 }

 public double study(double hoursSpent) {
 System.out.println("Hi Mom! It's " + name + ". I'm studying!");
 studyHours += hoursSpent;
 return studyHours;
 }

 public double attendClass(double hoursSpent) {
 System.out.println("Hi Dad! It's " + name +". I'm in class!");
 classHours += hoursSpent;
 return classHours;
 }

 @Override
 public String toString() {
 String s = super.toString() + "\n";
 s += "\tGraduation year: " + graduationYear + "\n";
 s += "\tHours studying: " + studyHours + "\n";
 s += "\tHours in class: " + classHours;
 return s;
 }

By using extends, Students have name and id
from Person, just like Instructors got them by
using extends
But, Students have additional information

• graduationYear
• studyHours
• classHours

• Students also have methods Persons and
Instructors do not have
• study
• attendClass

• Student also overrides toString so output is
different for Students than for Persons and
Instructors

Student.java

20

The Student class also inherits from the
Person class, but behaves differently

public class Student extends Person {
 protected Integer graduationYear;
 double studyHours;
 double classHours;

 public Student(String name, String id) {
 super(name, id);
 graduationYear = null;
 studyHours = 0;
 classHours = 0;
 }

 public double study(double hoursSpent) {
 System.out.println("Hi Mom! It's " + name + ". I'm studying!");
 studyHours += hoursSpent;
 return studyHours;
 }

 public double attendClass(double hoursSpent) {
 System.out.println("Hi Dad! It's " + name +". I'm in class!");
 classHours += hoursSpent;
 return classHours;
 }

 @Override
 public String toString() {
 String s = super.toString() + "\n";
 s += "\tGraduation year: " + graduationYear + "\n";
 s += "\tHours studying: " + studyHours + "\n";
 s += "\tHours in class: " + classHours;
 return s;
 }

Note: graduationYear is of type Integer
(autoboxed version of primitive data type) so
we can set it to null (instead of 0) if we do not
have a value

Otherwise graduationYear would be 0 by
default, but in some cases 0 might be a valid
value

Null is different from 0, it indicates that we do
not have a value

Student.java

21

Classes can inherit from other inherited
classes, forming a chain

Person

Instructor Student

Graduate Student
International

Student

International
Graduate Student

Instance variables
• name
• id

Instance variables
• Student plus
• homeCountry

Instance variables
• Person plus
• graduationYear
• studyHours
• classHours

Methods
• getters/setters
• toString

22

Classes can inherit from other inherited
classes, forming a chain

Person

Instructor Student

Graduate Student
International

Student

International
Graduate Student

Instance variables
• Student plus
• department
• advisor
• labHours

Instance variables
• Person plus
• graduationYear
• studyHours
• classHours

Methods
• Student plus
• experiment

Instance variables
• name
• id

Methods
• getters/setters
• toString

23

Classes can inherit from other inherited
classes, forming a chain

Person

Instructor Student

Graduate Student
International

Student

International
Graduate Student

Instance variables
• Graduate Student plus
• homeCountry

Instance variables
• Person plus
• graduationYear
• studyHours
• classHours

Instance variables
• Student plus
• department
• advisor
• labHours

Instance variables
• name
• id

• Classes in Java can only inherit
from one base class (unlike C++)

• InternationalGradStudent like
Grad and InternationalStudent,
but must duplicate some code

• Had to choose one as base

Methods
• getters/setters
• toString

24

Inheritance summary

By simply adding “extends”, a subclass gets all (non-private) base class:
• Instance variables (no need to redefine name and id)
• Methods

Subclass can override base class method to create specialty versions
• Give same method name in the subclass as in the base class
• Java will run the subclass’s method when called
• Subclass method can call base class method

super.<methodName>
• Dynamic dispatch hunts upward if subclass does not define

method

Inheritance reduces duplicate code
• Just use the code written and debugged for the base class
• Changing base class updates subclass

25

Agenda

1. Inheritance

2. Comparing objects

3. “Is a” example

4. Access modifiers

Key points:
1. Compare primitive types with ==
2. Compare objects with equals method

26

Use == when comparing primitives

public class CompareTest {
 public static void main(String[] args) {
 int a = 7;
 int b = 5;
 System.out.println("Check primitive variables");
 System.out.println("a=" + a + " b=" + b + " same:" + (a==b));

