
CS 10:
Problem solving via Object Oriented

Programming

Lists Part 2 (Array’s Revenge!)
Dartmouth CS10 Winter 2025

2

Agenda

1. Iterators

2. Growing array List ADT implementation

3. Amortized analysis of growth operation

4. Comparing List implementations

Key points:
1. Iterators loop over items in a List
2. They do not need to begin at the head at each call

3

What is wrong with the code below?

//declare SimpleList using SinglyLinked implementation
SimpleList<Integer> list = new SinglyLinked<>();
int numberOfItems = 1000;

//add numberOfItems to list
for (int i = 0; i < numberOfItems; i++) {
 list.add(i);
}

//print each item in list
for (int i = 0; i < list.size(); i++) {
 Integer value = list.get(i);
 System.out.println(value);
}

Instantiate SinglyLinked list of Integers

Add 1,000 Integer to List

Print each item in List

Works as intended, but slow

O(n2) – sneaky inefficiency

Why?
• get(i) always starts at head

• Helpful if we could remember
where we left off during iteration

• Iterators remember

4

Implementing Iteratable interface tells Java
you promise to implement an iterator
public class SinglyLinked<T> implements SimpleList<T>, Iterable<T> {
 private Element head; // front of the linked list
 private int size; // # elements in the list

 /**
 * The linked elements in the list: each has a piece of data and a next pointer
 */
 private class Element {
 private T data;
 private Element next;

 private Element(T data, Element next) {
 this.data = data;
 this.next = next;
 }
 }

 public SinglyLinked() {
 head = null;
 size = 0;
 }

We will deal with Iterable soon,
standby for more info now

Java’s Iterable interface says we must
provide an iterator method for SinglyLinked
class that returns an iterator object
Iterator<T> iterator()

Iterator loops over items of type T,
remembering where it left off so we don’t
need to start at head each time

SinglyLinked.java

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html

5

An iterator must provide a next and a
hasNext method

public interface Iterator<T> {
 /**
 * Returns true if the iteration has more elements. (In other words,
 * returns true if next() would return an element rather than throwing an exception.)
 */
 public boolean hasNext();

 /**
 * Returns the next item and advances the iterator.
 * Throws an exception if there is no next item.
 */
 public T next() throws Exception;
}

Iterator interface specifies two
methods:

• hasNext()
• next()

Key points:
• next returns the current item in

the List and moves to the
following item

• We will implement so that the
iterator remembers where left off

• Subsequent calls to next do not
start back at the head

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html

6

SinglyLinked.java provides iterator method
that creates an iterator

public Iterator<T> iterator() { //satisfy iterator requirement in Iterable interface
 return new ListIterator();
}

/**
 * Iterator class that implements the required functionality to use this List in a for each loop
 */
private class ListIterator implements Iterator<T> {
 // Use curr to point to next item in List
 Element curr; //store current position

 public ListIterator() {
 curr = head;
 }

 public boolean hasNext() {
 return curr != null;
 }

 public T next() {
 if (curr == null) {
 throw new IndexOutOfBoundsException();
 }
 T data = curr.data;
 curr = curr.next;
 return data;
 }
}

SinglyLinked.java

iterator method returns an object of nested class
ListIterator to satisfy Iterable interface for SinglyLinked.java

Nested class ListIterator (private to SinglyLinked,
but doesn’t have to be)
• Implements Iterator interface so must

implement hasNext and next
• Uses curr to keep track of position in list
• curr initially set to head

public Iterator<T> iterator() { //satisfy iterator requirement in Iterable interface
 return new ListIterator();
}

/**
 * Iterator class that implements the required functionality to use this List in a for each loop
 */
private class ListIterator implements Iterator<T> {
 // Use curr to point to next item in List
 Element curr; //store current position

 public ListIterator() {
 curr = head;
 }

 public boolean hasNext() {
 return curr != null;
 }

 public T next() {
 if (curr == null) {
 throw new IndexOutOfBoundsException();
 }
 T data = curr.data;
 curr = curr.next;
 return data;
 }
} 7

SinglyLinked.java provides iterator method
that creates an iterator

SinglyLinked.java

iterator method returns an object of nested class
ListIterator to satisfy Iterable interface for SinglyLinked.java

hasNext returns true if curr != null (e.g., there
are more items in the List), false otherwise

Nested class ListIterator (private to SinglyLinked,
but doesn’t have to be)
• Implements Iterator interface so must

implement hasNext and next
• Uses curr to keep track of position in list
• curr initially set to head

public Iterator<T> iterator() { //satisfy iterator requirement in Iterable interface
 return new ListIterator();
}

/**
 * Iterator class that implements the required functionality to use this List in a for each loop
 */
private class ListIterator implements Iterator<T> {
 // Use curr to point to next item in List
 Element curr; //store current position

 public ListIterator() {
 curr = head;
 }

 public boolean hasNext() {
 return curr != null;
 }

 public T next() {
 if (curr == null) {
 throw new IndexOutOfBoundsException();
 }
 T data = curr.data;
 curr = curr.next;
 return data;
 }
} 8

SinglyLinked.java provides iterator method
that creates an iterator

SinglyLinked.java

iterator method returns an object of nested class
ListIterator to satisfy Iterable interface for SinglyLinked.java

next throws IndexOutOfBounds exception if List is
empty or curr moved past the last element
Otherwise, gets data from Element pointed to by curr
Moves curr to next position in List
Returns data
Iterator interface now satisfied

hasNext returns true if curr != null (e.g., there
are more items in the List), false otherwise

