
CS 10:
Problem solving via Object Oriented

Programming

Hashing

2

Java provides us faster Sets and Maps using
hashing instead of Trees
• Sets hold unique objects, Maps hold Key/Value pairs

• Map Keys are unique, but Values may be duplicated

• As we saw last class, using a Tree is a natural fit for
implementing Sets and Maps

• Performance with a Tree is generally better than a List

• We can do better than Tree performance by using today’s
topic of discussion – hashing

• Java provides the HashSet and HashMap out-of-the-box
that do a lot of the hard work for us

3

Agenda

1. Hashing

2. Computing Hash functions

3. Implementing Maps/Sets with hashing

4. Handling collisions
1. Chaining
2. Open Addressing

4

The old Sears catalog orders illustrate how
hashing works

Slots behind deskSears store implementation of hash table
• Used to have 100 slots behind order desk, 0…99
• Shipments arrive, details of where item stored in

warehouse put in slot by last two digits of
customer phone number (e.g., 03)

.

.

.

Fixed size
table

00

01

02

03

98

99

5

The old Sears catalog orders illustrate how
hashing works

Slots behind deskSears store implementation of hash table
• Used to have 100 slots behind order desk, 0…99
• Shipments arrive, details of where item stored in

warehouse put in slot by last two digits of
customer phone number (e.g., 03)

Details

.

.

.

Fixed size
table

00

01

02

03

98

99

6

The old Sears catalog orders illustrate how
hashing works

.

.

.

Slots behind deskSears store implementation of hash table
• Used to have 100 slots behind order desk, 0…99
• Shipments arrive, details of where item stored in

warehouse put in slot by last two digits of
customer phone number (e.g., 03)

• Customer arrives, gives last two digits of phone
.
.
.

Fixed size
table

00

01

02

03

98

99

7

The old Sears catalog orders illustrate how
hashing works

.

.

.

Slots behind deskSears store implementation of hash table
• Used to have 100 slots behind order desk, 0…99
• Shipments arrive, details of where item stored in

warehouse put in slot by last two digits of
customer phone number (e.g., 03)

• Customer arrives, gives last two digits of phone
• Clerk finds slot with that two-digit number
• Clerk searches contents of that slot only
• Could be multiple orders, but can find the order

quickly because only a few orders in slot

Search only these
orders, skip the rest

.

.

.

Fixed size
table

00

01

02

03

98

99

8

The old Sears catalog orders illustrate how
hashing works

.

.

.

Slots behind deskSears store implementation of hash table
• Used to have 100 slots behind order desk, 0…99
• Shipments arrive, details of where item stored in

warehouse put in slot by last two digits of
customer phone number (e.g., 03)

• Customer arrives, gives last two digits of phone
• Clerk finds slot with that two-digit number
• Clerk searches contents of that slot only
• Could be multiple orders, but can find the order

quickly because only a few orders in slot
• Splits set of (possibly) hundreds or thousands of

orders into 100 slots of a few items each

.

.

.

Fixed size
table

00

01

02

03

98

99

9

The old Sears catalog orders illustrate how
hashing works

.

.

.

Slots behind deskSears store implementation of hash table
• Used to have 100 slots behind order desk, 0…99
• Shipments arrive, details of where item stored in

warehouse put in slot by last two digits of
customer phone number (e.g., 03)

• Customer arrives, gives last two digits of phone
• Clerk finds slot with that two-digit number
• Clerk searches contents of that slot only
• Could be multiple orders, but can find the order

quickly because only a few orders in slot
• Splits set of (possibly) hundreds or thousands of

orders into 100 slots of a few items each
• Trick: find a hash function that spreads

customers evenly
• Last two digits work, why not first two?

.

.

.

Fixed size
table

00

01

02

03

98

99

Hash
Function
h(Key)

The store is using a form of hashing based
on customer’s phone number

Input:
Phone
number
(Key)

Hash function: strip
out last two digits =
slot index

Customer
orders

Hashing phone numbers to find orders

10

Search only
small
number of
orders

Goal: given phone number,
quickly find orders

.

.

.

Fixed size
table

00

01

02

03

98

99

11

Hashing’s big idea: map a Key to an array
index, then access is fast

Map hash table implementation
• Begin with array of fixed size m

(called a hash table)
• Each array index holds item we

want to find (e.g., warehouse
location of customer’s order)

• Use hash function h on Key to
give index into hash table

• h(Key) = table index i = 0..m-1
• Get item from hash table at index

given by hash function
• Fast to get/set/add/remove items
• What about a HashSet?
• Use object itself as Key
• How to hash Key or object?

h(Key) = index .
.
.