CompareTest.java

Output
Check primitive variables
a=7 b=5 same:false

a and b are not equal

27

Use == when comparing primitives

public class CompareTest {
 public static void main(String[] args) {
 int a = 7;
 int b = 5;
 System.out.println("Check primitive variables");
 System.out.println("a=" + a + " b=" + b + " same:" + (a==b));
 b = 7;
 System.out.println("a=" + a + " b=" + b + " same:" + (a==b));

CompareTest.java

Output
Check primitive variables
a=7 b=5 same:false
a=7 b=7 same:true

a and b are now equal

28

Using == when comparing objects checks
to see if they reference the same address

public class CompareTest {
 public static void main(String[] args) {
 int a = 7;
 int b = 5;
 System.out.println("Check primitive variables");
 System.out.println("a=" + a + " b=" + b + " same:" + (a==b));
 b = 7;
 System.out.println("a=" + a + " b=" + b + " same:" + (a==b));

 System.out.println("Check object variables");
 Person alice = new Person("Alice","f00abc");
 Person ally = alice;
 System.out.println("alice == ally: " + (alice==ally));

CompareTest.java

Output
Check primitive variables
a=7 b=5 same:false
a=7 b=7 same:true

Check object variables
alice equals ally: true

alice and ally point to the same memory address on the heap

== compares memory addresses and decides they are the same
(if yes, they are exactly the same memory location on the heap!)

/**
 * Comare two Person objects and decide if they are the same.
 * Use id to decide, assume each person has unique id
 * @param other compare this person's id
 * @return true if ids are the same, false otherwise
 */
public boolean equals(Person other) {
 if (id.length() != other.id.length()) {
 return false;
 }
 for (int i = 0; i < id.length(); i++) {
 if (id.charAt(i) != other.id.charAt(i)) {
 return false;
 }
 }
 return true;
}

• Java does not know the semantic meaning of
objects we create

• Thus, Java does not know how to compare them
• We can provide an equals method to tell Java if

we consider two objects to be equal
• We create an equals method in the Person base

class, all subclasses will use this method due to
dynamic dispatch if they do not override equals

• We use id to decide if two Person (or subclass)
objects are equal

• Because IDs are Strings, we check the length
and ensure each character matches

• Return true if same length and each character
matches, false otherwise

29

The right way to compare equality of
objects is the equals method

Person.java
Person

Instructor Student

/**
 * Comare two Person objects and decide if they are the same.
 * Use id to decide
 * @param other compare this person's id
 * @return true if ids are the same, false otherwise
 */
public boolean equals(Person other) {
// if (id.length() != other.id.length()) {
// return false;
// }
// for (int i = 0; i < id.length(); i++) {
// if (id.charAt(i) != other.id.charAt(i)) {
// return false;
// }
// }
// return true;
 return id.equals(other.id);
 }

• Java has already provided an equals method for
autoboxed types and Strings

• We can just use their equals method instead
• Thanks Java developers!

30

The right way to compare equality of
objects is the equals method

Person.java
Person

Instructor Student

31

The right way to compare equality of
objects is the equals method

public static void main(String[] args) {
 int a = 7;
 int b = 5;
 System.out.println("Check primitive variables");
 System.out.println("a=" + a + " b=" + b + " same:" + (a==b));
 b = 7;
 System.out.println("a=" + a + " b=" + b + " same:" + (a==b));

 System.out.println("\nCheck object variables");
 Person alice = new Person("Alice","f00abc");
 Person ally = alice;
 System.out.println("alice == ally: " + (alice==ally));
 System.out.println("alice equals ally: " + alice.equals(ally));

CompareTest.java

Output
Check primitive variables
a=7 b=5 same:false
a=7 b=7 same:true

Check object variables
alice == ally: true
alice equals ally: true

Because alice and ally both point to the same memory address,
they each have the same id String

equals returns true here

32

The right way to compare equality of
objects is the equals method

public static void main(String[] args) {
 int a = 7;
 int b = 5;
 System.out.println("Check primitive variables");
 System.out.println("a=" + a + " b=" + b + " same:" + (a==b));
 b = 7;
 System.out.println("a=" + a + " b=" + b + " same:" + (a==b));