Nested class ListIterator (private to SinglyLinked,
but doesn’t have to be)
• Implements Iterator interface so must

implement hasNext and next
• Uses curr to keep track of position in list
• curr initially set to head

9

Now our SinglyLinked objects can be used
in a for-each loop

SimpleList<String> list = new SinglyLinked<String>();
//add some items to list

//test for each loop works
for (String item : list) {
 System.out.print(item + "->");
}
System.out.println("[/]");

Java converts for-each loop into

for (Iterator<String> iter = list.iterator(); iter.hasNext();) {
 String item = iter.next();
 System.out.print(item + "->");
}
System.out.println("[/]");

Because SimpleList implements Iterable, Java
knows SimpleList will have an iterator
method that returns an iterator for the list

Java also knows the iterator will implement
hasNext and next because the iterator
implements the Iterator interface

10

Now our SinglyLinked objects can be used
in a for-each loop

SimpleList<String> list = new SinglyLinked<String>();
//add some items to list

//test for each loop works
for (String item : list) {
 System.out.print(item + "->");
}
System.out.println("[/]");

Java converts for-each loop into

for (Iterator<String> iter = list.iterator(); iter.hasNext();) {
 String item = iter.next();
 System.out.print(item + "->");
}
System.out.println("[/]");

iterator method returns an
object of nested class ListIterator

Because SinglyLinked
implements Iterable interface,
Java knows it has an iterator
method

public class SinglyLinked<T> implements SimpleList<T>, Iterable<T>

11

Now our SinglyLinked objects can be used
in a for-each loop

SimpleList<String> list = new SinglyLinked<String>();
//add some items to list

//test for each loop works
for (String item : list) {
 System.out.print(item + "->");
}
System.out.println("[/]");

Java converts for-each loop into

for (Iterator<String> iter = list.iterator(); iter.hasNext();) {
 String item = iter.next();
 System.out.print(item + "->");
}
System.out.println("[/]");

hasNext returns true if more
elements in List, otherwise false

Notice no increment
in for loop

next will take care
of moving curr

12

Now our SinglyLinked objects can be used
in a for-each loop

SimpleList<String> list = new SinglyLinked<String>();
//add some items to list

//test for each loop works
for (String item : list) {
 System.out.print(item + "->");
}
System.out.println("[/]");

Java converts for-each loop into

for (Iterator<String> iter = list.iterator(); iter.hasNext();) {
 String item = iter.next();
 System.out.print(item + "->");
}
System.out.println("[/]");

next returns
next item in List
and moves to
following item

13

An iterator can dramatically speed up
execution time

public static Long loopTest1(SinglyLinked<Integer> list, Integer targetValue) throws Exception {
 //use get, start back at head each time through loop
 long startTime = System.nanoTime();
 for (int i = 0; i < list.size(); i++) {
 Integer value = list.get(i);
 if (value == targetValue) {
 break;
 }
 }
 return = System.nanoTime() - startTime;
 }

 public static Long loopTest2(SinglyLinked<Integer> list, Integer targetValue) {
 long startTime = System.nanoTime();
 //use iterator to not start back at head each time
 Iterator<Integer> iter = list.iterator();
 while (iter.hasNext()) {
 if (iter.next() == targetValue) {
 break;
 }
 }
 return = System.nanoTime() - startTime;
 }

 public static void main(String[] args) throws Exception {
 //add numberOfItems to list
 SinglyLinked<Integer> list = new SinglyLinked<>();
 int numberOfItems = 1000;
 for (int i = 0; i < numberOfItems; i++) {
 list.add(i);
 }
 Long time1 = loopTest1(list,numberOfItems-1);
 System.out.printf("method 1 took %,15d nanoseconds\n",time1);
 Long time2 = loopTest2(list,numberOfItems-1);
 System.out.printf("method 2 took %,15d nanoseconds\n", time2);
 System.out.println("ratio time1/time2: " + time1/(float)time2);
 }

TimeTest.java

Record start time
Loop over all items using get (always starts at head)
looking for target value
Return elapsed time in nano seconds

14

An iterator can dramatically speed up
execution time

Record start time
Loop over all items using iterator (remembers where it
was in the list when last called) looking for a target
value
Return elapsed time in nano seconds

TimeTest.java

Record start time
Loop over all items using get (always starts at head)
looking for target value
Return elapsed time in nano seconds

public static Long loopTest1(SinglyLinked<Integer> list, Integer targetValue) throws Exception {
 //use get, start back at head each time through loop
 long startTime = System.nanoTime();
 for (int i = 0; i < list.size(); i++) {
 Integer value = list.get(i);
 if (value == targetValue) {
 break;
 }
 }
 return = System.nanoTime() - startTime;
 }

 public static Long loopTest2(SinglyLinked<Integer> list, Integer targetValue) {
 long startTime = System.nanoTime();
 //use iterator to not start back at head each time
 Iterator<Integer> iter = list.iterator();
 while (iter.hasNext()) {
 if (iter.next() == targetValue) {
 break;
 }
 }
 return = System.nanoTime() - startTime;
 }

 public static void main(String[] args) throws Exception {
 //add numberOfItems to list
 SinglyLinked<Integer> list = new SinglyLinked<>();
 int numberOfItems = 1000;
 for (int i = 0; i < numberOfItems; i++) {
 list.add(i);
 }
 Long time1 = loopTest1(list,numberOfItems-1);
 System.out.printf("method 1 took %,15d nanoseconds\n",time1);
 Long time2 = loopTest2(list,numberOfItems-1);
 System.out.printf("method 2 took %,15d nanoseconds\n", time2);
 System.out.println("ratio time1/time2: " + time1/(float)time2);
 }

