
CS 10:
Problem solving via Object Oriented

Programming

Hierarchies 2: BST

2

Agenda

1. Binary search

2. Binary Search Trees (BST)

3. BST find analysis

4. Operations on BSTs

5. Implementation

3

Binary search can quickly find items if the
data is ordered

0 1 2 3 4 5 6 7 8

1 5 9 14 25 53 107 214 512

Binary search on an array

Index
Data

Pseudo code
Looking for target = 53
Set min = 0, max = n-1
While (min <= max) {

idx = (min + max)/2
If array[idx] == target
 return idx
array[idx] > target

max = idx-1
else

min = idx +1
}

Min Max

4

At each iteration half of the indexes are
eliminated

0 1 2 3 4 5 6 7 8

1 5 9 14 25 53 107 214 512

Binary search on an array

Pseudo code
Looking for target = 53
Set min = 0, max = n-1
While (min <= max) {

idx = (min + max)/2
If array[idx] == target
 return idx
array[idx] > target

max = idx-1
else

min = idx +1
}

Index
Data

Target 53
Min = 0
Max = 8
Idx = (0+8)/2 = 4
Array[idx] = 25

1

Min Max

5

At each iteration half of the indexes are
eliminated

0 1 2 3 4 5 6 7 8

1 5 9 14 25 53 107 214 512

Binary search on an array

Pseudo code
Looking for target = 53
Set min = 0, max = n-1
While (min <= max) {

idx = (min + max)/2
If array[idx] == target
 return idx
array[idx] > target

max = idx-1
else

min = idx +1
}

Index
Data

Target 53
Min = 0
Max = 8
Idx = (0+8)/2 = 4
Array[idx] = 25

25 < 53
53 must be in right half
move up min to idx +1

1

Min Max

6

At each iteration half of the indexes are
eliminated

0 1 2 3 4 5 6 7 8

1 5 9 14 25 53 107 214 512

Binary search on an array

Index
Data

Target 53
Min = 5
Max = 8
Idx = (5+8)/2 = 6
Array[idx] = 107

Eliminated half of
the original items

1

Pseudo code
Looking for target = 53
Set min = 0, max = n-1
While (min <= max) {

idx = (min + max)/2
If array[idx] == target
 return idx
array[idx] > target

max = idx-1
else

min = idx +1
}

Min Max

7

At each iteration half of the indexes are
eliminated

0 1 2 3 4 5 6 7 8

1 5 9 14 25 53 107 214 512

Binary search on an array

Index
Data

Target 53
Min = 5
Max = 8
Idx = (5+8)/2 = 6
Array[idx] = 107

1 2

Pseudo code
Looking for target = 53
Set min = 0, max = n-1
While (min <= max) {

idx = (min + max)/2
If array[idx] == target
 return idx
array[idx] > target

max = idx-1
else

min = idx +1
}

Min Max

8

At each iteration half of the indexes are
eliminated

0 1 2 3 4 5 6 7 8

1 5 9 14 25 53 107 214 512

Binary search on an array

Index
Data

Target 53
Min = 5
Max = 8
Idx = (5+8)/2 = 6
Array[idx] = 107

107 > 53
53 must be in left half
move max to idx -1

1 2

Pseudo code
Looking for target = 53
Set min = 0, max = n-1
While (min <= max) {

idx = (min + max)/2
If array[idx] == target
 return idx
array[idx] > target

max = idx-1
else

min = idx +1
}

Min Max

9

Binary search finds data generally faster
than linear search

0 1 2 3 4 5 6 7 8

1 5 9 14 25 53 107 214 512

Binary search on an array

Index
Data

Target 53
Min = 5
Max = 5
Idx = (5+5)/2 = 5
Array[idx] = 53

Eliminated half of
the remaining items

1 2

Pseudo code
Looking for target = 53
Set min = 0, max = n-1
While (min <= max) {

idx = (min + max)/2
If array[idx] == target
 return idx
array[idx] > target

max = idx-1
else

min = idx +1
}

Min Max

10

Binary search finds data generally faster
than linear search

0 1 2 3 4 5 6 7 8

1 5 9 14 25 53 107 214 512

Binary search on an array

Index
Data

Target 53
Min = 5
Max = 5
Idx = (5+5)/2 = 5
Array[idx] = 53

Found target

1 23

Pseudo code
Looking for target = 53
Set min = 0, max = n-1
While (min <= max) {

idx = (min + max)/2