 System.out.println("\nCheck object variables");
 Person alice = new Person("Alice","f00abc");
 Person ally = alice;
 System.out.println("alice == ally: " + (alice==ally));
 System.out.println("alice equals ally: " + alice.equals(ally));
 ally = new Person("Ally", "f00xyz");
 System.out.println("alice == ally: " + (alice==ally));
 System.out.println("alice equals ally: " + alice.equals(ally));

CompareTest.java

Output
Check primitive variables
a=7 b=5 same:false
a=7 b=7 same:true

Check object variables
alice == ally: true
alice equals ally: true
alice == ally: false
alice equals ally: false

Now ally is instantiated as new object (so new memory address on heap)
and different id from alice
Both checks now return false

33

The right way to compare equality of
objects is the equals method

public static void main(String[] args) {
 int a = 7;
 int b = 5;
 System.out.println("Check primitive variables");
 System.out.println("a=" + a + " b=" + b + " same:" + (a==b));
 b = 7;
 System.out.println("a=" + a + " b=" + b + " same:" + (a==b));

 System.out.println("\nCheck object variables");
 Person alice = new Person("Alice","f00abc");
 Person ally = alice;
 System.out.println("alice == ally: " + (alice==ally));
 System.out.println("alice equals ally: " + alice.equals(ally));
 ally = new Person("Ally", "f00xyz");
 System.out.println("alice == ally: " + (alice==ally));
 System.out.println("alice equals ally: " + alice.equals(ally));
 ally.setId("f00abc");
 System.out.println("alice == ally: " + (alice==ally));
 System.out.println("alice equals ally: " + alice.equals(ally));

CompareTest.java

Output
Check primitive variables
a=7 b=5 same:false
a=7 b=7 same:true

Check object variables
alice == ally: true
alice equals ally: true
alice == ally: false
alice equals ally: false
alice == ally: false
alice equals ally: true

ally now gets same id as alice
== false (different addresses)
equals method true (same id)

public static void main(String[] args) {

 <snip>

 //instanceof tests
 Instructor bob = new Instructor("Bob", "f00000");
 Student carol = new Student("Carol", "f11111");

34

instanceof lets you check an object’s type

CompareTest.java

Output
Bob is an Instructor
Carol is a Student

public static void main(String[] args) {

 <snip>

 //instanceof tests
 Instructor bob = new Instructor("Bob", "f00000");
 Student carol = new Student("Carol", "f11111");
 if (bob instanceof Instructor) {
 System.out.println("Bob is an instructor");
 }
 if (carol instanceof Instructor) {
 System.out.println("Carol is an instructor");
 }
}

35

instanceof lets you check an object’s type

CompareTest.java

Output

instanceof
checks type,
returns boolean

Bob is an Instructor
Carol is a Student

36

instanceof lets you check an object’s type

CompareTest.java

Output
Bob is an instructor

public static void main(String[] args) {

 <snip>

 //instanceof tests
 Instructor bob = new Instructor("Bob", "f00000");
 Student carol = new Student("Carol", "f11111");
 if (bob instanceof Instructor) {
 System.out.println("Bob is an instructor");
 }
 if (carol instanceof Instructor) {
 System.out.println("Carol is an instructor");
 }
}

instanceof
checks type,
returns boolean

Bob is an Instructor
Carol is a Student

bob prints

37

instanceof lets you check an object’s type

CompareTest.java

Output
Bob is an instructor

Carol does not print
because Carol is a Student

instanceof
checks type,
returns boolean

Bob is an Instructor
Carol is a Student

bob prints

public static void main(String[] args) {

 <snip>

 //instanceof tests
 Instructor bob = new Instructor("Bob", "f00000");
 Student carol = new Student("Carol", "f11111");
 if (bob instanceof Instructor) {
 System.out.println("Bob is an instructor");
 }
 if (carol instanceof Instructor) {
 System.out.println("Carol is an instructor");
 }
}

38

Our classes inherit from Java’s Object class
behind the scenes

Person

Instructor Student

Graduate Student
International

Student

International
Graduate Student

Object
Methods
• toString: prints memory address
• equals: compares memory address
• hashCode: will cover soon
• wait: will cover soon

If you don’t implement methods
that Java’s base class implements,
then calling these methods on
your classes hunts upward to the
base class and runs Object’s
implementation

If Object doesn’t implement the
method, Java throws an exception

39

Agenda

1. Inheritance

2. Comparing objects

3. “Is a” example

4. Access modifiers

Key points:
1. A subclass “is a” type of the base

class (just a specialty version)