15

An iterator can dramatically speed up
execution time

Create SinglyLinked list
Add 1,000 integers (rather small amount)
Call both methods and compare execution time

TimeTest.java

Record start time
Loop over all items using get (always starts at head)
looking for target value
Return elapsed time in nano seconds

Record start time
Loop over all items using iterator (remembers where it
was in the list when last called) looking for a target
value
Return elapsed time in nano seconds

public static Long loopTest1(SinglyLinked<Integer> list, Integer targetValue) throws Exception {
 //use get, start back at head each time through loop
 long startTime = System.nanoTime();
 for (int i = 0; i < list.size(); i++) {
 Integer value = list.get(i);
 if (value == targetValue) {
 break;
 }
 }
 return = System.nanoTime() - startTime;
 }

 public static Long loopTest2(SinglyLinked<Integer> list, Integer targetValue) {
 long startTime = System.nanoTime();
 //use iterator to not start back at head each time
 Iterator<Integer> iter = list.iterator();
 while (iter.hasNext()) {
 if (iter.next() == targetValue) {
 break;
 }
 }
 return = System.nanoTime() - startTime;
 }

 public static void main(String[] args) throws Exception {
 //add numberOfItems to list
 SinglyLinked<Integer> list = new SinglyLinked<>();
 int numberOfItems = 1000;
 for (int i = 0; i < numberOfItems; i++) {
 list.add(i);
 }
 Long time1 = loopTest1(list,numberOfItems-1);
 System.out.printf("method 1 took %,15d nanoseconds\n",time1);
 Long time2 = loopTest2(list,numberOfItems-1);
 System.out.printf("method 2 took %,15d nanoseconds\n", time2);
 System.out.println("ratio time1/time2: " + time1/(float)time2);
 }

16

An iterator can dramatically speed up
execution time

Output
method 1 took 2,944,125 nanoseconds
method 2 took 83,125 nanoseconds
ratio time1/time2: 35.418045

Using get took 35 times longer than using iterator and the
list only had 1,000 items!
Results highly variable (we will see why later in the course)

TimeTest.javapublic static Long loopTest1(SinglyLinked<Integer> list, Integer targetValue) throws Exception {
 //use get, start back at head each time through loop
 long startTime = System.nanoTime();
 for (int i = 0; i < list.size(); i++) {
 Integer value = list.get(i);
 if (value == targetValue) {
 break;
 }
 }
 return = System.nanoTime() - startTime;
 }

 public static Long loopTest2(SinglyLinked<Integer> list, Integer targetValue) {
 long startTime = System.nanoTime();
 //use iterator to not start back at head each time
 Iterator<Integer> iter = list.iterator();
 while (iter.hasNext()) {
 if (iter.next() == targetValue) {
 break;
 }
 }
 return = System.nanoTime() - startTime;
 }

 public static void main(String[] args) throws Exception {
 //add numberOfItems to list
 SinglyLinked<Integer> list = new SinglyLinked<>();
 int numberOfItems = 1000;
 for (int i = 0; i < numberOfItems; i++) {
 list.add(i);
 }
 Long time1 = loopTest1(list,numberOfItems-1);
 System.out.printf("method 1 took %,15d nanoseconds\n",time1);
 Long time2 = loopTest2(list,numberOfItems-1);
 System.out.printf("method 2 took %,15d nanoseconds\n", time2);
 System.out.println("ratio time1/time2: " + time1/(float)time2);
 }