If array[idx] == target
 return idx
array[idx] > target

max = idx-1
else

min = idx +1
}

Min Max

11

Binary search finds data generally faster
than linear search

0 1 2 3 4 5 6 7 8

1 5 9 14 25 53 107 214 512

Binary search on an array

Index
Data

Target 53
Min = 5
Max = 5
Idx = (5+5)/2 = 5
Array[idx] = 53

Found target

1 23

Pseudo code
Looking for target = 53
Set min = 0, max = n-1
While (min <= max) {

idx = (min + max)/2
If array[idx] == target
 return idx
array[idx] > target

max = idx-1
else

min = idx +1
}

Min Max

Binary vs. linear search
• Binary found item in 3 tries
• Linear search would have taken 6 tries
• On large data sets binary search can

make a huge difference
• One million item collection takes 20

searches (one billion takes only 30)!

12

We can extend binary search to find a Key
and return a Value

0 1 2 3 4 5 6 7 8

1 5 9 14 25 53 107 214 512

Index
Student ID

“Alice”

“Bob”

“Charlie
”

…

Key: Student ID, Value: Student name

Implications
• Given a Student ID, can quickly find the student’s name
• Each entry has a Key and a Value
• Value can be an object (e.g. String or student record object)
• Of course the keys must be sorted for this to work
• How do we do that?

13

Agenda

1. Binary search

2. Binary Search Trees (BST)

3. BST find analysis

4. Operations on BSTs

5. Implementation

14

BST nodes have a Key and a Value

Key: 5
Value:

Bob

Key: 1
Value:
Alice

Key: 9
Value:
Charlie

Key: Student ID, Value: Student name
Can search for
nodes by Key

Return Value if Key
found

Will only show the
Key in following
slides

15

Binary Search Trees (BSTs) allow for binary
search by keeping Keys sorted

D

B

A C

F

E G

Keys sorted in Binary Search Tree

Binary Search Tree property
• Let x be a node in a binary

search tree such that
• left.key < x.key

• right.key > x.key

• We will maintain this
property for all nodes in the
BST as we add/remove

• We will assume for now
duplicate Keys are not
allowed

16

BSTs with same keys could have different
structures and still obey BST property
Two valid BSTs with same keys but different structure

Tree 1 Tree 2

D

B

A C

F

E G

C

A

B

E

D F

G

For now we make no guarantee of balance
(later in the term we will)

17

BSTs make searching fast and simple

D

B

A C

F

E G

Find Key

Find Key “C”
• Check root
• “D” > “C”, so go left

18

BSTs make searching fast and simple

D

B

A C

F

E G

• Check “B”
• “B” < “C”, so go right

Find Key “C”
• Check root
• “D” > “C”, so go left

Find Key

19

BSTs make searching fast and simple

D

B

A C

F

E G

• Check “B”
• “B” < “C”, so go right

• Check “C”
• Yahtzee! Found it

Find Key “C”
• Check root
• “D” > “C”, so go left

Find Key

20

BSTs make searching fast and simple

D

B

A C

F

E G

• Check “B”
• “B” < “C”, so go right

• Check “C”
• Yahtzee! Found it

• Would know by now if
key not in BST because
we hit a leaf

Find Key “C”
• Check root
• “D” > “C”, so go left

Find Key

21

Agenda

1. Binary search

2. Binary Search Trees (BST)

3. BST find analysis

4. Operations on BSTs

5. Implementation

22

BST takes at most height+1 checks to find
Key or determine the Key is not in the tree

D

B

A C

F

E G

Find Key “C” Search process
• Height h = 2 (count

number of edges on
longest path to leaf)

• At each check eliminate
one branch

• Can take no more than
h+1 checks, O(h)

• Can we say anything
more specific about
search time? O(log n)?
Careful, it’s a trap!

h=2

Height

23

BSTs do not have to be balanced! Can not
make tight bound assumptions! (yet)

