
CS 10:
Problem solving via Object Oriented 

Programming

Hashing
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Java provides us faster Sets and Maps using 
hashing instead of Trees
• Sets hold unique objects, Maps hold Key/Value pairs

• Map Keys are unique, but Values may be duplicated

• As we saw last class, using a Tree is a natural fit for 
implementing Sets and Maps

• Performance with a Tree is generally better than a List

• We can do better than Tree performance by using today’s 
topic of discussion – hashing

• Java provides the HashSet and HashMap out-of-the-box 
that do a lot of the hard work for us
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Agenda

1. Hashing

2. Computing Hash functions

3. Implementing Maps/Sets with hashing

4. Handling collisions
1. Chaining
2. Open Addressing
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The old Sears catalog orders illustrate how 
hashing works

Slots behind deskSears store implementation of hash table
• Used to have 100 slots behind order desk, 0…99
• Shipments arrive, details of where item stored in 

warehouse put in slot by last two digits of 
customer phone number (e.g., 03)
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The old Sears catalog orders illustrate how 
hashing works

Slots behind deskSears store implementation of hash table
• Used to have 100 slots behind order desk, 0…99
• Shipments arrive, details of where item stored in 

warehouse put in slot by last two digits of 
customer phone number (e.g., 03)

Details
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The old Sears catalog orders illustrate how 
hashing works

.

.

.

Slots behind deskSears store implementation of hash table
• Used to have 100 slots behind order desk, 0…99
• Shipments arrive, details of where item stored in 

warehouse put in slot by last two digits of 
customer phone number (e.g., 03)

• Customer arrives, gives last two digits of phone
.
.
.
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The old Sears catalog orders illustrate how 
hashing works

.

.

.

Slots behind deskSears store implementation of hash table
• Used to have 100 slots behind order desk, 0…99
• Shipments arrive, details of where item stored in 

warehouse put in slot by last two digits of 
customer phone number (e.g., 03)

• Customer arrives, gives last two digits of phone
• Clerk finds slot with that two-digit number
• Clerk searches contents of that slot only
• Could be multiple orders, but can find the order 

quickly because only a few orders in slot

Search only these 
orders, skip the rest

.
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The old Sears catalog orders illustrate how 
hashing works
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Slots behind deskSears store implementation of hash table
• Used to have 100 slots behind order desk, 0…99
• Shipments arrive, details of where item stored in 

warehouse put in slot by last two digits of 
customer phone number (e.g., 03)

• Customer arrives, gives last two digits of phone
• Clerk finds slot with that two-digit number
• Clerk searches contents of that slot only
• Could be multiple orders, but can find the order 

quickly because only a few orders in slot
• Splits set of (possibly) hundreds or thousands of 

orders into 100 slots of a few items each
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The old Sears catalog orders illustrate how 
hashing works

.

.

.

Slots behind deskSears store implementation of hash table
• Used to have 100 slots behind order desk, 0…99
• Shipments arrive, details of where item stored in 

warehouse put in slot by last two digits of 
customer phone number (e.g., 03)

• Customer arrives, gives last two digits of phone
• Clerk finds slot with that two-digit number
• Clerk searches contents of that slot only
• Could be multiple orders, but can find the order 

quickly because only a few orders in slot
• Splits set of (possibly) hundreds or thousands of 

orders into 100 slots of a few items each
• Trick: find a hash function that spreads 

customers evenly
• Last two digits work, why not first two?
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Hash 
Function
h(Key)

The store is using a form of hashing based 
on customer’s phone number

Input:
Phone 
number 
(Key)

Hash function: strip 
out last two digits = 
slot index

Customer 
orders

Hashing phone numbers to find orders

10

Search only 
small 
number of 
orders

Goal: given phone number, 
quickly find orders

.
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Fixed size 
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Hashing’s big idea: map a Key to an array 
index, then access is fast

Map hash table implementation
• Begin with array of fixed size m

(called a hash table)
• Each array index holds item we 

want to find (e.g., warehouse 
location of customer’s order)

• Use hash function h on Key to 
give index into hash table

• h(Key) = table index i = 0..m-1
• Get item from hash table at index 

given by hash function
• Fast to get/set/add/remove items
• What about a HashSet?
• Use object itself as Key
• How to hash Key or object?

h(Key) = index .
.
.