Fixed size
m

00

01

02

03

m-2

m-1

12

Agenda

1. Hashing

2. Computing Hash functions

3. Implementing Maps/Sets with hashing

4. Handling collisions
1. Chaining
2. Open Addressing

13

Good hash functions map keys to indexes
in table with three desirable properties

Desirable properties of a hash function
1. Hash can be computed quickly and consistently

2. Hash spreads the universe of keys evenly over the
table (simple uniform hashing)

3. Small changes in the key (e.g., changing a character
in a string or order of letters) should result in
different hash value

Cryptographic hash function also:
• Difficult to determine key given the result of hash
• Unlikely that different keys will result in same hash
• We will not focus on crypto requirements

14

Hashing is often done in two steps: hash
then compress

1. Hash 2. Compress

• Get an integer
representation of Key

• Integer could be in range
–infinity to +infinity

Constrain integer to
table index [0..m)

15

First step in hashing is to get an integer
representation of the key
Goal: given key compute an index into hash table array

Some Java objects can be
directly cast to integers
• byte
• short
• int
• char

char a = 'a';
int b = (int)a;

b = 97

Some items too long cast to
integers
• double (64 bits)
• long (64 bits)

• Too long to make 32 bit integers

XOR each half

64 bit double

Left most 32 bits Right most 32 bits

16

Complex objects such as Strings can also be
hashed to a single integer
• Consider String x of length n where x = x0x1…xn-2xn-1
• Pick prime number a (book recommends 31, 37, or 41)
• Cast each character in x to an integer
• Calculate polynomial hashcode as x0an-1 + x1an-2 + … xn-2a + xn-1

• Use Horner’s rule to efficiently compute hash code
public int hashCode() {

final int a=37;
int sum = x[0]; //first item in array
for (int j=1;j<n;j++) {

sum = a*sum + x[j]; //array element j
}
return sum;

}

• Experiments show that when using a as above, 50,000 English
words had fewer than 7 collisions

Hashing complex objects

17

Good news: Java provides a hashCode()
method to compute hashes for us!

hashCode()
Java does the hashing for us for Strings and
autoboxed types with hashCode() method

Character a = ‘a’;
a.hashCode() returns 97

String b = “Hello”;
b.hashCode() returns 69609650

18

Bad news: We need to override hashCode()
and equals() for our own Objects
• By default Java uses memory address of objects as a hashCode
• But we typically want to hash based on properties of object, not

whatever memory location an object happened to be assigned
• This way two objects with same instance variables will hash to the

same table location (those objects are considered equal)
• Java says that two equal objects must return same hashCode()

Here we consider two Blobs equal if
they have the same x, y and r values
equals() IS THE RIGHT WAY TO
COMPARE OBJECT EQUALITY (not ==)

Override hashCode() to provide the same
hash if two Blobs are equal

If don’t override hashCode() then even
though two objects are considered equal,
Java will look in the wrong slot

19

Java hashCode() example

Some types can be
directly cast to an integer

hashCode()

20

Java hashCode() example
hashCode()

Java computes hash for
autoboxed types with
hashCode()

21

Java hashCode() example

hashCode() also works
for more complex built-
in types

hashCode()

22

Java hashCode() example
For our own objects, we can
provide our own hashCode()
otherwise we get the
memory location by default

hashCode()

23

Java hashCode() example
For our own objects, we can
provide our own hashCode()
otherwise we get the
memory location by default

hashCode()

hashCode() should
compute hash:
1. Quickly and

consistently
2. Spread keys evenly
3. Small changes =

different hash

24

Java equals() example
Override equals() to test if objects are equivalent
Otherwise equals() checks if same memory location

equals()

25

Java equals() example
Override equals() to test if objects are equivalent
Otherwise equals() checks if same memory location

This is the right
way to compare
if two objects
are equivalent
(not b1 == b2)

equals()

26

Java equals() example
Override equals() to test if objects are equivalent
Otherwise equals() checks if same memory location

equals()

This is the right
way to compare
if two objects
are equivalent
(not b1 == b2)

After updating x,y, and r
two Blobs are now equal

27

Java equals() example
Override equals() to test if objects are equivalent
Otherwise equals() checks if same memory location

equals()

hashCode() also returns the same
value for equivalent objects

This is the right
way to compare
if two objects
are equivalent
(not b1 == b2)