40

An array that holds Person objects can also
hold objects of a subclass type
public class CollegeApp {
 public static void main(String[] args) {
 //define some people
 int numberOfPeople = 5;
 Person[] people = new Person[numberOfPeople];
 Instructor tjp = new Instructor("Tim Pierson", "f00zzz");
 tjp.setDepartment("Computer Science");
 people[0] = tjp;

Create an array of Person objects
Arrays hold one type of object
Remember: an Instructor is a Person, so is a Student

CollegeApp.java

tjp can go into a Person array because tjp in an
Instructor and instructors are people too! (e.g.,
Instructor is a subclass of Person, so it “is a” Person)

41

An array that holds Person objects can also
hold objects of a subclass type
public class CollegeApp {
 public static void main(String[] args) {
 //define some people
 int numberOfPeople = 5;
 Person[] people = new Person[numberOfPeople];
 Instructor tjp = new Instructor("Tim Pierson", "f00zzz");
 tjp.setDepartment("Computer Science");
 people[0] = tjp;
 people[1] = new Student("Alice", "f00xyz");
 people[2] = new GraduateStudent("Bob", "f00abc", "Computer Science", "Tim Pierson");

There is no need to create a temporary value like tjp, can just
assign an array slot to a new object if you’d like to

Alice (Student) and Bob (GraduateStudent) can go into a
Person array because they are also Persons (due to subclass)

A GraduateStudent “is a” Student and a Student “is a” Person!

CollegeApp.java

42

An array that holds Person objects can also
hold objects of a subclass type
public class CollegeApp {
 public static void main(String[] args) {
 //define some people
 int numberOfPeople = 5;
 Person[] people = new Person[numberOfPeople];
 Instructor tjp = new Instructor("Tim Pierson", "f00zzz");
 tjp.setDepartment("Computer Science");
 people[0] = tjp;
 people[1] = new Student("Alice", "f00xyz");
 people[2] = new GraduateStudent("Bob", "f00abc", "Computer Science", "Tim Pierson");
 ((Student)people[2]).setYear(2028);

Must cast people[2] to a Student to access
graduationYear because Person does not have a
graduationYear instance variable

Casting does not change the type of variable stored
in array

CollegeApp.java

43

An array that holds Person objects can also
hold objects of a subclass type
public class CollegeApp {
 public static void main(String[] args) {
 //define some people
 int numberOfPeople = 5;
 Person[] people = new Person[numberOfPeople];
 Instructor tjp = new Instructor("Tim Pierson", "f00zzz");
 tjp.setDepartment("Computer Science");
 people[0] = tjp;
 people[1] = new Student("Alice", "f00xyz");
 people[2] = new GraduateStudent("Bob", "f00abc", "Computer Science", "Tim Pierson");
 ((Student)people[2]).setYear(2028);
 people[3] = new InternationalStudent("Charlie", "f00123", "Germany");
 people[4] = new InternationalGraduateStudent("Denise", "f00987");

Add more people to Person array

This time we add an InternationalStudent and an
InternationalGraduateStudent, they are people too

CollegeApp.java
Now array people holds:
• An Instructor
• A Student
• A GraduateStudent
• An InternationalStudent
• An InternationalGraduateStudent
That is ok because they are all Persons

44

An array that holds Person objects can also
hold objects of a subclass type
public class CollegeApp {
 public static void main(String[] args) {
 //define some people
 int numberOfPeople = 5;
 Person[] people = new Person[numberOfPeople];
 Instructor tjp = new Instructor("Tim Pierson", "f00zzz");
 tjp.setDepartment("Computer Science");
 people[0] = tjp;
 people[1] = new Student("Alice", "f00xyz");
 people[2] = new GraduateStudent("Bob", "f00abc", "Computer Science", "Tim Pierson");
 ((Student)people[2]).setYear(2028);
 people[3] = new InternationalStudent("Charlie", "f00123", "Germany");
 people[4] = new InternationalGraduateStudent("Denise", "f00987");
 ((InternationalGraduateStudent)people[4]).setDepartment("Computer Science");
 ((InternationalGraduateStudent)people[4]).setAdvisorName("Alan Turing");
 ((InternationalGraduateStudent)people[4]).setHomeCountry("Spain");