Fixed size 
m

00

01

02

03

m-2

m-1
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Agenda

1. Hashing

2. Computing Hash functions

3. Implementing Maps/Sets with hashing

4. Handling collisions
1. Chaining
2. Open Addressing
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Good hash functions map keys to indexes 
in table with three desirable properties

Desirable properties of a hash function
1. Hash can be computed quickly and consistently

2. Hash spreads the universe of keys evenly over the 
table (simple uniform hashing)

3. Small changes in the key (e.g., changing a character 
in a string or order of letters) should result in 
different hash value

Cryptographic hash function also:
• Difficult to determine key given the result of hash
• Unlikely that different keys will result in same hash
• We will not focus on crypto requirements
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Hashing is often done in two steps: hash 
then compress

1. Hash 2. Compress

• Get an integer 
representation of Key

• Integer could be in range 
–infinity to +infinity

Constrain integer to 
table index [0..m)
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First step in hashing is to get an integer 
representation of the key
Goal: given key compute an index into hash table array

Some Java objects can be 
directly cast to integers
• byte
• short
• int
• char

char a = 'a';
int b = (int)a;

b = 97

Some items too long cast to 
integers
• double (64 bits)
• long (64 bits)

• Too long to make 32 bit integers

XOR each half

64 bit double 

Left most 32 bits Right most 32 bits 
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Complex objects such as Strings can also be 
hashed to a single integer
• Consider String x of length n where x = x0x1…xn-2xn-1
• Pick prime number a (book recommends 31, 37, or 41)
• Cast each character in x to an integer
• Calculate polynomial hashcode as x0an-1 + x1an-2 + … xn-2a + xn-1

• Use Horner’s rule to efficiently compute hash code
public int hashCode() {

final int a=37;
int sum = x[0]; //first item in array
for (int j=1;j<n;j++) {

sum = a*sum + x[j]; //array element j
}
return sum;

}

• Experiments show that when using a as above, 50,000 English 
words had fewer than 7 collisions

Hashing complex objects
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Good news: Java provides a hashCode() 
method to compute hashes for us!

hashCode()
Java does the hashing for us for Strings and 
autoboxed types with hashCode() method

Character a = ‘a’;
a.hashCode() returns 97 

String b = “Hello”;
b.hashCode() returns 69609650
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Bad news: We need to override hashCode()
and equals() for our own Objects
• By default Java uses memory address of objects as a hashCode
• But we typically want to hash based on properties of object, not 

whatever memory location an object happened to be assigned
• This way two objects with same instance variables will hash to the 

same table location (those objects are considered equal)
• Java says that two equal objects must return same hashCode()

Here we consider two Blobs equal if 
they have the same x, y and r values
equals() IS THE RIGHT WAY TO 
COMPARE OBJECT EQUALITY (not ==)

Override hashCode() to provide the same 
hash if two Blobs are equal

If don’t override hashCode() then even 
though two objects are considered equal, 
Java will look in the wrong slot
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Java hashCode() example

Some types can be 
directly cast to an integer

hashCode()
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Java hashCode() example
hashCode()

Java computes hash for 
autoboxed types with 
hashCode()
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Java hashCode() example

hashCode() also works 
for more complex built-
in types

hashCode()
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Java hashCode() example
For our own objects, we can 
provide our own hashCode() 
otherwise we get the 
memory location by default

hashCode()
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Java hashCode() example
For our own objects, we can 
provide our own hashCode() 
otherwise we get the 
memory location by default

hashCode()

hashCode() should 
compute hash:
1. Quickly and 

consistently
2. Spread keys evenly
3. Small changes = 

different hash
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Java equals() example
Override equals() to test if objects are equivalent
Otherwise equals() checks if same memory location

equals()
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Java equals() example
Override equals() to test if objects are equivalent
Otherwise equals() checks if same memory location

This is the right 
way to compare 
if two objects 
are equivalent 
(not b1 == b2)

equals()
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Java equals() example
Override equals() to test if objects are equivalent
Otherwise equals() checks if same memory location

equals()

This is the right 
way to compare 
if two objects 
are equivalent 
(not b1 == b2)

After updating x,y, and r
two Blobs are now equal
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Java equals() example
Override equals() to test if objects are equivalent
Otherwise equals() checks if same memory location

equals()

hashCode() also returns the same 
value for equivalent objects

This is the right 
way to compare 
if two objects 
are equivalent 
(not b1 == b2)