A

B

Find Key “G” Search process
• Same data as last slide

but still valid BST

• Height h = 6 (count
number of edges to leaf)

• Can take no more than
h+1 checks, O(h)

• An arrangement like this
sometimes called a
“vine”

h=6

Height

C

D

E

F

G

24

Agenda

1. Binary search

2. Binary Search Trees (BST)

3. BST find analysis

4. Operations on BSTs

5. Implementation

25

Inserting a new Key/Value is easy
(compared with sorted array)

D

B

A C

F

E G

Inserting new node with Key H

Comments
• Search for Key (H)

• If found, replace Value
• If hit end, add new node as left or right child of leaf

26

Inserting a new Key/Value is easy
(compared with sorted array)

D

B

A C

F

E G

Inserting new node with Key H

Comments
• Search for Key (H)

• If found, replace Value
• If hit end, add new node as left or right child of leaf

Searching for H

27

Inserting a new Key/Value is easy
(compared with sorted array)

D

B

A C

F

E G

Inserting new node with Key H

Comments
• Search for Key (H)

• If found, replace Value
• If hit end, add new node as left or right child of leaf

G is a leaf
H is not in the Tree
Add new node to G
Choose left or right child based
on Key of new node (H here)

Searching for H

28

Inserting a new Key/Value is easy
(compared with sorted array)

D

B

A C

F

E G

Inserting new node with Key H

Comments
• Search for Key (H)

• If found, replace Value
• If hit end, add new node as left or right child of leaf

D

B

A C

F

E G

H

29

Deletion is trickier, need to consider
children, but no children is easy

D

B

A C

F

E G

Comments
• Search for parent of A

• If found and A has no children, set appropriate left or right
to null on parent

Deleting node A (no children)

30

Deletion is trickier, need to consider
children, but no children is easy

D

B

A C

F

E G

Comments
• Search for parent of A

• If found and A has no children, set appropriate left or right
to null on parent

Deleting node A (no children)

Search for parent of A

31

Deletion is trickier, need to consider
children, but no children is easy

D

B

A C

F

E G

Comments
• Search for parent of A

• If found and A has no children, set appropriate left or right
to null on parent

Deleting node A (no children)

B is
parent
of A

Search for parent of A

32

Deletion is trickier, need to consider
children, but no children is easy

D

B

A C

F

E G

Comments
• Search for parent of A

• If found and A has no children, set appropriate left or right
to null on parent

Deleting node A (no children)

B is
parent
of A

D

B

C

F

E G

Set child of
parent to
null

A is garbage
collected

33

Deleting with one child is not difficult

Deleting node B (1 child)

D

B

C

F

E G

Comments
• Search for parent of B

• If found and B has 1 child, set appropriate left or right on
parent to B’s only child

34

Deleting with one child is not difficult

Deleting node B (1 child)

D

B

C

F

E G

Comments
• Search for parent of B

• If found and B has 1 child, set appropriate left or right on
parent to B’s only child

D is
parent
of B

35

Deleting with one child is not difficult

Deleting node B (1 child)

D

B

C

F

E G

Comments
• Search for parent of B

• If found and B has 1 child, set appropriate left or right on
parent to B’s only child

D is
parent
of B

D

C F

E GB is
garbage
collected

36

Deleting node with 2 children requires
finding the node’s “successor”

D

C F

E G

Deleting node F (2 children)

Comments
• Search for F
• If found and F has 2 children, find successor (smallest on right)
• Successor will be greater than E and less than or equal to G
• May have to traverse down right child’s left descendants
• Delete successor, but save successor's Key and Value
• Replace F with Key and Value of successor

37

Deleting node with 2 children requires
finding the node’s “successor”

D

C F

E G

Deleting node F (2 children)

Comments
• Search for F
• If found and F has 2 children, find successor (smallest on right)
• Successor will be greater than E and less than or equal to G
• May have to traverse down right child’s left descendants
• Delete successor, but save successor's Key and Value
• Replace F with Key and Value of successor

38

Deleting node with 2 children requires
finding the node’s “successor”

D

C F

E G

Deleting node F (2 children)

Found F
Successor is smallest on right (G here)

