
CS 10:
Problem solving via Object Oriented

Programming

Hierarchies 1: Binary Trees
Dartmouth CS10 Winter 2025

2

Agenda

1. General-purpose binary trees

2. Accumulators

3. Tree traversal

Key points:
1. Trees are useful for hierarchical data
2. Binary trees have 0, 1, or 2 children at

each node
3. Not all trees are binary (PS-2 isn’t)
4. Trees may not be balanced
5. Trees lead to beautiful recursive code

(so beautiful it brings a tear to my eye!)

3

We can represent hierarchical data using a
data structure called a tree

Tree data structure

Data

Data

Data Data

Data

Data Data

Meant for hierarchical data where there is a relationship
between the data each node holds

4

We can represent hierarchical data using a
data structure called a tree

Tree data structure

Root node
• Parent to two children (called left and right)

Data

Data

Data Data

Data

Data Data

Meant for hierarchical data where there is a relationship
between the data each node holds

5

We can represent hierarchical data using a
data structure called a tree

Tree data structure

Root node
• Parent to two children (called left and right)

Edge

Data

Data

Data Data

Data

Data Data

Meant for hierarchical data where there is a relationship
between the data each node holds

6

We can represent hierarchical data using a
data structure called a tree

Tree data structure

Root node
• Parent to two children (called left and right)

Edge

Data

Data

Data Data

Data

Data Data

Meant for hierarchical data where there is a relationship
between the data each node holds

• Child node of root (children have
exactly one parent)

• Parent node to children below
• Interior node (nodes also called

vertices)

7

We can represent hierarchical data using a
data structure called a tree

Tree data structure

Root node
• Parent to two children (called left and right)

Edge

Data

Data

Data Data

Data

Data Data

Meant for hierarchical data where there is a relationship
between the data each node holds

• Child node of root (children have
exactly one parent)

• Parent node to children below
• Interior node (nodes also called

vertices)

• Leaf (or external) node
• Right child of parent node

Trees have one root and
no cycles (can’t get back
to parent by following
edge to children)

8

We can represent hierarchical data using a
data structure called a tree

Tree data structure

Root node
• Parent to two children (called left and right)

• Child node of root (children have
exactly one parent)

• Parent node to children below
• Interior node (nodes also called

vertices)

• Leaf (or external) node
• Right child of parent node

Edge

Subtree

Meant for hierarchical data where there is a relationship
between the data each node holds

Each node
can be
thought of as
the root of a
subtree

Data

Data

Data Data

Data

Data Data

9

In a Binary Tree, each nodes has data plus
0, 1, or 2 children

Binary Tree data structure

Each node
holds data

Left
child

Right
child

• Leaf nodes have left and right
children too, they are both just null

• We will commonly talk about them,
however, as having no children

• An interior node has at least one
non-null child

• It could have two non-null
children

10

5

2 7

25

13 18
0, 1, or 2
children in
BinaryTree

10

A Binary Tree does not need to be
balanced

Binary Tree data structure

• This is a valid Binary Tree, each
node has 0, 1, (or 2) children

• For now we make no guarantees
a tree is balanced

• Later we will look at ways to
ensure balance

• Balance will allow us to make
stronger statements about run
time performance

10

5

2

10

5

2 7

25

13 18

11

Each node in a tree can be thought of as
the root of its own subtree

BinaryTree.java

Each node
holds data

Left
child

Right
child

• Define a Tree with data element of generic type E plus left and right children
• Children are (sub) Trees themselves, so their type is BinaryTree
• No need to define a Tree Class and separate TreeNode Class
• Because of this structure, most Tree code is recursive

10

5

2 7

25

13 18

12

Each node in a tree can be thought of as
the root of its own subtree

BinaryTree.java

Each node
holds data

Left
child

Right
child

Two constructors
• One for leaf node
• One for interior node

13

Building a BinaryTree

G

root

Create root node
BinaryTree.java

14

Building a BinaryTree

G

root

Set left and right children

B F

BinaryTree.java

15

Building a BinaryTree

G

Make temp node and traverse
down to left child

B F

temp

• What would happen if didn’t
create temp = root.left, but
instead set root = root.left