After updating x,y, and r
two Blobs are now equal
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Java equals() example
Override equals() to test if objects are equivalent
Otherwise equals() checks if same memory location

equals()

hashCode() also returns the same 
value for equivalent objects

HashMap and HashSet will 
now put equivalent objects 
in the same slot in the 
table (after compression)

This is the right 
way to compare 
if two objects 
are equivalent 
(not b1 == b2)

After updating x,y, and r
two Blobs are now equal
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Hashing is often done in two steps: hash 
then compress

1. Hash 2. Compress

• Get an integer 
representation of Key

• Integer could be in range 
–infinity to +infinity

Constrain integer to 
table index [0..m)
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May have to compress hash value to table 
index [0..m) 

Compressing
• hashCode() value may be larger 

than the table (or negative!)
• Need to constrain value to one 

of the table slots [0..m)
• “Division method” is simple:

h(key) = key.hashCode() % m
• Works well if m is prime
• Book gives a more advanced 

version called Multiply-Add-And-
Divide (MAD)

• Java takes care of this for us J
• Eventually will encounter 

collisions where multiple keys 
map to the same slot L

00

01

02

03

m-2

m-1

.

.

.

Fixed size m
hash table

H(key) = index
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Agenda

1. Hashing

2. Computing Hash functions

3. Implementing Maps/Sets with hashing

4. Handling collisions
1. Chaining
2. Open Addressing
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Map methods can be easily implemented 
with hashing

put(key, value)
• Hash key to get table index

• Get i=key.hashCode()
• Compress i to 0..m-1

• Store key/value

get(key)
• Hash key to get table index

• Get i=key.hashCode()
• Compress i to 0..m-1

• Return stored value

remove(key)
• Hash key to get table index

• Get i=key.hashCode()
• Compress i to 0..m-1

• Remove stored key/value

Open questions:
• What if multiple items 

hash to the same index?
• What if table fills up?

0

1

2

3

4

5

6

7

8

9

10

11

12

m = 13
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Agenda

1. Hashing

2. Computing Hash functions

3. Implementing Maps/Sets with hashing

4. Handling collisions
1. Chaining
2. Open Addressing
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Collisions happen when multiple keys map 
to the same table index

m = 13

Integer keys

Given table size m  = 13
put(key,value)
• Hash & constrain key
• Store value at index

index = key.hashCode() % m
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Collisions happen when multiple keys map 
to the same table index

m = 13

Integer keys

Given table size m  = 13
put(key,value)
• Hash & constrain key
• Store value at index

index = key.hashCode() % m
Example
• put(6,v1) = 6 % 13 = 6
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6,v1
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Collisions happen when multiple keys map 
to the same table index
Integer keys

Given table size m  = 13
put(key,value)
• Hash & constrain key
• Store value at index

index = key.hashCode() % m
Example
• put(6,v1) = 6 % 13 = 6
• put(8,v2) = 8 % 13 = 8

m = 13
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6,v1

8,v2
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Collisions happen when multiple keys map 
to the same table index
Integer keys

Given table size m  = 13
put(key,value)
• Hash & constrain key
• Store value at index

index = key.hashCode() % m
Example
• put(6,v1) = 6 % 13 = 6
• put(8,v2) = 8 % 13 = 8
• put(16,v3) = 16 % 13 = 3

m = 13
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16,v3

6,v1

8,v2
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Collisions happen when multiple keys map 
to the same table index
Integer keys

Collision!
6 and 19 mapped to 
the same index

h(6)=h(19)

Given table size m  = 13
put(key,value)
• Hash & constrain key
• Store value at index

index = key.hashCode() % m
Example
• put(6,v1) = 6 % 13 = 6
• put(8,v2) = 8 % 13 = 8
• put(16,v3) = 16 % 13 = 3
• put(19,v4) = 19 % 13 = 6

m = 13
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Agenda

1. Hashing

2. Computing Hash functions

3. Implementing Maps/Sets with hashing

1. Handling collisions
1. Chaining
2. Open Addressing
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Chaining handles collisions by creating a 
linked list for each table entry
Chaining

• Create a table pointing to linked list of items that hash to 
the same index (similar to last class word positions)