 Must cast people[4] to
InternationalGraduateStudent to access class-
specific instance variables

CollegeApp.java

45

An array that holds Person objects can also
hold objects of a subclass type
public class CollegeApp {
 public static void main(String[] args) {
 //define some people
 int numberOfPeople = 5;
 Person[] people = new Person[numberOfPeople];
 Instructor tjp = new Instructor("Tim Pierson", "f00zzz");
 tjp.setDepartment("Computer Science");
 people[0] = tjp;
 people[1] = new Student("Alice", "f00xyz");
 people[2] = new GraduateStudent("Bob", "f00abc", "Computer Science", "Tim Pierson");
 ((Student)people[2]).setYear(2028);
 people[3] = new InternationalStudent("Charlie", "f00123", "Germany");
 people[4] = new InternationalGraduateStudent("Denise", "f00987");
 ((InternationalGraduateStudent)people[4]).setDepartment("Computer Science");
 ((InternationalGraduateStudent)people[4]).setAdvisorName("Alan Turing");
 ((InternationalGraduateStudent)people[4]).setHomeCountry("Spain");

Could we cast to GraduateStudent instead for InternationalGraduateStudent Denise?
Yes! An InterationalGraduateStudent “is a” GraduateStudent (and “is a” Student)
GraduateStudent defines department and advisor (but not home country!)
InternationalGraduateStudents inherit these from GraduateStudent

CollegeApp.java

Student

Graduate Student

International
Graduate Student

46

An array that holds Person objects can also
hold objects of a subclass type
public class CollegeApp {
 public static void main(String[] args) {
 //define some people
 int numberOfPeople = 5;
 Person[] people = new Person[numberOfPeople];
 Instructor tjp = new Instructor("Tim Pierson", "f00zzz");
 tjp.setDepartment("Computer Science");
 people[0] = tjp;
 people[1] = new Student("Alice", "f00xyz");
 people[2] = new GraduateStudent("Bob", "f00abc", "Computer Science", "Tim Pierson");
 ((Student)people[2]).setYear(2028);
 people[3] = new InternationalStudent("Charlie", "f00123", "Germany");
 people[4] = new InternationalGraduateStudent("Denise", "f00987");
 ((InternationalGraduateStudent)people[4]).setDepartment("Computer Science");
 ((InternationalGraduateStudent)people[4]).setAdvisorName("Alan Turing");
 ((InternationalGraduateStudent)people[4]).setHomeCountry("Spain");

 //print all people
 for (Person person: people) {
 System.out.println(person + "\n");
 }
 }
}

Print all people using a for-each loop

The most specific toString method is
called for each object

CollegeApp.java

47

An array that holds Person objects can also
hold objects of a subclass type
public class CollegeApp {
 public static void main(String[] args) {
 //define some people
 int numberOfPeople = 5;
 Person[] people = new Person[numberOfPeople];
 Instructor tjp = new Instructor("Tim Pierson", "f00zzz");
 tjp.setDepartment("Computer Science");
 people[0] = tjp;
 people[1] = new Student("Alice", "f00xyz");
 people[2] = new GraduateStudent("Bob", "f00abc", "Computer Science", "Tim Pierson");
 ((Student)people[2]).setYear(2028);
 people[3] = new InternationalStudent("Charlie", "f00123", "Germany");
 people[4] = new InternationalGraduateStudent("Denise", "f00987");
 ((InternationalGraduateStudent)people[4]).setDepartment("Computer Science");
 ((InternationalGraduateStudent)people[4]).setAdvisorName("Alan Turing");
 ((InternationalGraduateStudent)people[4]).setHomeCountry("Spain");

 //print all people
 for (Person p: people) {
 System.out.println(p + "\n");
 }
 }
}

CollegeApp.java
Name: Tim Pierson (f00zzz)
 Tenured: false
 Years Employed: 0
 Department: Computer Science
Name: Alice (f00xyz)
 Graduation year: null
 Hours studying: 0.0
 Hours in class: 0.0
Name: Bob (f00abc)
 Graduation year: 2028
 Hours studying: 0.0
 Hours in class: 0.0
 Hours in the lab: 0.0
 Department: Computer Science
 Advisor: Tim Pierson
Name: Charlie (f00123)
 Graduation year: null
 Hours studying: 0.0
 Hours in class: 0.0
 Home country: Germany
Name: Denise (f00987)
 Graduation year: null
 Hours studying: 0.0
 Hours in class: 0.0
 Hours in the lab: 0.0
 Department: Computer Science
 Advisor: Alan Turing
 Home country: Spain