After updating x,y, and r
two Blobs are now equal

28

Java equals() example
Override equals() to test if objects are equivalent
Otherwise equals() checks if same memory location

equals()

hashCode() also returns the same
value for equivalent objects

HashMap and HashSet will
now put equivalent objects
in the same slot in the
table (after compression)

This is the right
way to compare
if two objects
are equivalent
(not b1 == b2)

After updating x,y, and r
two Blobs are now equal

29

Hashing is often done in two steps: hash
then compress

1. Hash 2. Compress

• Get an integer
representation of Key

• Integer could be in range
–infinity to +infinity

Constrain integer to
table index [0..m)

30

May have to compress hash value to table
index [0..m)

Compressing
• hashCode() value may be larger

than the table (or negative!)
• Need to constrain value to one

of the table slots [0..m)
• “Division method” is simple:

h(key) = key.hashCode() % m
• Works well if m is prime
• Book gives a more advanced

version called Multiply-Add-And-
Divide (MAD)

• Java takes care of this for us J
• Eventually will encounter

collisions where multiple keys
map to the same slot L

00

01

02

03

m-2

m-1

.

.

.

Fixed size m
hash table

H(key) = index

31

Agenda

1. Hashing

2. Computing Hash functions

3. Implementing Maps/Sets with hashing

4. Handling collisions
1. Chaining
2. Open Addressing

32

Map methods can be easily implemented
with hashing

put(key, value)
• Hash key to get table index

• Get i=key.hashCode()
• Compress i to 0..m-1

• Store key/value

get(key)
• Hash key to get table index

• Get i=key.hashCode()
• Compress i to 0..m-1

• Return stored value

remove(key)
• Hash key to get table index

• Get i=key.hashCode()
• Compress i to 0..m-1

• Remove stored key/value

Open questions:
• What if multiple items

hash to the same index?
• What if table fills up?

0

1

2

3

4

5

6

7

8

9

10

11

12

m = 13

33

Agenda

1. Hashing

2. Computing Hash functions

3. Implementing Maps/Sets with hashing

4. Handling collisions
1. Chaining
2. Open Addressing

34

Collisions happen when multiple keys map
to the same table index

m = 13

Integer keys

Given table size m = 13
put(key,value)
• Hash & constrain key
• Store value at index

index = key.hashCode() % m

0

1

2

3

4

5

6

7

8

9

10

11

12

35

Collisions happen when multiple keys map
to the same table index

m = 13

Integer keys

Given table size m = 13
put(key,value)
• Hash & constrain key
• Store value at index

index = key.hashCode() % m
Example
• put(6,v1) = 6 % 13 = 6

0

1

2

3

4

5

6

7

8

9

10

11

12

6,v1

36

Collisions happen when multiple keys map
to the same table index
Integer keys

Given table size m = 13
put(key,value)
• Hash & constrain key
• Store value at index

index = key.hashCode() % m
Example
• put(6,v1) = 6 % 13 = 6
• put(8,v2) = 8 % 13 = 8

m = 13

0

1

2

3

4

5

6

7

8

9

10

11

12

6,v1

8,v2

37

Collisions happen when multiple keys map
to the same table index
Integer keys

Given table size m = 13
put(key,value)
• Hash & constrain key
• Store value at index

index = key.hashCode() % m
Example
• put(6,v1) = 6 % 13 = 6
• put(8,v2) = 8 % 13 = 8
• put(16,v3) = 16 % 13 = 3

m = 13

0

1

2

3

4

5

6

7

8

9

10

11

12

16,v3

6,v1

8,v2

38

Collisions happen when multiple keys map
to the same table index
Integer keys

Collision!
6 and 19 mapped to
the same index

h(6)=h(19)

Given table size m = 13
put(key,value)
• Hash & constrain key
• Store value at index

index = key.hashCode() % m
Example
• put(6,v1) = 6 % 13 = 6
• put(8,v2) = 8 % 13 = 8
• put(16,v3) = 16 % 13 = 3
• put(19,v4) = 19 % 13 = 6

m = 13

0

1

2

3

4

5

6

7

8

9

10

11

12

16,v3

6,v1

8,v2

39

Agenda

1. Hashing

2. Computing Hash functions

3. Implementing Maps/Sets with hashing

1. Handling collisions
1. Chaining
2. Open Addressing

40

Chaining handles collisions by creating a
linked list for each table entry
Chaining

• Create a table pointing to linked list of items that hash to
the same index (similar to last class word positions)