• Slot i holds all keys k for which h(k) = i
• Splice in new elements at head 
• NOTE: Values associated with Keys are not shown, here 

just showing Keys
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Load factor measures number of items in 
the list that must be searched on average
Chaining

• Assume table with m slots and n keys are stored in it
• On average, we expect n/m elements per collision list
• This is called the load factor (λ=n/m)
• Expected search time is Θ(1+λ), assuming simple uniform 

hashing (each possible key equally likely to hash into a 
particular slot), worst case Θ(n) if bad hash function
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If the load factor gets too high, then we 
should increase the table size
Chaining

• If n (# elements) becomes larger than m (table size), then 
collisions are inevitable and search time goes up

• Java increases table size by 2X and rehashes into new 
table when λ > 0.75 to combat this problem

• Problem: memory fragmentation with link lists spread out 
all over, might not be good for embedded systems



1. Hashing

2. Computing Hash functions

3. Implementing Maps/Sets with hashing

1. Handling collisions
1. Chaining
2. Open Addressing

43

Agenda
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Open addressing is different solution, 
everything is stored in the table itself

Open addressing using linear probing
• Insert item at hashed index (no linked list)
• For key k compute h(k)=i, insert at index i
• If collision, a simple solution is called linear probing
• Try inserting at i+1
• If slot i+1 full, try i+2… until find empty slot
• Wrap around to slot 0 if hit end of table at m-1
• If λ <1 will find empty slot
• If λ ≈ 1, increase table size (m*2) and rehash

• Search analogous to insertion, compute key and 
probe until find item or empty slot (key not in table)
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Linear probing is one way of handling 
collisions under open addressing
Integer keys

Given table size m  = 13

index = key.hashCode() % m

Example
• put(6,v1) = 6 % 13 = 6
• put(8,v2) = 8 % 13 = 8
• put(16,v3) = 16 % 13 = 3

m = 13

0

1

2

3

4

5

6

7

8

9

10

11

12

16,v3

6,v1

8,v2



46

Linear probing is one way of handling 
collisions under open addressing
Integer keys

Given table size m  = 13

index = key.hashCode() % m

Example
• put(6,v1) = 6 % 13 = 6
• put(8,v2) = 8 % 13 = 8
• put(16,v3) = 16 % 13 = 3
• put(19,v4) = 19 % 13 = 6

Collision!

m = 13
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16,v3

6,v1
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Try next index if hashed index is full, repeat 
if next index is also full
Integer keys

Given table size m  = 13

index = key.hashCode() % m

Example
• put(6,v1) = 6 % 13 = 6
• put(8,v2) = 8 % 13 = 8
• put(16,v3) = 16 % 13 = 3
• put(19,v4) = 19 % 13 = 6

Insert at i+1 = 7

m = 13

0

1
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8

9
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16,v3

6,v1

19,v4
8,v2
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To find items, probe until find Key or hit an 
empty space
Integer keys

Given table size m  = 13

index = key.hashCode() % m

Example
• put(6,v1) = 6 % 13 = 6
• put(8,v2) = 8 % 13 = 8
• put(16,v3) = 16 % 13 = 3
• put(19,v4) = 19 % 13 = 6

• get(19)

Insert at i+1 = 7

To find items later, 
hash to table index, 
then probe until find 
item or hit empty 
slotm = 13
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16,v3

6,v1

19,v4
8,v2



49

Deleting items is tricky, need to mark 
deleted spot as available but not empty

Problems deleting items under linear probing
• Insert k1, k2, and k3 where h(k1)=h(k2)=h(k3) 
• All three keys hash to the same slot in this example
• k1 in slot i, k2 in slot i+1, k3 in slot i+2
• Remove k2, creates hole at i+1
• Search for k3
• Hash k3 to i, slot i holds k1≠k3, advance to slot i+1
• Find hole at i+1, assume k3 not in hash table

• Can mark deleted spaces as available for insertion, 
and search skips over marked spaces

• This can be a problem if many deletes create many 
marked slots, search approaches linear time
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Clustering of keys can build up and reduce 
performance

Clustering problem
• Long runs of occupied slots (clusters) can build 

up increasing search and insert time
• Clusters happen because empty slot preceded by 

t full slots gets filled with probability (t+1)/m,
instead of 1/m (e.g., t keys can now fill open slot 
instead of just 1 key)