• Would loose pointer to root
node (root would be garbage
collected)

BinaryTree.java

root

16

Building a BinaryTree

G

Set left and right children

B F

temp

A C

BinaryTree.java

root

17

Building a BinaryTree

G

Move temp to root’s right child

B F

temp

A C

BinaryTree.java

root

18

Building a BinaryTree

G

Add children

B F

temp

A C D E

BinaryTree.java

root

19

Building a BinaryTree

G

• Print tree from root
• Implicitly calls toString()
• Will define in a few slides
• Note: Nodes are not required

to be in alphabetical order in
this tree (check F and E)

B F

temp

A C D E

G
 |─- B
 │ |── A
 │ └── C
 └── F
 |── D
 └── E

BinaryTree.java

root

20

BinaryTree has three useful helper
methods: hasLeft, hasRight, isleaf

public boolean hasLeft() { return left != null; }

public boolean hasRight() { return right != null; }

public boolean isLeaf() { return left == null && right == null; }

True if left child not null,
indicates has a left child

True if right child not null,
indicates has a right child

True if left and right
children are null, indicates
no children (leaf)

21

Use recursion to calculate tree size from
any given node = size of both children +1

One to account for this node

Ask each child to return its size
and add to num

hasLeft() and hasRight() return
true if node has those children
Only make recursive call if node

 has child

Return size of this subtree
If leaf node, will return 1
Recursion will then “bubble up” until it gets back to the original
node on which size() was called
In that node num will then have the size of the entire subtree

BinaryTree.java size() returns the number of nodes in the (sub) tree

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

Call size() on root node
BinaryTree.java

22

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=1

10

BinaryTree.java

23

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=1

10

• Has left child
• Make recursive call on left child

BinaryTree.java

24

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=1

num=1

10

5

BinaryTree.java

25

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=1

num=1

105

• Has left child
• Make recursive call on left child

BinaryTree.java

26

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=1

num=1

num=1

105

2

BinaryTree.java

27

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=1

num=1

num=1

1052

• No children

BinaryTree.java

28

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=1

num=1

num=1

• No children
• Return 1 back to node 5

105

2

BinaryTree.java

29

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=1

num=1+1=2

105

• Increment num on Node 5

BinaryTree.java

30

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=1

num=2

10

5

• Has right child
• Make recursive call on right child

BinaryTree.java

31

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=1

num=2

num=1
10

5

7

BinaryTree.java

32

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=1

num=2

• No children
• Return 1 back to node 5

num=1
10

5

7

BinaryTree.java

33

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=1

num=2+1=3

10

Increment num on Node 5

5

BinaryTree.java

34

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=1

num=3

• Node 5 is done
• Return 3 to root

10

5

BinaryTree.java

35

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=1+3=4

• Increment num on root

10

BinaryTree.java

36

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=4

10

• Has right child
• Make recursive call on right child

BinaryTree.java

37

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=4

num=1

10

25

BinaryTree.java

38

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=4

num=1

10

25

• Has left child
• Make recursive call on left child

BinaryTree.java

39

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=4

num=1

num=1

10

25

13

BinaryTree.java

40

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=4

num=1

num=1

• No children
• Return 1 back to Node 25

10

25

13

BinaryTree.java

41

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=4

num=1+1=2

10

25

• Increment num on Node 25

BinaryTree.java

42

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=4

num=2

1025

• Has right child
• Make recursive call on right child

43

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=4

num=2

num=1

1025

18

BinaryTree.java

44

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=4

num=2

num=1

1025

18

• No children
• Return 1 to Node 25

BinaryTree.java

45

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=4

num=2+1=3

• Increment num on Node 25

1025

BinaryTree.java

46

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=4

num=3

• Node 25 is done
• Return 3 back to root

10

25

BinaryTree.java

47

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=4+3=7

10

Increment num on root

BinaryTree.java

48

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=7

Done!
Return 7

10

BinaryTree.java

49

50

height() uses a similar recursive strategy to
calculate the longest path to a leaf