17

Agenda

1. Iterators

2. Growing array List ADT implementation

3. Amortized analysis of growth operation

4. Comparing List implementations

Key points:
1. Lists do not specify the number of elements they hold

(unlike arrays)
2. We can grow an array as needed to implement a List

18

Linked lists are a logical choice to
implement the List ADT

List ADT features Linked List

get()/set() element
anywhere in List

• Start at head and march
down to index in list

• Slow to find element,
but fast once there

19

Linked lists are a logical choice to
implement the List ADT

List ADT features Linked List

get()/set() element
anywhere in List

• Start at head and march
down to index in list

• Slow to find element,
but fast once there

add()/remove() element
anywhere in List

• Start at head and march
down to index in list

• Slow to find element,
but fast once there

20

Linked lists are a logical choice to
implement the List ADT

List ADT features Linked List

get()/set() element
anywhere in List

• Start at head and march
down to index in list

• Slow to find element,
but fast once there

add()/remove() element
anywhere in List

• Start at head and march
down to index in list

• Slow to find element,
but fast once there

No limit to number of
elements in List

• Built in feature of how
linked lists work

• Just create a new
element and splice it in

21

At first arrays seem to be a poor choice to
implement the List ADT

List ADT features Linked List Array

get()/set() element
anywhere in List

• Start at head and march
down to index in list

• Slow to find element,
but fast once there

• Contiguous block of
memory

• Random access aspect
of arrays makes
get()/set() easy and fast

add()/remove() element
anywhere in List

• Start at head and march
down to index in list

• Slow to find element,
but fast once there

No limit to number of
elements in List

• Built in feature of how
linked lists work

• Just create a new
element and splice it in

22

At first arrays seem to be a poor choice to
implement the List ADT

List ADT features Linked List Array

get()/set() element
anywhere in List

• Start at head and march
down to index in list

• Slow to find element,
but fast once there

• Contiguous block of
memory

• Random access aspect
of arrays makes
get()/set() easy and fast

add()/remove() element
anywhere in List

• Start at head and march
down to index in list

• Slow to find element,
but fast once there

• Fast to find element, but
slow once there

• Must make (or fill) hole
by copying over

No limit to number of
elements in List

• Built in feature of how
linked lists work

• Just create a new
element and splice it in

23

At first arrays seem to be a poor choice to
implement the List ADT

List ADT features Linked List Array

get()/set() element
anywhere in List

• Start at head and march
down to index in list

• Slow to find element,
but fast once there

• Contiguous block of
memory

• Random access aspect
of arrays makes
get()/set() easy and fast

add()/remove() element
anywhere in List

• Start at head and march
down to index in list

• Slow to find element,
but fast once there

• Fast to find element, but
slow once there

• Must make (or fill) hole
by copying over

No limit to number of
elements in List

• Built in feature of how
linked lists work

• Just create a new
element and splice it in

• Arrays declared of fixed
size

24

At first arrays seem to be a poor choice to
implement the List ADT

List ADT features Linked List Array

get()/set() element
anywhere in List

• Start at head and march
down to index in list

• Slow to find element,
but fast once there

• Contiguous block of
memory

• Random access aspect
of arrays makes
get()/set() easy and fast

add()/remove() element
anywhere in List

• Start at head and march
down to index in list

• Slow to find element,
but fast once there

• Fast to find element, but
slow once there

• Must make (or fill) hole
by copying over

No limit to number of
elements in List

• Built in feature of how
linked lists work

• Just create a new
element and splice it in

• Arrays declared of fixed
size

Or is it?

25

At first arrays seem to be a poor choice to
implement the List ADT

List ADT features Linked List Array

get()/set() element
anywhere in List

• Start at head and march
down to index in list

• Slow to find element,
but fast once there

• Contiguous block of
memory

• Random access aspect
of arrays makes
get()/set() easy and fast

add()/remove() element
anywhere in List

• Start at head and march
down to index in list

• Slow to find element,
but fast once there

• Fast to find element, but
slow once there

• Must make (or fill) hole
by copying over

No limit to number of
elements in List

• Built in feature of how
linked lists work

• Just create a new
element and splice it in

• Arrays declared of fixed
size

26

Random access aspect of arrays makes it
easy to get or set any element

• Array reserves a contiguous
block of memory

• Big enough to hold specified
number of elements (10 here)
times size of each element (4
bytes for integers) = 40 bytes

• Indices are 0…9

27

Random access aspect of arrays makes it
easy to get or set any element

0 1 2 3 4 5 6 7 8 9Index

28

Random access aspect of arrays makes it
easy to get or set any element

2

0 1 2 3 4 5 6 7 8 9Index

No need to march down list to get or
set element

To find element:
• Start at base address of array (this is

where “numbers” array points)
• Element at index idx is at address:

base addr + idx*size(element)

29

Random access aspect of arrays makes it
easy to get or set any element

2

0 1 2 3 4 5 6 7 8 9Index

No need to march down list to get or
set element

To find element:
• Start at base address of array (this is

where “numbers” array points)
• Element at index idx is at address:

base addr + idx*size(element)
• Index 2 at base addr + 2*4 bytes
• Java does this math for us
• Time to access element is constant

anywhere in array (just simple math
operation to calculate any index)

• With linked list must march down
list, takes longer to find elements at
end

30

Random access aspect of arrays makes it
easy to get or set any element

2 10

0 1 2 3 4 5 6 7 8 9Index

What List ADT operations are like
lines 9 and 10?
set

31

Random access aspect of arrays makes it
easy to get or set any element

2 10

0 1 2 3 4 5 6 7 8 9Index

What List ADT operations are like
lines 13-15?
get

32

Random access aspect of arrays makes it
easy to get or set any element

2 10

0 1 2 3 4 5 6 7 8 9Index

What values will a, b and c have?

33

Random access aspect of arrays makes it
easy to get or set any element

2 10

0 1 2 3 4 5 6 7 8 9Index

What values will a, b and c have?
a=2, b=10, c=0

34

At first arrays seem to be a poor choice to
implement the List ADT

List ADT features Linked List Array

get()/set() element
anywhere in List

• Start at head and march
down to index in list

• Slow to find element,
but fast once there

• Contiguous block of
memory

• Random access aspect
of arrays makes
get()/set() easy and fast

add()/remove() element
anywhere in List

• Start at head and march
down to index in list

• Slow to find element,
but fast once there

• Fast to find element, but
slow once there

• Must make (or fill) hole
by copying over

No limit to number of
elements in List

• Built in feature of how
linked lists work

• Just create a new
element and splice it in

• Arrays declared of fixed
size

35

Because arrays are a contiguous block of
memory, hard to insert (except at end)