48

Agenda

1. Inheritance

2. Comparing objects

3. “Is a” example

4. Access modifiers Key points:
1. Access modifiers allow you to

control access to an object’s data

49

Java allows us to break up major portions
of code into Projects, Packages and Classes

Company ProjectMain Project

Example of master project for a company

50

Java allows us to break up major portions
of code into Projects, Packages and Classes

Company Project

Accounting
 Package

Marketing
Package

Manufacturing
Package

Main Project

Packages
within
Project

Example of master project for a company

51

Java allows us to break up major portions
of code into Projects, Packages and Classes

Company Project

Accounting
 Package

Marketing
Package

Manufacturing
Package

Accounting
 Class 1

Accounting
 Class n

…

Marketing
 Class 1

Marketing
 Class n

…

Manufacturing
 Class 1

Manufacturing
 Class n

…

Main Project

Packages
within
Project

Classes
within
Package

Example of master project for a company

52

Visibility depends on modifier applied

Example: Visibility of Alpha class

Accounting Pkg Marketing Pkg

If Alpha.x
is:

Alpha.x can be
accessed by:

Alpha Beta AlphaSub Gamma

public Any class Y Y Y Y

protected Pkg + Subclass Y Y Y N

No modifier Pkg - Subclass Y Y N N

private This class only Y N N N

Company
Project

Accounting
 Package

Marketing
Package

Alpha AlphaSub

Beta Gamma

Subclass

Y = can access
N = cannot access

Classes

Packages
(Pkg)

Adapted from Java documentation

Alpha is a class in Accounting
package, which is in Company project

Assume Alpha has instance variable x

53

Visibility depends on modifier applied

Example: Visibility of Alpha class

Company
Project

Accounting
 Package

Marketing
Package

Alpha AlphaSub

Beta Gamma

Subclass

Classes

Packages
(Pkg)

Adapted from Java documentation

Alpha is a class in Accounting
package, which is in Company project

Assume Alpha has instance variable x

Accounting Pkg Marketing Pkg

If Alpha.x
is:

Alpha.x can be
accessed by:

Alpha Beta AlphaSub Gamma

public Any class Y Y Y Y

protected Pkg + Subclass Y Y Y N

No modifier Pkg - Subclass Y Y N N

private This class only Y N N N

Y = can access
N = cannot access

Accounting Pkg Marketing Pkg

If Alpha.x
is:

Alpha.x can be
accessed by:

Alpha Beta AlphaSub Gamma

public Any class Y Y Y Y

protected Pkg + Subclass Y Y Y N

No modifier Pkg - Subclass Y Y N N

private This class only Y N N N 54

Visibility depends on modifier applied

Example: Visibility of Alpha class

Company
Project

Accounting
 Package

Marketing
Package

Alpha AlphaSub

Beta Gamma

Subclass

Classes

Packages
(Pkg)

Adapted from Java documentation

Alpha is a class in Accounting
package, which is in Company project

Assume Alpha has instance variable x

Y = can access
N = cannot access

Accounting Pkg Marketing Pkg

If Alpha.x
is:

Alpha.x can be
accessed by:

Alpha Beta AlphaSub Gamma

public Any class Y Y Y Y

protected Pkg + Subclass Y Y Y N

No modifier Pkg - Subclass Y Y N N

private This class only Y N N N 55

Visibility depends on modifier applied

Example: Visibility of Alpha class

Company
Project

Accounting
 Package

Marketing
Package

Alpha AlphaSub

Beta Gamma

Subclass

Classes

Packages
(Pkg)

Adapted from Java documentation

Alpha is a class in Accounting
package, which is in Company project

Assume Alpha has instance variable x

Y = can access
N = cannot access

Accounting Pkg Marketing Pkg

If Alpha.x
is:

Alpha.x can be
accessed by:

Alpha Beta AlphaSub Gamma

public Any class Y Y Y Y

protected Pkg + Subclass Y Y Y N

No modifier Pkg - Subclass Y Y N N

private This class only Y N N N

Y = can access
N = cannot access

56

Visibility depends on modifier applied

Example: Visibility of Alpha class

Company
Project

Accounting
 Package

Marketing
Package

Alpha AlphaSub

Beta Gamma

Subclass

Classes

Packages
(Pkg)