BinaryTree.java
• Height is the number of edges on the

longest path from root to leaf
• By convention, a tree with one node (a leaf

by definition) has height 0

• Recursively compute the height on
the left and right child

• Keep the max

• Add one for this node
• This node isn’t a leaf because if it was

it would have returned zero in line 89Height 0 Height 1 Height 2

/**
 * Same structure and data
 * @param t2 compare with this tree
 * @return true if this tree and t2 have the have structure and data in each node, else false
*/
public boolean equals(BinaryTree<E> t2) {
 if (hasLeft() != t2.hasLeft() || hasRight() != t2.hasRight()) return false;
 if (!data.equals(t2.data)) return false;
 if (hasLeft() && !left.equals(t2.left)) return false;
 if (hasRight() && !right.equals(t2.right)) return false;
 return true;
}

51

equals uses recursion to see if two trees
have same data and structure

BinaryTree.java
To see if two trees are equal, can we just check if tree1 == tree2?
No, that would only check to see if they are at the same address
Instead, we traverse the tree, comparing node by node with the
tree passed in as a parameter

First check if same number number
of children

/**
 * Same structure and data
 * @param t2 compare with this tree
 * @return true if this tree and t2 have the have structure and data in each node, else false
*/
public boolean equals(BinaryTree<E> t2) {
 if (hasLeft() != t2.hasLeft() || hasRight() != t2.hasRight()) return false;
 if (!data.equals(t2.data)) return false;
 if (hasLeft() && !left.equals(t2.left)) return false;
 if (hasRight() && !right.equals(t2.right)) return false;
 return true;
}

52

equals uses recursion to see if two trees
have same data and structure

BinaryTree.java
To see if two trees are equal, can we just check if tree1 == tree2?
No, that would only check to see if they are at the same address
Instead, we traverse the tree, comparing node by node with the
tree passed in as a parameter

Next compare data is
the same in each node

Right way to
compare objects is
the equals() method

/**
 * Same structure and data
 * @param t2 compare with this tree
 * @return true if this tree and t2 have the have structure and data in each node, else false
*/
public boolean equals(BinaryTree<E> t2) {
 if (hasLeft() != t2.hasLeft() || hasRight() != t2.hasRight()) return false;
 if (!data.equals(t2.data)) return false;
 if (hasLeft() && !left.equals(t2.left)) return false;
 if (hasRight() && !right.equals(t2.right)) return false;
 return true;
}

53

equals uses recursion to see if two trees
have same data and structure

BinaryTree.java
To see if two trees are equal, can we just check if tree1 == tree2?
No, that would only check to see if they are at the same address
Instead, we traverse the tree, comparing node by node with the
tree passed in as a parameter

Finally, ask each child to
compare itself

Trees are equal if same shape
and same data at all nodes

54

Agenda

1. General-purpose binary trees

2. Accumulators

3. Tree traversal

Key points:
1. Accumulators are a way to “build up” a

value as a tree is traversed
2. Accumulators allow efficient code

The fringe of a tree is the list of leaves in order from left to right
Here the fringe is [2, 7, 13, 18]
An efficient way to compute the fringe is to traverse the Tree
and use an accumulator (course web page talks about an
inefficient solution)
An accumulator keeps track of a variable during recursion

55

Accumulators are commonly used with
trees for efficient operations

10

5

2 7

25

13 18

56

fringe() uses an accumulator pattern to get
the leaves in order

BinaryTree.java fringe() method creates a variable f
that will be used to accumulate
results of tree traversal

Here we create a new ArrayList f as
the accumulator, then pass it to a
helper function that does recursion

Helper function uses
accumulator during
recursion
Node data added to

fringe if leaf

NOTE: addFringe() does not have a return value, it doesn’t need one!
Descend recursively

After addToFringe() completes,
f has fringe of Tree

57

fringe() uses an accumulator pattern to get
the leaves in order

BinaryTree.java • Why use a helper method here?
• Why not just recursively call

fringe()?
• Because we’d new an ArrayList

at each recursive call
• Here we create a new ArrayList

in fringe() and pass it to
addToFringe()

• addToFringe updates ArrayList
 as it goes

• More notes on course web page

Similarly, toString() uses an accumulator to
create a String representation of the tree

BinaryTree.java toString() called by Java if object
is in println statement
Want to print Tree indented by

level
 G G
 / \ B
 B F => A
 / \ / \ C
 A C D E F
 D
 E

Note: toString() doesn’t take a parameter
How can we keep an accumulator?
Use a helper method!