Comments
• Search for F
• If found and F has 2 children, find successor (smallest on right)
• Successor will be greater than E and less than or equal to G
• May have to traverse down right child’s left descendants
• Delete successor, but save successor's Key and Value
• Replace F with Key and Value of successor

Comments
• Search for F
• If found and F has 2 children, find successor (smallest on right)
• Successor will be greater than E and less than or equal to G
• May have to traverse down right child’s left descendants
• Delete successor, but save successor's Key and Value
• Replace F with Key and Value of successor

39

Deleting node with 2 children requires
finding the node’s “successor”

D

C F

E

Deleting node F (2 children)

Found F
Successor is smallest on right (G here)
Delete successor

G

40

Deleting node with 2 children requires
finding the node’s “successor”

D

C F

E

Deleting node F (2 children)

Found F
Successor is smallest on right (G here)
Delete successor
Replace F Key and Value with G Key and Value

G

Comments
• Search for F
• If found and F has 2 children, find successor (smallest on right)
• Successor will be greater than E and less than or equal to G
• May have to traverse down right child’s left descendants
• Delete successor, but save successor's Key and Value
• Replace F with Key and Value of successor

41

Agenda

1. Binary search

2. Binary Search Trees (BST)

3. BST find analysis

4. Operations on BSTs

5. Implementation

42

Binary Search Tree nodes each take a Key
and Value, also have left and right children
BST.java • Key (K) and Value (V) are

generics (can be any
object type)

• Use wrapper for primitive
types (e.g., Integer for int)

• Example: Key=Student ID
as String, Value=Student
object with name, year,
list of classes taken

• Has left and right child
like Binary Tree from last
class

43

BST Keys extend Comparable so we can
evaluate generic Keys
BST.java • Keys are generic, can be any type

• To maintain BST property, need to
determine if Key < or > other Key

• Key extends Comparable for this
purpose

• Comparable requires class used as
Key to implement compareTo()
method

• Can’t use class as Key without it
• compareTo() already implemented

for autoboxed classes such as
Integer or String

• Must implement in our own
classes if we use them as Keys
(e.g., if Points were Keys, how is
one Point <, =, > another?)

• Point class would have to tell Java

/**
 * Compare this blob with another blob
 * @param comparePoint point to compare to this point
 * @return 0 if same,
 * 1 if this point is higher up than comparePoint,
 * -1 otherwise */
public int compareTo(PointWithCompareTo comparePoint) {
 if (this.y < comparePoint.getY())
 return 1; //this Point is higher up, so it’s bigger
 else if (this.y > comparePoint.getY())
 return -1; //this Point is lower, so it’s smaller
 else return 0; //at same height, so same
}

44

Need to implement compareTo() if using
custom class as Key

In Class declaration add
“implements Comparable” so
Java knows class follows
interface (not shown)

PointWithCompareTo.java
If you use your own class as a Key, then must implement compareTo()
Can’t use your class as Key in BST.java if you do not

• Return values not limited to just -1, 0 or 1
• Only need to be negative, positive or zero integers

• Compare this Point with another
Point using whatever metric you
decide makes one bigger

• Return a positive integer if this
Point > compared Point

• Return negative integer if this
Point < compared Point

• Return 0 if equal

45

Using Comparable makes finding a Key in a
BST easy
BST.java • Look for Key search in BST, return

value V if found (exception if not
found)

46

Using Comparable makes finding a Key in a
BST easy
BST.java • Look for Key search in BST, return

value V if found (exception if not
found)

• Use compareTo() to evaluate
search Key with this node’s Key

• Return this node’s Value if found

47

Using Comparable makes finding a Key in a
BST easy
BST.java • Look for Key search in BST, return

value V if found (exception if not
found)

• Use compareTo() to evaluate
search Key with this node’s Key

• Return this node’s Value if found
• Traverse left or right based on Key

comparison
• Throw exception if make it all the

way to a leaf and haven’t found Key
• Here we throw InvalidKeyException,

normally in CS10 just throw generic
exception

48

Using Comparable makes finding a Key in a
BST easy
BST.java

D

B

A C

F

E G

t= Node “D”