Adapted from Java documentation

Alpha is a class in Accounting
package, which is in Company project

Assume Alpha has instance variable x

57

Key points

1. Create and debug base class
2. Create specialty versions of the of the base class (called

subclasses) that inherit the code and data from the base class
3. Use the keyword “extends” to inherit from the base class
4. In Java we can only inherit from one base class (unlike C++)
5. Compare primitive types with ==
6. Compare objects with equals method
7. A subclass “is a” type of the base class (just a specialty version)
8. Access modifiers allow you to control access to an object’s data

	Slide 1
	Slide 2: Agenda
	Slide 3: OOP relies on four main pillars to create robust, adaptable, and reusable code
	Slide 4: Inheritance allows us to reuse code that has already been written and debugged
	Slide 5: The Person base class has instance variables and methods
	Slide 6: Subclasses inherit the instance variables and methods of the base class
	Slide 7: Subclasses inherit the instance variables and methods of the base class
	Slide 8: Use “extends” to inherit instance variables and methods from base class
	Slide 9: Subclasses can add instance variables and methods the base class does not have
	Slide 10: Subclasses can add instance variables and methods the base class does not have
	Slide 11: Dynamic dispatch hunts up the inheritance chain to find methods
	Slide 12: Dynamic dispatch hunts up the inheritance chain to find methods
	Slide 13: Dynamic dispatch starts at the class the object was declared, runs method if found
	Slide 14: Dynamic dispatch hunts up the inheritance chain if method is not found
	Slide 15: Dynamic dispatch hunts up the inheritance chain if method is not found
	Slide 16: Run subclass code if a method is overriden
	Slide 17: Dynamic dispatch starts at the class the object was declared, runs method if found
	Slide 18: Multiple classes can inherit the same base class, each providing a specialty version
	Slide 19: The Student class also inherits from the Person class, but behaves differently
	Slide 20: The Student class also inherits from the Person class, but behaves differently
	Slide 21: Classes can inherit from other inherited classes, forming a chain
	Slide 22: Classes can inherit from other inherited classes, forming a chain
	Slide 23: Classes can inherit from other inherited classes, forming a chain
	Slide 24: Inheritance summary
	Slide 25: Agenda
	Slide 26: Use == when comparing primitives
	Slide 27: Use == when comparing primitives
	Slide 28: Using == when comparing objects checks to see if they reference the same address
	Slide 29: The right way to compare equality of objects is the equals method
	Slide 30: The right way to compare equality of objects is the equals method
	Slide 31: The right way to compare equality of objects is the equals method
	Slide 32: The right way to compare equality of objects is the equals method
	Slide 33: The right way to compare equality of objects is the equals method
	Slide 34: instanceof lets you check an object’s type
	Slide 35: instanceof lets you check an object’s type
	Slide 36: instanceof lets you check an object’s type
	Slide 37: instanceof lets you check an object’s type
	Slide 38: Our classes inherit from Java’s Object class behind the scenes
	Slide 39: Agenda
	Slide 40: An array that holds Person objects can also hold objects of a subclass type
	Slide 41: An array that holds Person objects can also hold objects of a subclass type
	Slide 42: An array that holds Person objects can also hold objects of a subclass type
	Slide 43: An array that holds Person objects can also hold objects of a subclass type
	Slide 44: An array that holds Person objects can also hold objects of a subclass type
	Slide 45: An array that holds Person objects can also hold objects of a subclass type
	Slide 46: An array that holds Person objects can also hold objects of a subclass type
	Slide 47: An array that holds Person objects can also hold objects of a subclass type
	Slide 48: Agenda
	Slide 49: Java allows us to break up major portions of code into Projects, Packages and Classes
	Slide 50: Java allows us to break up major portions of code into Projects, Packages and Classes
	Slide 51: Java allows us to break up major portions of code into Projects, Packages and Classes
	Slide 52: Visibility depends on modifier applied
	Slide 53: Visibility depends on modifier applied
	Slide 54: Visibility depends on modifier applied
	Slide 55: Visibility depends on modifier applied
	Slide 56: Visibility depends on modifier applied
	Slide 57: Key points