Idea: keep an accumulator of
how many spaces to indent

Note: the BinaryTree.java linked from the
course web page prints in a slightly more
sophisticated way

58

Similarly, toString() uses an accumulator to
create a String representation of the tree

BinaryTree.java toString() passes empty indent
accumulator String to helper
function

indent will be the number of
spaces before element so that
String output looks like a tree
(e.g., first level not indented,
second level indented 2 spaces,
third level indented 4 spaces…)

Helper function does recursion
using indent variable

Adds 2 extra spaces to indent every
time go down a level in treeNOTE: “\n” means new line

Add indent spaces and data from this node to String

Remember, toString returns a String, it doesn’t print!
59

60

Similarly, toString() uses an accumulator to
create a String representation of the tree

G

B

A C

F

D E

Output of System.out.println(tree)
G
 B
 A
 C
 F
 D
 E

Tree

Each level in tree printed
two spaces indented from
parent level in tree

Each time toString()
descended a level, it
added two spaces to
indent

61

Agenda

1. General-purpose binary trees

2. Accumulators

3. Tree traversal Key points:
Trees are commonly traversed in three
ways
1. Pre-order
2. Post-order
3. In-order

62

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

preorder()
 visit
 left.preorder()
 right.preorder()

Examples:
File directory structure
Table of contents in book
toString()

“visit” means
“handle this
node”, might print
it, might do
something else

63

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Visited
1

Examples:
File directory structure
Table of contents in book
toString()

preorder()
 visit
 left.preorder()
 right.preorder()

64

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Visited
1

Examples:
File directory structure
Table of contents in book
toString()

preorder()
 visit
 left.preorder()
 right.preorder()

65

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Visited
1, 2

Examples:
File directory structure
Table of contents in book
toString()

preorder()
 visit
 left.preorder()
 right.preorder()

66

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Visited
1, 2

Examples:
File directory structure
Table of contents in book
toString()

preorder()
 visit
 left.preorder()
 right.preorder()

67

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Visited
1, 2, 4

Examples:
File directory structure
Table of contents in book
toString()

preorder()
 visit
 left.preorder()
 right.preorder()

68

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Visited
1, 2, 4

Examples:
File directory structure
Table of contents in book
toString()

preorder()
 visit
 left.preorder()
 right.preorder()

69

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Visited
1, 2, 4, 5

Examples:
File directory structure
Table of contents in book
toString()

preorder()
 visit
 left.preorder()
 right.preorder()

70

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Visited
1, 2, 4, 5

Examples:
File directory structure
Table of contents in book
toString()

preorder()
 visit
 left.preorder()
 right.preorder()

71

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Visited
1, 2, 4, 5

Examples:
File directory structure
Table of contents in book
toString()

preorder()
 visit
 left.preorder()
 right.preorder()

72

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Visited
1, 2, 4, 5, 3

Examples:
File directory structure
Table of contents in book
toString()

preorder()
 visit
 left.preorder()
 right.preorder()

73

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Visited
1, 2, 4, 5, 3, 6

Examples:
File directory structure
Table of contents in book
toString()

preorder()
 visit
 left.preorder()
 right.preorder()

74

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Visited
1, 2, 4, 5, 3, 6

Examples:
File directory structure
Table of contents in book
toString()

preorder()
 visit
 left.preorder()
 right.preorder()

75

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Visited
1, 2, 4, 5, 3, 6, 7

Examples:
File directory structure
Table of contents in book
toString()

preorder()
 visit
 left.preorder()
 right.preorder()

