
CS 50:
Software Design and Implementation

Modular data structures

2

Today we will create something similar to
an ADT from CS 10

In CS 10 we created a Java class
to implement a linked list

We used Java’s generics so the
list could hold any type of object

C doesn’t have generics

We can approximate the
behavior by using void pointers

3

Agenda

1. Preprocessor directives and header files

2. Void pointers

3. Bag ADT

4. Activity

4

The compiler reads down the code during
compilation process

1) Preprocess

2) Compile

3) Assemble

4) Link

Source code

Executable

main1.c
#include<stdio.h>

int func(int x) {
return x*x;

}

int main() {
printf("%d\n",func(5));
return 0;

}

Works as expected because compiler reads down code
Finds func declaration before func call

$ mygcc -o main main1.c
$./main
25

5

Calling a function before it is declared is a
problem!

1) Preprocess

2) Compile

3) Assemble

4) Link

Source code

Executable

main2.c

Causes compilation error because compiler does not
know about func when it is called

#include<stdio.h>

int main() {
printf("%d\n",func(5));
return 0;

}

int func(int x) {
return x*x;

}

func declared after main

$ mygcc -o main main.c
main.c: In function ‘main’:
main.c:6:16: warning: implicit declaration of
function ‘func’; did you mean ‘putc’? [-
Wimplicit-function-declaration]

printf("%d\n",func(5));
^~~~
putc

#include<stdio.h>

int func(int);

int main() {
printf("%d\n",func(5));
return 0;

}

int func(int x) {
return x*x;

}

6

Declare functions before they are called

1) Preprocess

2) Compile

3) Assemble

4) Link

Source code

Executable

main3.c

Compiles because we told the compiler when we
declared func that we would later define it

Declare func so compiler knows about it

$ mygcc -o main main3.c
$./main
25

Define func

Do not *need* to
give parameter
names, just
parameter type
Can provide
parameter names if
you want to
Sometimes called a
function prototype

#include<stdio.h>
#include "main4.h"

int main() {
printf("%d\n",func(5));
return 0;

}

int func(int x) {
return x*x;

}

7

Header files can declare functions without
defining them; expand in preprocess step

1) Preprocess

2) Compile

3) Assemble

4) Link

Source code

Executable

main4.h

main4.c
#include
expands
contents of file
main4.h in this
location

Just a text
substitution, as
if you typed
the contents of
main4.h here
int func(int x);

Declares func
before func is
called so
compiles fine

$ mygcc -o main main4.c
$./main
25

int func(int x);
main4.h has
function
declaration

Function
definition

#include<stdio.h>
#include "main4.h” int func(int x);

int main() {
printf("%d\n",func(5));
return 0;

}

int func(int x) {
return x*x;

}

8

Header files can declare functions without
defining them; expand in preprocess step

1) Preprocess

2) Compile

3) Assemble

4) Link

Source code

Executable

main4.h

main4.c
As if we had
this after the
preprocessor
step is run

If main4.h
declared other
functions, they
would show up
here also

The whole
header file is
copied here

$ mygcc -o main main4.c
$./main
25

int func(int x);

Other programs can include main4.h
They will also get main4.h’s declarations
Header tells the compiler we will define the
function later, possibly in another file!

Can call function
before definition

9

Header file rules of thumb
1. Single .c files do not need a .h file (although you can provide one,

some people always do)
2. Break large programs into modules (.c and .h) files that define

clear functionality. Compile these together with other modules
that provide different functionality (e.g., gcc file1.c file2.c)

3. Everything in a .h file should be used by two or more .c files
4. Put in .h files:
• Function prototypes (declares but doesn’t define function)
• Custom data types (structs or enums)
• Anything that defines a type but does not allocate memory

(e.g., typedef)
5. Do not put in .h files
• Anything that allocates memory such as variable declarations
• Function definitions (e.g., code)

Adapted from Learning C by Jeff Szuhay. Packt, 2020.

You can think of header file a little
like an interface in Java

If you have a function outsiders should
not call, don’t put it in the .h file
Mark function as static in .c file

10

We will create programs that can be used
by other programs like an ADT in Java

Behavior linked list bag set counters hashtable

stores an item yes yes yes no yes

uses a key no no yes yes yes

keeps items in order yes no no no no

retrieval first item any item by key by key by key

insertion of duplicates allowed allowed error increment count error

Notice:
• a linked list keeps items in order, but a bag or a set does not
• a set and hashtable allow you to retrieve a specific item (indicated by its key) whereas a bag might return any item
• because the bag and list don’t distinguish among items they store, they can hold duplicates; the others cannot
• the counters data structure maintains a set of counters, each identified by a key, but it stores no items. Instead, it
keeps a counter for each key; inserting a duplicate key increments the counter.