• Slot i holds all keys k for which h(k) = i
• Splice in new elements at head
• NOTE: Values associated with Keys are not shown, here

just showing Keys

41

Load factor measures number of items in
the list that must be searched on average
Chaining

• Assume table with m slots and n keys are stored in it
• On average, we expect n/m elements per collision list
• This is called the load factor (λ=n/m)
• Expected search time is Θ(1+λ), assuming simple uniform

hashing (each possible key equally likely to hash into a
particular slot), worst case Θ(n) if bad hash function

42

If the load factor gets too high, then we
should increase the table size
Chaining

• If n (# elements) becomes larger than m (table size), then
collisions are inevitable and search time goes up

• Java increases table size by 2X and rehashes into new
table when λ > 0.75 to combat this problem

• Problem: memory fragmentation with link lists spread out
all over, might not be good for embedded systems

1. Hashing

2. Computing Hash functions

3. Implementing Maps/Sets with hashing

1. Handling collisions
1. Chaining
2. Open Addressing

43

Agenda

44

Open addressing is different solution,
everything is stored in the table itself

Open addressing using linear probing
• Insert item at hashed index (no linked list)
• For key k compute h(k)=i, insert at index i
• If collision, a simple solution is called linear probing
• Try inserting at i+1
• If slot i+1 full, try i+2… until find empty slot
• Wrap around to slot 0 if hit end of table at m-1
• If λ <1 will find empty slot
• If λ ≈ 1, increase table size (m*2) and rehash

• Search analogous to insertion, compute key and
probe until find item or empty slot (key not in table)

45

Linear probing is one way of handling
collisions under open addressing
Integer keys

Given table size m = 13

index = key.hashCode() % m

Example
• put(6,v1) = 6 % 13 = 6
• put(8,v2) = 8 % 13 = 8
• put(16,v3) = 16 % 13 = 3

m = 13

0

1

2

3

4

5

6

7

8

9

10

11

12

16,v3

6,v1

8,v2

46

Linear probing is one way of handling
collisions under open addressing
Integer keys

Given table size m = 13

index = key.hashCode() % m

Example
• put(6,v1) = 6 % 13 = 6
• put(8,v2) = 8 % 13 = 8
• put(16,v3) = 16 % 13 = 3
• put(19,v4) = 19 % 13 = 6

Collision!

m = 13

0

1

2

3

4

5

6

7

8

9

10

11

12

16,v3

6,v1

8,v2

47

Try next index if hashed index is full, repeat
if next index is also full
Integer keys

Given table size m = 13

index = key.hashCode() % m

Example
• put(6,v1) = 6 % 13 = 6
• put(8,v2) = 8 % 13 = 8
• put(16,v3) = 16 % 13 = 3
• put(19,v4) = 19 % 13 = 6

Insert at i+1 = 7

m = 13

0

1

2

3

4

5

6

7

8

9

10

11

12

16,v3

6,v1

19,v4
8,v2

48

To find items, probe until find Key or hit an
empty space
Integer keys

Given table size m = 13

index = key.hashCode() % m

Example
• put(6,v1) = 6 % 13 = 6
• put(8,v2) = 8 % 13 = 8
• put(16,v3) = 16 % 13 = 3
• put(19,v4) = 19 % 13 = 6

• get(19)

Insert at i+1 = 7

To find items later,
hash to table index,
then probe until find
item or hit empty
slotm = 13

0

1

2

3

4

5

6

7

8

9

10

11

12

16,v3

6,v1

19,v4
8,v2

49

Deleting items is tricky, need to mark
deleted spot as available but not empty

Problems deleting items under linear probing
• Insert k1, k2, and k3 where h(k1)=h(k2)=h(k3)
• All three keys hash to the same slot in this example
• k1 in slot i, k2 in slot i+1, k3 in slot i+2
• Remove k2, creates hole at i+1
• Search for k3
• Hash k3 to i, slot i holds k1≠k3, advance to slot i+1
• Find hole at i+1, assume k3 not in hash table

• Can mark deleted spaces as available for insertion,
and search skips over marked spaces

• This can be a problem if many deletes create many
marked slots, search approaches linear time

50

Clustering of keys can build up and reduce
performance

Clustering problem
• Long runs of occupied slots (clusters) can build

up increasing search and insert time
• Clusters happen because empty slot preceded by

t full slots gets filled with probability (t+1)/m,
instead of 1/m (e.g., t keys can now fill open slot
instead of just 1 key)