76

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

postorder()
 left.postorder()
 right.postorder()
 visit

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

77

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

postorder()
 left.postorder()
 right.postorder()
 visit

78

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

postorder()
 left.postorder()
 right.postorder()
 visit

79

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

postorder()
 left.postorder()
 right.postorder()
 visit

80

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

Visited
4

postorder()
 left.postorder()
 right.postorder()
 visit

81

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

Visited
4

postorder()
 left.postorder()
 right.postorder()
 visit

82

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

Visited
4

postorder()
 left.postorder()
 right.postorder()
 visit

83

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

Visited
4, 5

postorder()
 left.postorder()
 right.postorder()
 visit

84

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

Visited
4, 5

postorder()
 left.postorder()
 right.postorder()
 visit

85

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

Visited
4, 5, 2

postorder()
 left.postorder()
 right.postorder()
 visit

86

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

Visited
4, 5, 2

postorder()
 left.postorder()
 right.postorder()
 visit

87

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

Visited
4, 5, 2

postorder()
 left.postorder()
 right.postorder()
 visit

88

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

Visited
4, 5, 2

postorder()
 left.postorder()
 right.postorder()
 visit

89

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

Visited
4, 5, 2, 6

postorder()
 left.postorder()
 right.postorder()
 visit

90

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

Visited
4, 5, 2, 6

postorder()
 left.postorder()
 right.postorder()
 visit

91

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

Visited
4, 5, 2, 6

postorder()
 left.postorder()
 right.postorder()
 visit

92

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

Visited
4, 5, 2, 6, 7

postorder()
 left.postorder()
 right.postorder()
 visit

93

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

Visited
4, 5, 2, 6, 7, 3

postorder()
 left.postorder()
 right.postorder()
 visit

94

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

Visited
4, 5, 2, 6, 7, 3, 1

postorder()
 left.postorder()
 right.postorder()
 visit

95

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

inorder()
 left.inorder()
 visit
 right.inorder()

Example:
Drawing a tree

96

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Drawing a tree

inorder()
 left.inorder()
 visit
 right.inorder()

97

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Drawing a tree

inorder()
 left.inorder()
 visit
 right.inorder()

98

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Drawing a tree

Visited
4

inorder()
 left.inorder()
 visit
 right.inorder()

99

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Drawing a tree

Visited
4, 2

inorder()
 left.inorder()
 visit
 right.inorder()

100

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Drawing a tree

Visited
4, 2, 5

inorder()
 left.inorder()
 visit
 right.inorder()

101

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Drawing a tree

Visited
4, 2, 5

inorder()
 left.inorder()
 visit
 right.inorder()

102

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Drawing a tree

Visited
4, 2, 5, 1

inorder()
 left.inorder()
 visit
 right.inorder()

103

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Drawing a tree

Visited
4, 2, 5, 1

inorder()
 left.inorder()
 visit
 right.inorder()

104

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Drawing a tree

Visited
4, 2, 5, 1

inorder()
 left.inorder()
 visit
 right.inorder()

105

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Drawing a tree

Visited
4, 2, 5, 1, 6

inorder()
 left.inorder()
 visit
 right.inorder()

106

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Drawing a tree

Visited
4, 2, 5, 1, 6, 3

inorder()
 left.inorder()
 visit
 right.inorder()

107

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Drawing a tree

Visited
4, 2, 5, 1, 6, 3, 7

inorder()
 left.inorder()
 visit
 right.inorder()

Visited
4, 2, 5, 1, 6, 3, 7
Drawing a tree
(left to right)

Summary: order in which nodes are visited
depends on the type of traversal

1

2

4 5

3

6 7

Visited
1, 2, 4, 5, 3, 6, 7
Book chapters

toString()

Preorder

1

2

4 5

3

6 7

Visited
4, 5, 2, 6, 7, 3, 1

Calculate disk space

1

2

4 5

3

6 7

Postorder Inorder

109

Key points

1. Trees are useful for hierarchical data
2. Binary trees have 0, 1, or 2 children at each node
3. Not all trees are binary (PS-2 isn’t)
4. Trees may not be “balanced”
5. Trees lead to beautiful recursive code (so beautiful it brings a tear

to my eye!)
6. Accumulators are a way to “build up” a value as a tree is traversed
7. Accumulators allow efficient code
8. Trees are commonly traversed in three ways