Data structures

We will create bag.c and bag.h to implement the bag functionality
Other programs can use this code to take advantage of the functionality
Other programs can #include “bag.h” to get access to bag’s functions
We will use this idea extensively in the Tiny Search Engine project

11

Prevent repeat definitions when multiple
programs include same headers
#ifndef __BAG_H
#define __BAG_H

/*****global data types****/
typedef struct bag bag_t; // hide the bag structure from the user

/***** functions ****/

/* Create a new (empty) bag; return NULL if error. */
bag_t* bag_new(void);

/* Add new item to the bag; a NULL bag is ignored; a NULL item is ignored. */
void bag_insert(bag_t *bag, void *item);

/* Return any data item from the bag; return NULL if bag is NULL or empty. */
void* bag_extract(bag_t *bag);

/* Print the whole bag; provide the output file and func to print each item.
* If fp==NULL; do nothing. If bag==NULL, print (null).
* If itemprint==NULL, print nothing for each item.
*/

void bag_print(bag_t *bag, FILE *fp,
void (*itemprint)(FILE *fp, void *item));

/* Delete the whole bag; ignore NULL bag.
* Provide a function that will delete each item (may be NULL).
*/

void bag_delete(bag_t *bag, void (*itemdelete)(void *item));

#endif // __BAG_H

Checks to see if __BAG_H has been defined
Define if not already defined (notice n in ifndef)
Called “header guards”

End of definition

Now multiple modules can include bag.h
and get these function declarations as if
they were typed into those module

Compile using mygcc bag.c <other progs>
Other progs can #include “bag.h”

bag.h

Tip:
Don’t start names with single
underscore (e.g., ‘_’)

C uses single underscore
internally, can cause problems

Either don’t use underscore or
use two

12

You can also use #ifdef and #ifndef in code
for conditional compilation
#include <stdio.h>

int main() {
#ifdef TESTING

puts("Got TESTING");
#else

puts("Did NOT get TESTING");
#endif
printf("Prints regardless\n");

return 0;
}

define_test.c

$ mygcc define_test.c
$./a.out
Did NOT get TESTING
Prints regardless

$ mygcc define_test.c -DTESTING
$./a.out
Got TESTING
Prints regardless

TESTING not defined
puts (“Did NOT get TESTING”)
is passed to compilation step

Preprocess checks to see if TESTING is defined
Includes following code in compilation step if defined,
includes code following else in compilation step if not

-D flag defines TESTING
puts (“Got TESTING”) is passed
to compilation step

13

Double check conditional compilation
worked using the –E flag
#include <stdio.h>

int main() {
#ifdef TESTING

puts("Got TESTING");
#else

puts("Did NOT get TESTING");
#endif
printf("Prints regardless\n");

return 0;
}

define_test.c

$ mygcc -E define_test.c
<snip>
3 "define_test.c"
int main() {
puts("Did NOT get TESTING");
printf("Prints regardless\n");
return 0;

}

$ mygcc -E define_test.c -DTESTING
<snip>
3 "define_test.c"
int main() {
puts("Got TESTING");
printf("Prints regardless\n");
return 0;

}

-E flag tells gcc to output to the console the
code sent to the compilation step, then stop

Useful to include debugging print
statements only if DEBUG defined

Do not include extraneous print
statements in your labs!

14

Agenda

1. Preprocessor directives and header files

2. Void pointers

3. Bag ADT

4. Activity

15 #include<stdio.h>
16
17 int main() {
18 int x = 42;
19 char *s = "hello";
20 int *xp = &x;
21 void *p = NULL;
22
23 printf("%d %d\n",x,*xp);
24
25 //set void pointer p to to int x's address
26 p = &x;
27 printf("%d\n",*(int *)p); //cast p to int pointer and deference
28
29 //set void pointer p to s's address
30 p = s;
31 printf("%s\n",(char *)p); //cast p to string and deference
32
33
34 return 0;
35 }

15

Void pointers do not have a type
themselves, but can be cast to other types

void_ptr.c

$ mygcc -o void_ptr void_ptr.c
$./void_ptr
42 42
42
hello

p is a void pointer
Has no associated type

Set p to point to address of x
Then cast p as integer pointer and
deference to print whatever p
points to as an integer

Now set p to point to string s
Cast p as character pointer and deference to
print whatever p points to as a string