49

Using Comparable makes finding a Key in a
BST easy
BST.java

D

B

A C

F

E G

V value = t.find(“C”)

50

Using Comparable makes finding a Key in a
BST easy
BST.java

D

B

A C

F

E G

V value = t.find(“C”)

D

“C” < “D”
compare = -1

51

Using Comparable makes finding a Key in a
BST easy
BST.java

D

B

A C

F

E G

V value = t.find(“C”)

D

“C” < “D”
compare = -1
Traverse left

52

Using Comparable makes finding a Key in a
BST easy
BST.java

D

B

A C

F

E G

V value = t.find(“C”)

D

“C” > “B”
compare = 1

B

53

Using Comparable makes finding a Key in a
BST easy
BST.java

D

B

A C

F

E G

V value = t.find(“C”)

D

“C” > “B”
compare = 1
Traverse right

B

54

Using Comparable makes finding a Key in a
BST easy
BST.java

D

B

A C

F

E G

V value = t.find(“C”)

D

“C” = “C”
compare = 0

B

C

55

Using Comparable makes finding a Key in a
BST easy
BST.java

D

B

A C

F

E G

V value = t.find(“C”)

D

“C” = “C”
compare = 0
Return Value of node “C”

B

C

56

Using Comparable makes finding a Key in a
BST easy
BST.java

D

B

A C

F

E G

V value = t.find(“C”)

D

Return Value of node C

B

Value of node “C”

57

Using Comparable makes finding a Key in a
BST easy
BST.java

D

B

A C

F

E G

V value = t.find(“C”)

D

Return Value of node C
Value of node “C”

58

Using Comparable makes finding a Key in a
BST easy
BST.java

D

B

A C

F

E G

V value = t.find(“C”)

Done
Value of node “C”
returned

Value of node “C”

59

Using Comparable makes finding a Key in a
BST easy
BST.java

D

B

A C

F

E G

V value = t.find(“C”)

Done
Value of node “C”
returned

Run-time complexity?
O(h) where h is the height of the tree
Does not need to visit all nodes

60

Comparable also helps inserting new
Nodes
BST.java Inserting new K key and V value

61

Comparable also helps inserting new
Nodes
BST.java Inserting new K key and V value

• If find key, replace its value

62

Comparable also helps inserting new
Nodes
BST.java

• Traverse left if key < this
node’s key

• If no left child, create a
new node as the left child

Inserting new K key and V value
• If find key, replace its value

63

Comparable also helps inserting new
Nodes
BST.java

• Traverse right if
key > this node’s
key

• If no right child,
create a new Node
as the right child

• Traverse left if key < this
node’s key

• If no left child, create a
new node as the left child

Inserting new K key and V value
• If find key, replace its value

64

Comparable also helps inserting new
Nodes
BST.java

D

BST<String, Integer> t = new BST<String, Integer>(“D”,v1);

65

Comparable also helps inserting new
Nodes
BST.java

DB

t.insert(“B”,v2);

66

Comparable also helps inserting new
Nodes
BST.java

DB

D
“B” < “D”
compare = -1

t.insert(“B”,v2);

67

Comparable also helps inserting new
Nodes
BST.java

D

“B” < “D”
compare = -1
No left child
Add “B” as left

D

B

t.insert(“B”,v2);

68

Comparable also helps inserting new
Nodes
BST.java t.insert(“C”,v3)

D “C” < “D”
compare = -1

D

B

C

69

Comparable also helps inserting new
Nodes
BST.java

D

“C” < “D”
compare = -1
Has left
traverse left

D

B

C

t.insert(“C”,v3)

70

Comparable also helps inserting new
Nodes
BST.java

D

“C” > “B”
compare = 1

D

B

C

B

t.insert(“C”,v3)

71

Comparable also helps inserting new
Nodes
BST.java

D

“C” > “B”
compare = 1
No right child
Add “C” as
right

D

B

C

B

t.insert(“C”,v3)

72

Comparable also helps inserting new
Nodes
BST.java

“C” > “B”
compare = 1
No right child
Add “C” as
right

B ends

D

B

C

B

D

t.insert(“C”,v3)