1. Pre-order
2. Post-order
3. In-order

	Slide 1
	Slide 2: Agenda
	Slide 3: We can represent hierarchical data using a data structure called a tree
	Slide 4: We can represent hierarchical data using a data structure called a tree
	Slide 5: We can represent hierarchical data using a data structure called a tree
	Slide 6: We can represent hierarchical data using a data structure called a tree
	Slide 7: We can represent hierarchical data using a data structure called a tree
	Slide 8: We can represent hierarchical data using a data structure called a tree
	Slide 9: In a Binary Tree, each nodes has data plus 0, 1, or 2 children
	Slide 10: A Binary Tree does not need to be balanced
	Slide 11: Each node in a tree can be thought of as the root of its own subtree
	Slide 12: Each node in a tree can be thought of as the root of its own subtree
	Slide 13: Building a BinaryTree
	Slide 14: Building a BinaryTree
	Slide 15: Building a BinaryTree
	Slide 16: Building a BinaryTree
	Slide 17: Building a BinaryTree
	Slide 18: Building a BinaryTree
	Slide 19: Building a BinaryTree
	Slide 20: BinaryTree has three useful helper methods: hasLeft, hasRight, isleaf
	Slide 21: Use recursion to calculate tree size from any given node = size of both children +1
	Slide 22: Use recursion to calculate tree size from any given node = size of both children +1
	Slide 23: Use recursion to calculate tree size from any given node = size of both children +1
	Slide 24: Use recursion to calculate tree size from any given node = size of both children +1
	Slide 25: Use recursion to calculate tree size from any given node = size of both children +1
	Slide 26: Use recursion to calculate tree size from any given node = size of both children +1
	Slide 27: Use recursion to calculate tree size from any given node = size of both children +1
	Slide 28: Use recursion to calculate tree size from any given node = size of both children +1
	Slide 29: Use recursion to calculate tree size from any given node = size of both children +1
	Slide 30: Use recursion to calculate tree size from any given node = size of both children +1
	Slide 31: Use recursion to calculate tree size from any given node = size of both children +1
	Slide 32: Use recursion to calculate tree size from any given node = size of both children +1
	Slide 33: Use recursion to calculate tree size from any given node = size of both children +1
	Slide 34: Use recursion to calculate tree size from any given node = size of both children +1
	Slide 35: Use recursion to calculate tree size from any given node = size of both children +1
	Slide 36: Use recursion to calculate tree size from any given node = size of both children +1
	Slide 37: Use recursion to calculate tree size from any given node = size of both children +1
	Slide 38: Use recursion to calculate tree size from any given node = size of both children +1
	Slide 39: Use recursion to calculate tree size from any given node = size of both children +1
	Slide 40: Use recursion to calculate tree size from any given node = size of both children +1
	Slide 41: Use recursion to calculate tree size from any given node = size of both children +1
	Slide 42: Use recursion to calculate tree size from any given node = size of both children +1
	Slide 43: Use recursion to calculate tree size from any given node = size of both children +1
	Slide 44: Use recursion to calculate tree size from any given node = size of both children +1
	Slide 45: Use recursion to calculate tree size from any given node = size of both children +1
	Slide 46: Use recursion to calculate tree size from any given node = size of both children +1
	Slide 47: Use recursion to calculate tree size from any given node = size of both children +1
	Slide 48: Use recursion to calculate tree size from any given node = size of both children +1
	Slide 49: Use recursion to calculate tree size from any given node = size of both children +1
	Slide 50: height() uses a similar recursive strategy to calculate the longest path to a leaf
	Slide 51: equals uses recursion to see if two trees have same data and structure
	Slide 52: equals uses recursion to see if two trees have same data and structure
	Slide 53: equals uses recursion to see if two trees have same data and structure
	Slide 54: Agenda
	Slide 55: Accumulators are commonly used with trees for efficient operations
	Slide 56: fringe() uses an accumulator pattern to get the leaves in order
	Slide 57: fringe() uses an accumulator pattern to get the leaves in order
	Slide 58: Similarly, toString() uses an accumulator to create a String representation of the tree