16 7 2 25 -8 10

Index

14 Insert 14 at index 2

0 0 0 0

0 1 2 3 4 5 6 7 8 9

36

Because arrays are a contiguous block of
memory, hard to insert (except at end)

16 7 2 25 -8 10

Index

14 Insert 14 at index 2
• Slide indices ≥ idx to the

right to make a hole
• Copy each element to

next index

0 0 0 0

0 1 2 3 4 5 6 7 8 9

37

Because arrays are a contiguous block of
memory, hard to insert (except at end)

16 7 2 25 -8 10

Index

14 Insert 14 at index 2

10

• Slide indices ≥ idx to the
right to make a hole

• Copy each element to
next index

0 0 0

0 1 2 3 4 5 6 7 8 9

38

Because arrays are a contiguous block of
memory, hard to insert (except at end)

16 7 2 25 -8 -8

Index

14 Insert 14 at index 2

10

• Slide indices ≥ idx to the
right to make a hole

• Copy each element to
next index

0 0 0

0 1 2 3 4 5 6 7 8 9

39

Because arrays are a contiguous block of
memory, hard to insert (except at end)

16 7 2 25 25 -8

Index

14 Insert 14 at index 2

10

• Slide indices ≥ idx to the
right to make a hole

• Copy each element to
next index

0 0 0

0 1 2 3 4 5 6 7 8 9

40

Because arrays are a contiguous block of
memory, hard to insert (except at end)

16 7 2 2 25 -8

Index

14 Insert 14 at index 2

10

• Slide indices ≥ idx to the
right to make a hole

• Copy each element to
next index

0 0 0

0 1 2 3 4 5 6 7 8 9

41

Because arrays are a contiguous block of
memory, hard to insert (except at end)

16 7 2 2 25 -8

Index

14 Insert 14 at index 2

10

Copy new element
into index

• Slide indices ≥ idx to the
right to make a hole

• Copy each element to
next index

0 0 0

0 1 2 3 4 5 6 7 8 9

42

Because arrays are a contiguous block of
memory, hard to insert (except at end)

16 7 14 2 25 -8

Index

10

• Works, but takes a lot of time (said to be “expensive”)
• Especially expensive with respect to time if the array is

large and we insert at the front (but fast at end!)
• Linked list is slow to find the right place (must march

down list starting from head), but fast to insert, just
update two pointers and you’re done

• Linked list is fast, however, if only dealing with head
• With arrays, easy to find right place, but slow afterward

due to copying to make a hole

0 0 0

0 1 2 3 4 5 6 7 8 9

43

Because arrays are a contiguous block of
memory, hard to insert (except at end)

16 7 14 2 25 -8

Index

10

Deleting an element is the same except copy
elements to the left to remove the deleted element

0 0 0

0 1 2 3 4 5 6 7 8 9

44

At first arrays seem to be a poor choice to
implement the List ADT

List ADT features Linked List Array

get()/set() element
anywhere in List

• Start at head and march
down to index in list

• Slow to find element,
but fast once there

• Contiguous block of
memory

• Random access aspect
of arrays makes
get()/set() easy and fast

add()/remove() element
anywhere in List

• Start at head and march
down to index in list

• Slow to find element,
but fast once there

• Fast to find element, but
slow once there

• Must make (or fill) hole
by copying over

No limit to number of
elements in List

• Built in feature of how
linked lists work

• Just create a new
element and splice it in

• Arrays declared of fixed
size

45

Arrays are of fixed size, but List ADT allows
for growth

16 7 14 2 25 -8

Index

10 52 -19 6

0 1 2 3 4 5 6 7 8 9

What do we do when the array is full, but we
want to add more elements?

Answer: create another, larger array, and
copy elements from old array into new array

46

Arrays are of fixed size, but List ADT allows
for growth

Old array

New array

Grow array
1. Make new array, say 2 times larger than old array

47

Arrays are of fixed size, but List ADT allows
for growth

Old array

New array

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new

48

Arrays are of fixed size, but List ADT allows
for growth

Old array

New array

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new

49

Arrays are of fixed size, but List ADT allows
for growth

Old array

New array

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new

50

Arrays are of fixed size, but List ADT allows
for growth

Old array

New array

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new

51

Arrays are of fixed size, but List ADT allows
for growth

array

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new
3. Set instance variable to point at new array (old

array will be garbage collected)

Room for more
elements

52

Arrays are of fixed size, but List ADT allows
for growth

array

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new
3. Set instance variable to point at new array (old

array will be garbage collected)

Room for more
elements

Growing is expensive operation,
but we don’t have to do it
frequently if new array size is
multiple of old array size

public class GrowingArray<T> implements SimpleList<T>, Iterable<T> {
 private T[] array;
 private int size; // how much of the array is actually filled up so far
 private static final int initCap = 10; // how big the array should be initially

 public GrowingArray() {
 array = (T[]) new Object[initCap]; // java generics oddness – cast array of objects
 size = 0;
 }

 /**
 * Return the number of elements in the List (they are indexed 0..size-1)
 * @return number of elements
 */
 public int size() {
 return size;
 }

53

GrowingArray.java: implements List ADT
using an array instead of a linked list

Implements SimpleList and Iterable

Array is now the data structure used to
store elements in List

• Array initially sized to 10 Objects (note the funky Java
allocation syntax, must cast to array of generic type)

• Remember, arrays are of fixed size, but the List ADT
does not specify a size

Track size
Will increment on each add and
decrement on each remove
Run-time complexity for size method?
O(1)