8 #include <stdio.h>
9
10 void print_int(void *val) {
11 int *num = val; //cast void ptr to int ptr
12 if (num != NULL) {
13 printf("%d\n",*num); //deference to print value
14 }
15 }
16
17 void print_string(void *val) {
18 char *s = val; //cast void ptr to char ptr
19 if (s != NULL) {
20 printf("%s\n",s); //print value
21 }
22 }
23
24 int main() {
25 int x = 8;
26 char s[] = "hello";
27
28 //normal call
29 print_int(&x);
30
31 //call using pointer to function
32 void (*func)(void *val);
33 func = print_int;
34 (*func)((void *)&x);
35
36 func = print_string;
37 (*func)((void *)s);
38
39 return 0;
40 } 16

Functions pointers act similar to void
variable pointers

func_addr.c

$ mygcc func_addr.c
$./a.out
8

Function that takes a void pointer and
prints it as an integer

Function that takes a void pointer and
prints it as a string

Normal call passing address of x

8 #include <stdio.h>
9
10 void print_int(void *val) {
11 int *num = val; //cast void ptr to int ptr
12 if (num != NULL) {
13 printf("%d\n",*num); //deference to print value
14 }
15 }
16
17 void print_string(void *val) {
18 char *s = val; //cast void ptr to char ptr
19 if (s != NULL) {
20 printf("%s\n",s); //print value
21 }
22 }
23
24 int main() {
25 int x = 8;
26 char s[] = "hello";
27
28 //normal call
29 print_int(&x);
30
31 //call using pointer to function
32 void (*func)(void *val);
33 func = print_int;
34 (*func)((void *)&x);
35
36 func = print_string;
37 (*func)((void *)s);
38
39 return 0;
40 } 17

Functions pointers act similar to void
variable pointers

func_addr.c

$ mygcc func_addr.c
$./a.out
8
8

Function that takes a void pointer and
prints it as an integer

Address of a function is
just the function name
without parenthesis

Function that takes a void pointer and
prints it as a string

Normal call passing address of x

Create function pointer, point to print_int, and call

8 #include <stdio.h>
9
10 void print_int(void *val) {
11 int *num = val; //cast void ptr to int ptr
12 if (num != NULL) {
13 printf("%d\n",*num); //deference to print value
14 }
15 }
16
17 void print_string(void *val) {
18 char *s = val; //cast void ptr to char ptr
19 if (s != NULL) {
20 printf("%s\n",s); //print value
21 }
22 }
23
24 int main() {
25 int x = 8;
26 char s[] = "hello";
27
28 //normal call
29 print_int(&x);
30
31 //call using pointer to function
32 void (*func)(void *val);
33 func = print_int;
34 (*func)((void *)&x);
35
36 func = print_string;
37 (*func)((void *)s);
38
39 return 0;
40 } 18

Functions pointers act similar to void
variable pointers

func_addr.c

$ mygcc func_addr.c
$./a.out
8
8
hello

Function that takes a void pointer and
prints it as an integer

Address of a function is
just the function name
without parenthesis

Function that takes a void pointer and
prints it as a string

Normal call passing address of x

Now set func to point to print_string and call

Create function pointer, point to print_int, and call

We can use this idea to pass functions as parameters!

19

Agenda

1. Preprocessor directives and header files

2. Void pointers

3. Bag ADT

4. Activity

20

Implement bag ADT functionality, start by
declaring functions in .h header file

bag.h

Declares
• bag_new
• bag_insert
• bag_extract
• bag_print
• bag_delete

21

Define (implement) bag ADT functions in .c
file

bag.h

Declares
• bag_new
• bag_insert
• bag_extract
• bag_print
• bag_delete

bag.c

Includes bag.h
Defines (implements)
• bag_new
• bag_insert
• bag_extract
• bag_print
• bag_delete

22

Readlinep.h and .c declare and define
functions to read strings of arbitrary length

bag.h

Declares
• bag_new
• bag_insert
• bag_extract
• bag_print
• bag_delete

bag.c

Includes bag.h
Defines (implements)
• bag_new
• bag_insert
• bag_extract
• bag_print
• bag_delete

Includes readlinep.h
Defines (implements)
• freadlinep
• Readlinep (freadlinep

but from stdin)

readlinep.c

readline.h
Declares
• freadlinp
• readlinep

23

Use bag ADT and readlinep to create
bagsimple application

Includes bag.h and readlinep.h
Uses implementation from bag.c
1. Creates new bag (bag_new)
2. Reads names of arbitrary length from

stdin (readlinep)
• Loop until control-D
• Add each name (bag_insert)