• Clusters can bump into each other exacerbating 
the problem
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Clustering of keys can build up and reduce 
performance
Integer keys

Given table size m  = 13

index = key.hashCode() % m

Example
• put(6,v1) = 6 % 13 = 6
• put(8,v2) = 8 % 13 = 8
• put(16,v3) = 16 % 13 = 3
• put(19,v4) = 19 % 13 = 6

Hashing 6,7,8, or 9 
go into index 9

Makes index 9 more 
likely to be filled 
than other slots

m = 13
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Double hashing can help with the 
clustering problem

Double hashing
• Big idea: instead of stepping by 1 at each collision 

like linear probing, step by a different amount 
where the step size depends on the key

• Use two hash functions h1 and h2 to make a third h’
• h’(k,p)=(h1(k) + ph2(k)) mod m, where p number of 

probes
• First probe h1(k), p=0, then p incremented by 1 on 

each collision until space is found
• Result is a step by h2(k) on each collision (then mod 

m to stay inside table size), instead of 1
• Need to design hashes so that if h1(k1)=h1(k2), then 

unlikely h2(k1)=h2(k2)
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Double hashing can help with the 
clustering problem
Integer keys

Given table size m  = 13
Compute 

h1(key) = (key %m)
h2(key) = 1 + (key % (m-1))
h’(k,p)=(h1(k) + ph2(k)) % m

Example

h1 same as before
h2 new hash function
p = probe number 
(initially 0)

Key p h1 h2 h’

6 0 6 7 (6+0*7)%13 = 6

m = 13
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6,v1



54

Double hashing can help with the 
clustering problem
Integer keys

h1 same as before
h2 new hash function
p = probe number 
(initially 0)

Key p h1 h2 h’

6 0 6 7 (6+0*7)%13 = 6
8 0 8 9 (8+0*9)%13 = 8

Given table size m  = 13
Compute 

h1(key) = (key %m)
h2(key) = 1 + (key % (m-1))
h’(k,p)=(h1(k) + ph2(k)) % m

Example
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m = 13
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Double hashing can help with the 
clustering problem
Integer keys

h1 same as before
h2 new hash function
p = probe number 
(initially 0)

Key p h1 h2 h’

6 0 6 7 (6+0*7)%13 = 6
8 0 8 9 (8+0*9)%13 = 8
16 0 3 5 (3+0*5)%13 = 3

Given table size m  = 13
Compute 

h1(key) = (key %m)
h2(key) = 1 + (key % (m-1))
h’(k,p)=(h1(k) + ph2(k)) % m

Example
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16,v3

m = 13

6,v1

8,v2
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Double hashing can help with the 
clustering problem
Integer keys

h1 same as before
h2 new hash function
p = probe number 
(initially 0)

Key p h1 h2 h’

6 0 6 7 (6+0*7)%13 = 6
8 0 8 9 (8+0*9)%13 = 8
16 0 3 5 (3+0*5)%13 = 3
19 0 6 8 (6+0*8)%13 = 6

Collision!

Given table size m  = 13
Compute 

h1(key) = (key %m)
h2(key) = 1 + (key % (m-1))
h’(k,p)=(h1(k) + ph2(k)) % m

Example
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8,v2

m = 13
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Double hashing can help with the 
clustering problem
Integer keys

h1 same as before
h2 new hash function
p = probe number 
(initially 0)

Key p h1 h2 h’

6 0 6 7 (6+0*7)%13 = 6
8 0 8 9 (8+0*9)%13 = 8
16 0 3 5 (3+0*5)%13 = 3
19 0 6 8 (6+0*8)%13 = 6
19 1 6 8 (6+1*8)%13 = 1

Collision!

Increment p

Step forward 
by h2(key) = 8
spaces

Wrap around 
if needed

Given table size m  = 13
Compute 

h1(key) = (key %m)
h2(key) = 1 + (key % (m-1))
h’(k,p)=(h1(k) + ph2(k)) % m

Example

m = 13
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16,v3

6,v1

8,v2
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Double hashing can help with the 
clustering problem
Integer keys

h1 same as before
h2 new hash function
p = probe number 
(initially 0)

Key p h1 h2 h’

6 0 6 7 (6+0*7)%13 = 6
8 0 8 9 (8+0*9)%13 = 8
15 0 2 4 (2+0*4)%13 = 2
19 0 6 8 (6+0*8)%13 = 6
19 1 6 8 (6+1*8)%13 = 1

Insert here
Given table size m  = 13
Compute 

h1(key) = (key %m)
h2(key) = 1 + (key % (m-1))
h’(k,p)=(h1(k) + ph2(k)) % m

Example
Collision!