/**
 * Return item at index idx
 * @param idx index of item to return
 * @return item stored at index idx
 * @throws Exception invalid index
 */
public T get(int idx) throws Exception {
 if (idx >= 0 && idx < size) return array[idx];
 else throw new Exception("invalid index");
}

/**
 * Overwrite item at index idx with item parameter
 * @param idx index of item to get
 * @param item overwrite existing item at index idx with this item
 * @throws Exception invalid index
 */
public void set(int idx, T item) throws Exception {
 if (idx >= 0 && idx < size) array[idx] = item;
 else throw new Exception("invalid index");
}

54

GrowingArray.java: get()/set() are easy and
fast with an array implementation

Get and set are easy, just make sure
index is valid, then return or set item

Notice: no curly braces!

Only next line in if statement

Run-time complexity?
O(1) for any index!
Just two math operations to compute
memory address

array.length is how many
elements array can hold

size has how many elements
array does hold

public void add(int idx, T item) throws Exception {
 if (idx > size || idx < 0) throw new Exception("invalid index");
 if (size == array.length) {
 // Double the size of the array, to leave more space
 T[] copy = (T[]) new Object[size*2];
 // Copy it over
 for (int i=0; i<size; i++) copy[i] = array[i];
 array = copy;
 }
 // Shift right to make room
 for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
 array[idx] = item;
 size++;
}

55

GrowingArray.java: With growing trick, can
implement the List interface with an array

add() makes a new,
larger array if needed

public void add(int idx, T item) throws Exception {
 if (idx > size || idx < 0) throw new Exception("invalid index");
 if (size == array.length) {
 // Double the size of the array, to leave more space
 T[] copy = (T[]) new Object[size*2];
 // Copy it over
 for (int i=0; i<size; i++) copy[i] = array[i];
 array = copy;
 }
 // Shift right to make room
 for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
 array[idx] = item;
 size++;
}

56

GrowingArray.java: With growing trick, can
implement the List interface with an array

Copy elements one at a
time into new array

array.length is how many
elements array can hold

size has how many elements
array does hold

add() makes a new,
larger array if needed

public void add(int idx, T item) throws Exception {
 if (idx > size || idx < 0) throw new Exception("invalid index");
 if (size == array.length) {
 // Double the size of the array, to leave more space
 T[] copy = (T[]) new Object[size*2];
 // Copy it over
 for (int i=0; i<size; i++) copy[i] = array[i];
 array = copy;
 }
 // Shift right to make room
 for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
 array[idx] = item;
 size++;
}

57

GrowingArray.java: With growing trick, can
implement the List interface with an array

Copy elements one at a
time into new array

array.length is how many
elements array can hold

size has how many elements
array does hold

add() makes a new,
larger array if needed

Update instance
variable to new array

public void add(int idx, T item) throws Exception {
 if (idx > size || idx < 0) throw new Exception("invalid index");
 if (size == array.length) {
 // Double the size of the array, to leave more space
 T[] copy = (T[]) new Object[size*2];
 // Copy it over
 for (int i=0; i<size; i++) copy[i] = array[i];
 array = copy;
 }
 // Shift right to make room
 for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
 array[idx] = item;
 size++;
}

58

GrowingArray.java: With growing trick, can
implement the List interface with an array

• Here we know we have enough
room to add a new element

• Now do insert
• Start from last item and copy

to one index larger
• Stop at index idx
• Set item at idx to item

public void add(int idx, T item) throws Exception {
 if (idx > size || idx < 0) throw new Exception("invalid index");
 if (size == array.length) {
 // Double the size of the array, to leave more space
 T[] copy = (T[]) new Object[size*2];
 // Copy it over
 for (int i=0; i<size; i++) copy[i] = array[i];
 array = copy;
 }
 // Shift right to make room
 for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
 array[idx] = item;
 size++;
}

public void add(T item) throws Exception {
 add(size,item);
}

59

GrowingArray.java: With growing trick, can
implement the List interface with an array

Add an item at the end is easy
Just call add with size as index

What did we call it when two
methods have the same name but
different variables?
Overloading

/**
 * Remove and return the item at index idx. Move items left to fill hole.
 * @param idx index of item to remove
 * @return the value previously at index idx
 * @throws Exception invalid index
 */
public T remove(int idx) throws Exception {
 if (idx > size-1 || idx < 0) throw new Exception("invalid index");
 T data = array[idx];
 // Shift left to cover it over
 for (int i=idx; i<size-1; i++) array[i] = array[i+1];
 size--;
 return data;
}

60

GrowingArray.java: With growing trick, can
implement the List interface with an array

remove() slides
elements left one slot
for index > idx

Run-time complexity?
O(n)
Where is the worst
place for a remove?
Index 0

61

It turns out array could be a good choice to
implement List ADT, if growing is fast

List ADT features Linked List Array

get()/set() element
anywhere in List

• Start at head and march
down to index in list

• Slow to find element,
but fast once there

• Contiguous block of
memory

• Random access aspect
of arrays makes
get()/set() easy and fast

add()/remove() element
anywhere in List

• Start at head and march
down to index in list

• Slow to find element,
but fast once there

• Fast to find element, but
slow once there

• Must make (or fill) hole
by copying over

No limit to number of
elements in List

• Built in feature of how
linked lists work

• Just create a new
element and splice it in

• Arrays declared of fixed
size

Can get around array growth limit
Want to make sure growth is fast enough

62

Growing array is generally preferable to
linked list, except maybe growth operation

Linked list Growing array

get(i) O(n) O(1)

set(i,e) O(n) O(1)

add(i,e) O(n) O(n) + growth

remove(i) O(n) O(n)

• Start at head and march down to find
index i

• Slow to get to index, O(n)
• Once there, operations are fast O(1)
• Best case: all operations on head
• If constrain to only operate at head,

all operations become O(1)

• Faster get()/set() than linked list
• Tie with linked list on remove()
• Best case: all operation at tail
• add() might cause expensive

growth operation
• How should we think about that?