73

Comparable also helps inserting new
Nodes
BST.java

D

“C” > “B”
compare = 1
No right child
Add “C” as
right

B ends
D ends

D

B

C

t.insert(“C”,v3)

74

Comparable also helps inserting new
Nodes
BST.java

“C” > “B”
compare = 1
No right child
Add “C” as
right

B ends
D ends

Done

D

B

C

t.insert(“C”,v3)

75

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java Delete node with Key search

Return updated tree (or throw
exception if Key not found)

76

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

B

A C

F

E G

t = Node “D”

77

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

B

A C

F

E G

t = t.delete(“A”)

78

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

t = t.delete(“A”)

D

B

A C

F

E G

Search for “A”

D

79

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

t = t.delete(“A”)

D

B

A C

F

E G

Search for “A”

D

80

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

t = t.delete(“A”)

D

B

A C

F

E G

Search for “A”

D

B

81

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

t = t.delete(“A”)

D

B

A C

F

E G

Found “A”

A

D

B

82

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

t = t.delete(“A”)

D

B

A C

F

E G

Return right
(null)

A

D

B

83

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

t = t.delete(“A”)

D

B

A C

F

E G

B.left = null

DB

84

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

t = t.delete(“A”)

D

B

C

F

E G

B.left = null

DB

85

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

t = t.delete(“A”)

D

B

C

F

E G

B.left = null
Return self

D

B

86

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

t = t.delete(“A”)

D

B

C

F

E G

D.left = B

D

87

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

t = t.delete(“A”)

D

B

C

F

E G

D.left = B
Return self

D

88

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

t = t.delete(“A”)

D

B

C

F

E G

D.left = B
Return self

D

89

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

B

C

F

E G

t = Node “D”

90

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

B

C

F

E G

t = t.delete(“B”)

91

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

B

C

F

E G

t = t.delete(“B”)

D

Search for “B”

92

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

B

C

F

E G

t = t.delete(“B”)

D

Found “B”

B

93

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

B

C

F

E G

t = t.delete(“B”)

D

Found “B”
Return C

B

94

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

B

C

F

E G

t = t.delete(“B”)

D.left = C

D

95

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

C

F

E G

t = t.delete(“B”)

D

D.left = C

96

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

C

F

E G

t = t.delete(“B”)

D

D.left = C
Return self

97

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

C

F

E G

t = Node “D”

98

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

C

F

E G

t = t.delete(“F”)

D

Search for “F”

99

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

C

F

E G

t = t.delete(“F”)

D

Search for “F”
Found F

F

100

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

C

F

E G

t = t.delete(“F”)

D

Find successor
Smallest on

right

F

101

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

C

F

E G

t = t.delete(“F”)

D

Find successor
Smallest on

right is G

F

102

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

C

F

E G

t = t.delete(“F”)

D

Delete G
F

103

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

C

F

E G

t = t.delete(“F”)

D

Delete G
F.right=G.right

(null)

F

104

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

C

G

E G

t = t.delete(“F”)

D

F.key=G.key
F.Value=G.value

F

105

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

C

G

E G

t = t.delete(“F”)

D

Return F Node
now with G’s

key/valueF

106

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

C

G

E

t = t.delete(“F”)

D

D.right = G

107

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

C

G

E

t = Node “D”