• Clusters can bump into each other exacerbating
the problem

51

Clustering of keys can build up and reduce
performance
Integer keys

Given table size m = 13

index = key.hashCode() % m

Example
• put(6,v1) = 6 % 13 = 6
• put(8,v2) = 8 % 13 = 8
• put(16,v3) = 16 % 13 = 3
• put(19,v4) = 19 % 13 = 6

Hashing 6,7,8, or 9
go into index 9

Makes index 9 more
likely to be filled
than other slots

m = 13

0

1

2

3

4

5

6

7

8

9

10

11

12

16,v3

6,v1

19,v4
8,v2

52

Double hashing can help with the
clustering problem

Double hashing
• Big idea: instead of stepping by 1 at each collision

like linear probing, step by a different amount
where the step size depends on the key

• Use two hash functions h1 and h2 to make a third h’
• h’(k,p)=(h1(k) + ph2(k)) mod m, where p number of

probes
• First probe h1(k), p=0, then p incremented by 1 on

each collision until space is found
• Result is a step by h2(k) on each collision (then mod

m to stay inside table size), instead of 1
• Need to design hashes so that if h1(k1)=h1(k2), then

unlikely h2(k1)=h2(k2)

53

Double hashing can help with the
clustering problem
Integer keys

Given table size m = 13
Compute

h1(key) = (key %m)
h2(key) = 1 + (key % (m-1))
h’(k,p)=(h1(k) + ph2(k)) % m

Example

h1 same as before
h2 new hash function
p = probe number
(initially 0)

Key p h1 h2 h’

6 0 6 7 (6+0*7)%13 = 6

m = 13

0

1

2

3

4

5

6

7

8

9

10

11

12

6,v1

54

Double hashing can help with the
clustering problem
Integer keys

h1 same as before
h2 new hash function
p = probe number
(initially 0)

Key p h1 h2 h’

6 0 6 7 (6+0*7)%13 = 6
8 0 8 9 (8+0*9)%13 = 8

Given table size m = 13
Compute

h1(key) = (key %m)
h2(key) = 1 + (key % (m-1))
h’(k,p)=(h1(k) + ph2(k)) % m

Example

0

1

2

3

4

5

6

7

8

9

10

11

12

6,v1

8,v2

m = 13

55

Double hashing can help with the
clustering problem
Integer keys

h1 same as before
h2 new hash function
p = probe number
(initially 0)

Key p h1 h2 h’

6 0 6 7 (6+0*7)%13 = 6
8 0 8 9 (8+0*9)%13 = 8
16 0 3 5 (3+0*5)%13 = 3

Given table size m = 13
Compute

h1(key) = (key %m)
h2(key) = 1 + (key % (m-1))
h’(k,p)=(h1(k) + ph2(k)) % m

Example

0

1

2

3

4

5

6

7

8

9

10

11

12

16,v3

m = 13

6,v1

8,v2

56

Double hashing can help with the
clustering problem
Integer keys

h1 same as before
h2 new hash function
p = probe number
(initially 0)

Key p h1 h2 h’

6 0 6 7 (6+0*7)%13 = 6
8 0 8 9 (8+0*9)%13 = 8
16 0 3 5 (3+0*5)%13 = 3
19 0 6 8 (6+0*8)%13 = 6

Collision!

Given table size m = 13
Compute

h1(key) = (key %m)
h2(key) = 1 + (key % (m-1))
h’(k,p)=(h1(k) + ph2(k)) % m

Example

0

1

2

3

4

5

6

7

8

9

10

11

12

16,v3

6,v1

8,v2

m = 13

57

Double hashing can help with the
clustering problem
Integer keys

h1 same as before
h2 new hash function
p = probe number
(initially 0)

Key p h1 h2 h’

6 0 6 7 (6+0*7)%13 = 6
8 0 8 9 (8+0*9)%13 = 8
16 0 3 5 (3+0*5)%13 = 3
19 0 6 8 (6+0*8)%13 = 6
19 1 6 8 (6+1*8)%13 = 1

Collision!