3. Print all names in the bag (bag_print)
4. Delete the bag and free all dynamic

memory (bag_delete)

bag.h

Declares
• bag_new
• bag_insert
• bag_extract
• bag_print
• bag_delete

bag.c

Includes bag.h
Defines (implements)
• bag_new
• bag_insert
• bag_extract
• bag_print
• bag_delete

bagsimple.c

Includes readlinep.h
Defines (implements)
• freadlinep
• Readlinep (freadlinep

but from stdin)

readlinep.c

readline.h
Declares
• freadlinp
• readlinep

24

bagsimple: read names from stdin and
stores in a bag, print and free when done

Includes bag.h and readlinep.h
Uses implementation from bag.c
1. Creates new bag (bag_new)
2. Reads names of arbitrary length from

stdin (readlinep)
• Loop until control-D
• Add each name (bag_insert)

3. Print all names in the bag (bag_print)
4. Delete the bag and free all dynamic

memory (bag_delete)

bag.h

Declares
• bag_new
• bag_insert
• bag_extract
• bag_print
• bag_delete

bag.c

Includes bag.h
Defines (implements)
• bag_new
• bag_insert
• bag_extract
• bag_print
• bag_delete

bagsimple.c

Includes readlinep.h
Defines (implements)
• freadlinep
• Readlinep (freadlinep

but from stdin)

readlinep.c

readline.h
Declares
• freadlinp
• readlinep

$ mygcc bag.c readlinep.c bagsimple.c -o bagsimple
$./bagsimple

Compile multiple files
together to create bagsimple
application

25

bag.h declares functions for use in bag.c
and bagsimple.c
#ifndef __BAG_H
#define __BAG_H

/*****global data types****/
typedef struct bag bag_t; // hide the bag structure from the user

/***** functions ****/

/* Create a new (empty) bag; return NULL if error. */
bag_t* bag_new(void);

/* Add new item to the bag; a NULL bag is ignored; a NULL item is ignored. */
void bag_insert(bag_t *bag, void *item);

/* Return any data item from the bag; return NULL if bag is NULL or empty. */
void* bag_extract(bag_t *bag);

/* Print the whole bag; provide the output file and func to print each item.
* If fp==NULL; do nothing. If bag==NULL, print (null).
* If itemprint==NULL, print nothing for each item.
*/

void bag_print(bag_t *bag, FILE *fp,
void (*itemprint)(FILE *fp, void *item));

/* Delete the whole bag; ignore NULL bag.
* Provide a function that will delete each item (may be NULL).
*/

void bag_delete(bag_t *bag, void (*itemdelete)(void *item));

#endif // __BAG_H

Header guards prevent
declaration more than one
time Declares:

• bag_new
• bag_insert
• bag_extract
• bag_print
• bag_delete

bag.h included by
• bag.c
• bagsimple.c

bag.h

Notice bag doesn’t
know what kind of
items it holds!
(uses void pointer)

Bag does not know how
to print or free items it
holds; we will pass a
function via void pointer
that does know

26

bag.c implements functions declared in
bag.h
#include <stdio.h>
#include <stdlib.h>
#include "bag.h"

// local data types
typedef struct bagnode {

void *item;
struct bagnode *next;

} bagnode_t;

// global data types
typedef struct bag {

struct bagnode *head;
} bag_t;

// global functions

/*** bag_new()*****/
bag_t* bag_new(void)
{

bag_t *bag = malloc(sizeof(bag_t));

if (bag == NULL) {
return NULL;

} else {
bag->head = NULL;
return bag;

}
}

Include bag.h to get function declarations
Remember including a header file is like
typing its contents here

A bagnode holds an item and a pointer to
the next item, creating a linked list

typedef means we can just say bagnode_t
(t means type) instead of struct bagnode

A bag has a pointer to the head

typedef means we can just say bag_t
instead of struct bag

bag_new creates a new bag and returns a
pointer to it of type bag_t

Uses malloc so we will have to free it later!

Remember to always check that
malloc succeeded!If malloc success, set head to

NULL and return bag struct pointer

bag.c

/*** bag_insert()****/
void bag_insert(bag_t *bag, void *item)
{

if (bag != NULL && item != NULL) {
bagnode_t *new = malloc(sizeof(bagnode_t));

if (new != NULL) {
new->item = item;
new->next = bag->head;
bag->head = new;

}
}

}

27

bag_insert takes a void pointer to hold
any type of item

Void pointer means any type of
item can be stored in the bag

In bagsimple.c it will be strings

Allocate heap space for a new
bagnode item

Ensure
malloc
succeeded!
Always
check!