Return D

108

	Slide 1
	Slide 2: Agenda
	Slide 3: Binary search can quickly find items if the data is ordered
	Slide 4: At each iteration half of the indexes are eliminated
	Slide 5: At each iteration half of the indexes are eliminated
	Slide 6: At each iteration half of the indexes are eliminated
	Slide 7: At each iteration half of the indexes are eliminated
	Slide 8: At each iteration half of the indexes are eliminated
	Slide 9: Binary search finds data generally faster than linear search
	Slide 10: Binary search finds data generally faster than linear search
	Slide 11: Binary search finds data generally faster than linear search
	Slide 12: We can extend binary search to find a Key and return a Value
	Slide 13: Agenda
	Slide 14: BST nodes have a Key and a Value
	Slide 15: Binary Search Trees (BSTs) allow for binary search by keeping Keys sorted
	Slide 16: BSTs with same keys could have different structures and still obey BST property
	Slide 17: BSTs make searching fast and simple
	Slide 18: BSTs make searching fast and simple
	Slide 19: BSTs make searching fast and simple
	Slide 20: BSTs make searching fast and simple
	Slide 21: Agenda
	Slide 22: BST takes at most height+1 checks to find Key or determine the Key is not in the tree
	Slide 23: BSTs do not have to be balanced! Can not make tight bound assumptions! (yet)
	Slide 24: Agenda
	Slide 25: Inserting a new Key/Value is easy (compared with sorted array)
	Slide 26: Inserting a new Key/Value is easy (compared with sorted array)
	Slide 27: Inserting a new Key/Value is easy (compared with sorted array)
	Slide 28: Inserting a new Key/Value is easy (compared with sorted array)
	Slide 29: Deletion is trickier, need to consider children, but no children is easy
	Slide 30: Deletion is trickier, need to consider children, but no children is easy
	Slide 31: Deletion is trickier, need to consider children, but no children is easy
	Slide 32: Deletion is trickier, need to consider children, but no children is easy
	Slide 33: Deleting with one child is not difficult
	Slide 34: Deleting with one child is not difficult
	Slide 35: Deleting with one child is not difficult
	Slide 36: Deleting node with 2 children requires finding the node’s “successor”
	Slide 37: Deleting node with 2 children requires finding the node’s “successor”
	Slide 38: Deleting node with 2 children requires finding the node’s “successor”
	Slide 39: Deleting node with 2 children requires finding the node’s “successor”
	Slide 40: Deleting node with 2 children requires finding the node’s “successor”
	Slide 41: Agenda
	Slide 42: Binary Search Tree nodes each take a Key and Value, also have left and right children
	Slide 43: BST Keys extend Comparable so we can evaluate generic Keys
	Slide 44: Need to implement compareTo() if using custom class as Key
	Slide 45: Using Comparable makes finding a Key in a BST easy
	Slide 46: Using Comparable makes finding a Key in a BST easy
	Slide 47: Using Comparable makes finding a Key in a BST easy
	Slide 48: Using Comparable makes finding a Key in a BST easy
	Slide 49: Using Comparable makes finding a Key in a BST easy
	Slide 50: Using Comparable makes finding a Key in a BST easy
	Slide 51: Using Comparable makes finding a Key in a BST easy
	Slide 52: Using Comparable makes finding a Key in a BST easy
	Slide 53: Using Comparable makes finding a Key in a BST easy
	Slide 54: Using Comparable makes finding a Key in a BST easy
	Slide 55: Using Comparable makes finding a Key in a BST easy
	Slide 56: Using Comparable makes finding a Key in a BST easy
	Slide 57: Using Comparable makes finding a Key in a BST easy
	Slide 58: Using Comparable makes finding a Key in a BST easy
	Slide 59: Using Comparable makes finding a Key in a BST easy
	Slide 60: Comparable also helps inserting new Nodes
	Slide 61: Comparable also helps inserting new Nodes
	Slide 62: Comparable also helps inserting new Nodes
	Slide 63: Comparable also helps inserting new Nodes
	Slide 64: Comparable also helps inserting new Nodes
	Slide 65: Comparable also helps inserting new Nodes
	Slide 66: Comparable also helps inserting new Nodes
	Slide 67: Comparable also helps inserting new Nodes
	Slide 68: Comparable also helps inserting new Nodes
	Slide 69: Comparable also helps inserting new Nodes
	Slide 70: Comparable also helps inserting new Nodes
	Slide 71: Comparable also helps inserting new Nodes
	Slide 72: Comparable also helps inserting new Nodes
	Slide 73: Comparable also helps inserting new Nodes
	Slide 74: Comparable also helps inserting new Nodes
	Slide 75: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 76: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 77: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 78: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 79: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 80: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 81: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 82: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 83: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 84: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 85: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 86: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 87: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 88: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 89: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 90: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 91: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 92: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 93: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 94: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 95: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 96: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 97: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 98: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 99: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 100: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 101: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 102: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 103: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 104: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 105: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 106: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 107: Deleting a Node removes it from the tree and returns updated tree to caller
	Slide 108