Increment p

Step forward
by h2(key) = 8
spaces

Wrap around
if needed

Given table size m = 13
Compute

h1(key) = (key %m)
h2(key) = 1 + (key % (m-1))
h’(k,p)=(h1(k) + ph2(k)) % m

Example

m = 13

0

1

2

3

4

5

6

7

8

9

10

11

12

16,v3

6,v1

8,v2

58

Double hashing can help with the
clustering problem
Integer keys

h1 same as before
h2 new hash function
p = probe number
(initially 0)

Key p h1 h2 h’

6 0 6 7 (6+0*7)%13 = 6
8 0 8 9 (8+0*9)%13 = 8
15 0 2 4 (2+0*4)%13 = 2
19 0 6 8 (6+0*8)%13 = 6
19 1 6 8 (6+1*8)%13 = 1

Insert here
Given table size m = 13
Compute

h1(key) = (key %m)
h2(key) = 1 + (key % (m-1))
h’(k,p)=(h1(k) + ph2(k)) % m

Example
Collision!

Increment p

Step forward
by h2(key) = 8
spaces

Wrap around
if neededm = 13

0

1

2

3

4

5

6

7

8

9

10

11

12

19,v4

16,v3

6,v1

8,v2

59

Run time degrades as λ gets large, so keep
λ small by growing hash table

Expected insert and search time
• Average number of probes is approximately 1/(1-λ)
• As λ ->1, expected number of probes becomes large,

when λ small, number of probes approaches 1
• If table 90% full, then expect about 10 probes for

unsuccessful search
• Successful search generally a little faster, about 2.5

probes (math on course web page and in book)
• Must grow table and rehash when copying to new

table to keep the table sparsely populated or
performance suffers

Sparsely populated table trades memory for speed

Operation Expected
run time

Notes

hash(k) O(1) • Math operations on key k to hash and compress, outputs 0...m-1
• Constant time, does not depend on number of items in Set or Map

60

Assuming load factor λ is small and hashing
spreads keys, core operations are O(1)

Operation Expected
run time

Notes

hash(k) O(1) • Math operations on key k to hash and compress, outputs 0...m-1
• Constant time, does not depend on number of items in Set or Map

find(k) O(1) • Once have index of table due to hash:
• Chaining: traverse linked list O(λ) = O(1)
• Probing: probe until find O(1/(1-λ)) = O(1)

61

Assuming load factor λ is small and hashing
spreads keys, core operations are O(1)

Operation Expected
run time

Notes

hash(k) O(1) • Math operations on key k to hash and compress, outputs 0...m-1
• Constant time, does not depend on number of items in Set or Map

find(k) O(1) • Once have index of table due to hash:
• Chaining: traverse linked list O(λ) = O(1)
• Probing: probe until find O(1/(1-λ)) = O(1)

get(k) O(1+1) =
O(1)

• Hash + find:
• chaining = O(1+λ) = O(1), probing = O(1+(1/(1-λ))) = O(1)

62

Assuming load factor λ is small and hashing
spreads keys, core operations are O(1)

Operation Expected
run time

Notes

hash(k) O(1) • Math operations on key k to hash and compress, outputs 0...m-1
• Constant time, does not depend on number of items in Set or Map

find(k) O(1) • Once have index of table due to hash:
• Chaining: traverse linked list O(λ) = O(1)
• Probing: probe until find O(1/(1-λ)) = O(1)

get(k) O(1+1) =
O(1)

• Hash + find:
• chaining = O(1+λ) = O(1), probing = O(1+(1/(1-λ))) = O(1)

put(k,v) O(1)
+O(1)

O(1)

• Hash + find = O(1)
• Plus update or add element:

• Chaining: update value or add at head O(1)
• Probing: store value in array O(1)

63

Assuming load factor λ is small and hashing
spreads keys, core operations are O(1)

Operation Expected
run time

Notes

hash(k) O(1) • Math operations on key k to hash and compress, outputs 0...m-1
• Constant time, does not depend on number of items in Set or Map

find(k) O(1) • Once have index of table due to hash:
• Chaining: traverse linked list O(λ) = O(1)
• Probing: probe until find O(1/(1-λ)) = O(1)

get(k) O(1+1) =
O(1)

• Hash + find:
• chaining = O(1+λ) = O(1), probing = O(1+(1/(1-λ))) = O(1)

put(k,v) O(1)
+O(1)

O(1)

• Hash + find = O(1)
• Plus update or add element:

• Chaining: update value or add at head O(1)
• Probing: store value in array O(1)

remove(k) O(1)
+O(1)

O(1)

• Hash + find = O(1)
• Plus remove element:

• Chaining: update one pointer O(1)
• Probing: mark space empty O(1)

64

Assuming load factor λ is small and hashing
spreads keys, core operations are O(1)

Assuming a small load
factor and uniform
hashing, the core
operations of HashSets
and HashMaps are
constant time!

65