Worst case run-time complexity

63

Agenda

1. Iterators

2. Growing array List ADT implementation

3. Amortized analysis of growth operation

4. Comparing List implementations

Key points:
1. Amortized

analysis shows
growing an
array is a
constant time
operation!

64

Amortization is a concept from accounting
that allows us to spread costs over time

Accounting allows us to amortize
costs over several years
• Buy $70K truck on year 1
• Truck is good for 7 years
• Can think of the cost as

$10K/year instead of one
payment of $70K on year 1

• Actually pay $70K on year 1, but
this is equivalent to paying
$10K/year for 7 years

• Idea is to spread the cost
(“amortize” the cost) over the
lifetime of the truck

• We will use this concept to “pre-
pay” for expensive growth
operation

Amortized analysis

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7

Co
st

 $
K

/y
r

Year

Cost per year

Actual

Conceptual

65

Amortized analysis shows growing array is
actually only O(1)!

array

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into a conceptual “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent growth

operation

Amortized analysis

n items

66

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
2n items

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into a conceptual “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent growth

operation

67

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
4n items

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into a conceptual “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent growth

operation

68

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
2n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into a conceptual “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent growth

operation
After n add() operations, array is full, but have 2n tokens in bank

n items

69

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
2n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into a conceptual “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent growth

operation
After n add() operations, array is full, but have 2n tokens in bank
Allocate new 2X larger array

n items

New array

70

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
2n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into a conceptual “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent growth

operation
After n add() operations, array is full, but have 2n tokens in bank
Allocate new 2X larger array
Copy elements from old array to new array

n items

New array

71

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
2n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into a conceptual “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent growth

operation
After n add() operations, array is full, but have 2n tokens in bank
Allocate new 2X larger array
Copy elements from old array to new array

n items

New array

72

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
2n-n = n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into a conceptual “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent growth

operation
After n add() operations, array is full, but have 2n tokens in bank
Allocate new 2X larger array
Copy elements from old array to new array
Have to copy n items, so charge n pre-paid tokens from bank

n items

New array

73

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into a conceptual “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent growth

operation
After n add() operations, array is full, but have 2n tokens in bank
Allocate new 2X larger array
Copy elements from old array to new array
Have to copy n items, so charge n pre-paid tokens from bank
Remaining n items in bank “pay for” empty n spaces

n items

New array

n items

74

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into a conceptual “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent growth

operation
After n add() operations, array is full, but have 2n tokens in bank
Allocate new 2X larger array
Copy elements from old array to new array
Have to copy n items, so charge n pre-paid tokens from bank
Remaining n items in bank “pay for” empty n spaces
Charging a little extra for each add spreads out cost for infrequent growth operation

n items

New array

n items

75

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into a conceptual “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent growth

operation
After n add() operations, array is full, but have 2n tokens in bank
Allocate new 2X larger array
Copy elements from old array to new array
Have to copy n items, so charge n pre-paid tokens from bank
Remaining n items in bank “pay for” empty n spaces
Charging a little extra for each add spreads out cost for infrequent growth operation
The charge, however, is a constant, so O(3) = O(1)

n items

New array

n items

76

Agenda

1. Iterators

2. Growing array List ADT implementation

3. Amortized analysis of growth operation

4. Comparing List implementations
Key points:
1. An array implementation of the List ADT is

generally preferable to a linked list
implementation

77

Growing array is generally preferable to
linked list

Linked list Growing array

get(i) O(n) O(1)

set(i,e) O(n) O(1)

add(i,e) O(n) O(n) + O(1) = O(n)

remove(i) O(n) O(n)

• Faster get()/set() than linked list
• Tie with linked list on remove()
• Best case: all operations on tail
• add() might cause expensive

growth operation

Amortized analysis shows
infrequent growth operation
is constant time

Pay a constant amount more
on each add() to pay for the
occasional expensive growth

Worst case run-time complexity

• Start at head and march down to find
index i

• Slow to get to index, O(n)
• Once there, operations are fast O(1)
• Best case: all operations on head
• If constrain to only operate at head,

all operations become O(1)