Add new item at front of list

Takes bag parameter, might have
multiple bags

bag.c

void* bag_extract(bag_t *bag)
{

if (bag == NULL) {
return NULL; // bad bag

} else if (bag->head == NULL) {
return NULL; // bag is empty

} else {
bagnode_t *out = bag->head; // the node to take out
void *item = out->item; // the item to return
bag->head = out->next; // hop over the node to remove
free(out);
return item;

}
}

28

bag_extract removes and returns an item
of type void from the bag

Takes bag parameter, might have
multiple bags

Return NULL if bag or head are NULL

Get bagnode_t to remove (at head)

Get item from badnode_t
Update head to point to next
Free bagnode_t that was at the front
Do not free item yet, it will be returned to caller
The caller will have to free the item

bag.c

29

bag_print loops over each item, printing
them using pointer to print function

void bag_print(bag_t *bag, FILE *fp, void (*itemprint)(FILE *fp, void *item))
{

if (fp != NULL) {
if (bag != NULL) {

fputc('{', fp);
for (bagnode_t *node = bag->head; node != NULL; node = node->next) {

// print this node
if (itemprint != NULL) { // print the node's item

(*itemprint)(fp, node->item);
fputc(',', fp);

}
}
fputs("}\n", fp);

} else {
fputs("(null)\n", fp);

}
}

}

Takes bag parameter,
might have multiple bags

Print to FILE pointer

Bag doesn’t know
what type of items
it holds

Caller passes a
pointer to a
function that does
know to print items

print_bag uses that
function

Loop over all
items in bagCall print function for

each item

Pass in fp and item to
print function

bag.c

Void bag_delete(bag_t *bag, void (*itemdelete)(void *item))
{

if (bag != NULL) {
for (bagnode_t *node = bag->head; node != NULL;) {

if (itemdelete != NULL) { // if possible...
(*itemdelete)(node->item); // delete node's item

}
bagnode_t *next = node->next; // remember what comes next
free(node); // free the node
node = next; // and move on to next

}

free(bag);
}

}

30

bag_delete loops over each item and
removes them from the bag

Takes bag parameter,
might have multiple bags Pass in pointer to

function that knows
how to delete each
item

bagsimple.c uses
strings

namedelete from
bagsimple.c knows
how to free stringsLoop over each item

Call delete function passed
as parameter (namedelete in
bagsimple.c) on each item

Note: this is not the bagnode,
it’s the item the bagnode
holds

free bagnode_t

Finally free the bag

bag.c

31

bagsimple.c uses declarations in bag.h
and readline.p to store names in a bag
#include <stdio.h>
#include <stdlib.h>
#include "bag.h"
#include "readlinep.h"

void nameprint(FILE *fp, void *item);
void namedelete(void *item);

int main() {
// create a bag
bag_t *bag = bag_new(); // the bag

// insert into the bag
while (!feof(stdin)) {

char *name = readlinep();
if (name != NULL) {

bag_insert(bag, name);
}

}

// print out bag items
bag_print(bag, stdout, nameprint);

// delete the bag
bag_delete(bag, namedelete);

return 0;
}

By including bag.h and readline.p we get
declaration for their functions

bag_new creates a new bag

Read a line from stdin and add
a new item to bag using
bag_insert

When done inputting names,
print all elements in bag by
calling bag_print

But, a bag that holds items of any
type doesn’t know how to print
the items in the bag (toString in
Java tells how to print objects)
Pass a pointer to a print function
that knows how to print names

Delete all items in bag after printing

Pass function that knows how to
delete (free) items

Declare functions we will use for this
specific use of the bag (this bag stores
names as strings)

bagsimple.c

// print a name
void nameprint(FILE *fp, void *item) {

char *name = item;
if (name == NULL) {

fprintf(fp, "(null)");
}
else {

fprintf(fp, "%s", name);
}

}

// delete a name
void namedelete(void *item)
{

if (item != NULL) {
free(item);

}
}

32

Bag doesn’t know what kind of items it will
hold, needs to know how to print and free items

nameprint knows how to print
an item of the type stored in
this type of bag (here strings)

A pointer to this function is
passed to bag_print

mamedelete knows how to delete (free)
items stored in this bag (strings here)

bagsimple.c

33

Agenda

1. Preprocessor directives and header files

2. Void pointers

3. Bag ADT

4. Activity

34