	Slide 59: Similarly, toString() uses an accumulator to create a String representation of the tree
	Slide 60: Similarly, toString() uses an accumulator to create a String representation of the tree
	Slide 61: Agenda
	Slide 62: There are different ways to traverse a tree, depending on what needs to be done
	Slide 63: There are different ways to traverse a tree, depending on what needs to be done
	Slide 64: There are different ways to traverse a tree, depending on what needs to be done
	Slide 65: There are different ways to traverse a tree, depending on what needs to be done
	Slide 66: There are different ways to traverse a tree, depending on what needs to be done
	Slide 67: There are different ways to traverse a tree, depending on what needs to be done
	Slide 68: There are different ways to traverse a tree, depending on what needs to be done
	Slide 69: There are different ways to traverse a tree, depending on what needs to be done
	Slide 70: There are different ways to traverse a tree, depending on what needs to be done
	Slide 71: There are different ways to traverse a tree, depending on what needs to be done
	Slide 72: There are different ways to traverse a tree, depending on what needs to be done
	Slide 73: There are different ways to traverse a tree, depending on what needs to be done
	Slide 74: There are different ways to traverse a tree, depending on what needs to be done
	Slide 75: There are different ways to traverse a tree, depending on what needs to be done
	Slide 76: There are different ways to traverse a tree, depending on what needs to be done
	Slide 77: There are different ways to traverse a tree, depending on what needs to be done
	Slide 78: There are different ways to traverse a tree, depending on what needs to be done
	Slide 79: There are different ways to traverse a tree, depending on what needs to be done
	Slide 80: There are different ways to traverse a tree, depending on what needs to be done
	Slide 81: There are different ways to traverse a tree, depending on what needs to be done
	Slide 82: There are different ways to traverse a tree, depending on what needs to be done
	Slide 83: There are different ways to traverse a tree, depending on what needs to be done
	Slide 84: There are different ways to traverse a tree, depending on what needs to be done
	Slide 85: There are different ways to traverse a tree, depending on what needs to be done
	Slide 86: There are different ways to traverse a tree, depending on what needs to be done
	Slide 87: There are different ways to traverse a tree, depending on what needs to be done
	Slide 88: There are different ways to traverse a tree, depending on what needs to be done
	Slide 89: There are different ways to traverse a tree, depending on what needs to be done
	Slide 90: There are different ways to traverse a tree, depending on what needs to be done
	Slide 91: There are different ways to traverse a tree, depending on what needs to be done
	Slide 92: There are different ways to traverse a tree, depending on what needs to be done
	Slide 93: There are different ways to traverse a tree, depending on what needs to be done
	Slide 94: There are different ways to traverse a tree, depending on what needs to be done
	Slide 95: There are different ways to traverse a tree, depending on what needs to be done
	Slide 96: There are different ways to traverse a tree, depending on what needs to be done
	Slide 97: There are different ways to traverse a tree, depending on what needs to be done
	Slide 98: There are different ways to traverse a tree, depending on what needs to be done
	Slide 99: There are different ways to traverse a tree, depending on what needs to be done
	Slide 100: There are different ways to traverse a tree, depending on what needs to be done
	Slide 101: There are different ways to traverse a tree, depending on what needs to be done
	Slide 102: There are different ways to traverse a tree, depending on what needs to be done
	Slide 103: There are different ways to traverse a tree, depending on what needs to be done
	Slide 104: There are different ways to traverse a tree, depending on what needs to be done
	Slide 105: There are different ways to traverse a tree, depending on what needs to be done
	Slide 106: There are different ways to traverse a tree, depending on what needs to be done
	Slide 107: There are different ways to traverse a tree, depending on what needs to be done
	Slide 108: Summary: order in which nodes are visited depends on the type of traversal
	Slide 109: Key points