Increment p

Step forward 
by h2(key) = 8
spaces

Wrap around 
if neededm = 13
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19,v4

16,v3
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8,v2
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Run time degrades as λ gets large, so keep 
λ small by growing hash table 

Expected insert and search time
• Average number of probes is approximately 1/(1-λ)
• As λ ->1, expected number of probes becomes large, 

when λ small, number of probes approaches 1 
• If table 90% full, then expect about 10 probes for 

unsuccessful search
• Successful search generally a little faster, about 2.5 

probes (math on course web page and in book)
• Must grow table and rehash when copying to new 

table to keep the table sparsely populated or 
performance suffers

Sparsely populated table trades memory for speed



Operation Expected
run time

Notes

hash(k) O(1) • Math operations on key k to hash and compress, outputs 0...m-1
• Constant time, does not depend on number of items in Set or Map
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Assuming load factor λ is small and hashing 
spreads keys, core operations are O(1)



Operation Expected
run time

Notes

hash(k) O(1) • Math operations on key k to hash and compress, outputs 0...m-1
• Constant time, does not depend on number of items in Set or Map

find(k) O(1) • Once have index of table due to hash:
• Chaining: traverse linked list O(λ) = O(1)
• Probing: probe until find O(1/(1-λ)) = O(1)
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Assuming load factor λ is small and hashing 
spreads keys, core operations are O(1)



Operation Expected
run time

Notes

hash(k) O(1) • Math operations on key k to hash and compress, outputs 0...m-1
• Constant time, does not depend on number of items in Set or Map

find(k) O(1) • Once have index of table due to hash:
• Chaining: traverse linked list O(λ) = O(1)
• Probing: probe until find O(1/(1-λ)) = O(1)

get(k) O(1+1) = 
O(1)

• Hash + find: 
• chaining = O(1+λ) = O(1), probing = O(1+(1/(1-λ))) = O(1)
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Assuming load factor λ is small and hashing 
spreads keys, core operations are O(1)



Operation Expected
run time

Notes

hash(k) O(1) • Math operations on key k to hash and compress, outputs 0...m-1
• Constant time, does not depend on number of items in Set or Map

find(k) O(1) • Once have index of table due to hash:
• Chaining: traverse linked list O(λ) = O(1)
• Probing: probe until find O(1/(1-λ)) = O(1)

get(k) O(1+1) = 
O(1)

• Hash + find: 
• chaining = O(1+λ) = O(1), probing = O(1+(1/(1-λ))) = O(1)

put(k,v) O(1)  
+O(1)

O(1)

• Hash + find = O(1)
• Plus update or add element:

• Chaining: update value or add at head O(1)
• Probing: store value in array O(1)

63

Assuming load factor λ is small and hashing 
spreads keys, core operations are O(1)



Operation Expected
run time

Notes

hash(k) O(1) • Math operations on key k to hash and compress, outputs 0...m-1
• Constant time, does not depend on number of items in Set or Map

find(k) O(1) • Once have index of table due to hash:
• Chaining: traverse linked list O(λ) = O(1)
• Probing: probe until find O(1/(1-λ)) = O(1)

get(k) O(1+1) = 
O(1)

• Hash + find: 
• chaining = O(1+λ) = O(1), probing = O(1+(1/(1-λ))) = O(1)

put(k,v) O(1)  
+O(1)

O(1)

• Hash + find = O(1)
• Plus update or add element:

• Chaining: update value or add at head O(1)
• Probing: store value in array O(1)

remove(k) O(1)  
+O(1)

O(1)

• Hash + find = O(1) 
• Plus remove element:

• Chaining: update one pointer O(1)
• Probing: mark space empty O(1)
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Assuming load factor λ is small and hashing 
spreads keys, core operations are O(1)

Assuming a small load 
factor and uniform 
hashing, the core 
operations of HashSets
and HashMaps are 
constant time!
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