Array implementation has
better get/set than linked list,
ties on add/remove

78

Key points

1. Iterators loop over items in a List
2. They do not need to begin at the head at each call
3. Lists do not specify the number of elements they hold (unlike arrays)
4. We can grow an array as needed to implement a List
5. Amortized analysis shows growing an array is a constant time

operation!
6. An array implementation of the List ADT is generally preferable to a

linked list implementation

	Slide 1
	Slide 2: Agenda
	Slide 3: What is wrong with the code below?
	Slide 4: Implementing Iteratable interface tells Java you promise to implement an iterator
	Slide 5: An iterator must provide a next and a hasNext method
	Slide 6: SinglyLinked.java provides iterator method that creates an iterator
	Slide 7: SinglyLinked.java provides iterator method that creates an iterator
	Slide 8: SinglyLinked.java provides iterator method that creates an iterator
	Slide 9: Now our SinglyLinked objects can be used in a for-each loop
	Slide 10: Now our SinglyLinked objects can be used in a for-each loop
	Slide 11: Now our SinglyLinked objects can be used in a for-each loop
	Slide 12: Now our SinglyLinked objects can be used in a for-each loop
	Slide 13: An iterator can dramatically speed up execution time
	Slide 14: An iterator can dramatically speed up execution time
	Slide 15: An iterator can dramatically speed up execution time
	Slide 16: An iterator can dramatically speed up execution time
	Slide 17: Agenda
	Slide 18: Linked lists are a logical choice to implement the List ADT
	Slide 19: Linked lists are a logical choice to implement the List ADT
	Slide 20: Linked lists are a logical choice to implement the List ADT
	Slide 21: At first arrays seem to be a poor choice to implement the List ADT
	Slide 22: At first arrays seem to be a poor choice to implement the List ADT
	Slide 23: At first arrays seem to be a poor choice to implement the List ADT
	Slide 24: At first arrays seem to be a poor choice to implement the List ADT
	Slide 25: At first arrays seem to be a poor choice to implement the List ADT
	Slide 26: Random access aspect of arrays makes it easy to get or set any element
	Slide 27: Random access aspect of arrays makes it easy to get or set any element
	Slide 28: Random access aspect of arrays makes it easy to get or set any element
	Slide 29: Random access aspect of arrays makes it easy to get or set any element
	Slide 30: Random access aspect of arrays makes it easy to get or set any element
	Slide 31: Random access aspect of arrays makes it easy to get or set any element
	Slide 32: Random access aspect of arrays makes it easy to get or set any element
	Slide 33: Random access aspect of arrays makes it easy to get or set any element
	Slide 34: At first arrays seem to be a poor choice to implement the List ADT
	Slide 35: Because arrays are a contiguous block of memory, hard to insert (except at end)
	Slide 36: Because arrays are a contiguous block of memory, hard to insert (except at end)
	Slide 37: Because arrays are a contiguous block of memory, hard to insert (except at end)
	Slide 38: Because arrays are a contiguous block of memory, hard to insert (except at end)
	Slide 39: Because arrays are a contiguous block of memory, hard to insert (except at end)
	Slide 40: Because arrays are a contiguous block of memory, hard to insert (except at end)
	Slide 41: Because arrays are a contiguous block of memory, hard to insert (except at end)
	Slide 42: Because arrays are a contiguous block of memory, hard to insert (except at end)
	Slide 43: Because arrays are a contiguous block of memory, hard to insert (except at end)
	Slide 44: At first arrays seem to be a poor choice to implement the List ADT
	Slide 45: Arrays are of fixed size, but List ADT allows for growth
	Slide 46: Arrays are of fixed size, but List ADT allows for growth
	Slide 47: Arrays are of fixed size, but List ADT allows for growth
	Slide 48: Arrays are of fixed size, but List ADT allows for growth
	Slide 49: Arrays are of fixed size, but List ADT allows for growth
	Slide 50: Arrays are of fixed size, but List ADT allows for growth
	Slide 51: Arrays are of fixed size, but List ADT allows for growth
	Slide 52: Arrays are of fixed size, but List ADT allows for growth
	Slide 53: GrowingArray.java: implements List ADT using an array instead of a linked list
	Slide 54: GrowingArray.java: get()/set() are easy and fast with an array implementation
	Slide 55: GrowingArray.java: With growing trick, can implement the List interface with an array
	Slide 56: GrowingArray.java: With growing trick, can implement the List interface with an array
	Slide 57: GrowingArray.java: With growing trick, can implement the List interface with an array
	Slide 58: GrowingArray.java: With growing trick, can implement the List interface with an array
	Slide 59: GrowingArray.java: With growing trick, can implement the List interface with an array
	Slide 60: GrowingArray.java: With growing trick, can implement the List interface with an array
	Slide 61: It turns out array could be a good choice to implement List ADT, if growing is fast
	Slide 62: Growing array is generally preferable to linked list, except maybe growth operation
	Slide 63: Agenda
	Slide 64: Amortization is a concept from accounting that allows us to spread costs over time
	Slide 65: Amortized analysis shows growing array is actually only O(1)!
	Slide 66: Amortized analysis shows growing array is actually only O(1)!
	Slide 67: Amortized analysis shows growing array is actually only O(1)!
	Slide 68: Amortized analysis shows growing array is actually only O(1)!
	Slide 69: Amortized analysis shows growing array is actually only O(1)!
	Slide 70: Amortized analysis shows growing array is actually only O(1)!
	Slide 71: Amortized analysis shows growing array is actually only O(1)!
	Slide 72: Amortized analysis shows growing array is actually only O(1)!
	Slide 73: Amortized analysis shows growing array is actually only O(1)!
	Slide 74: Amortized analysis shows growing array is actually only O(1)!
	Slide 75: Amortized analysis shows growing array is actually only O(1)!
	Slide 76: Agenda
	Slide 77: Growing array is generally preferable to linked list
	Slide 78: Key points

