
CS 50:
Software Design and Implementation

Make and Makefiles

2

Agenda

1. Makefiles

2. Compiling bagsimple with make

3. Activity

3

When programs become large it becomes
difficult to correctly compile them

$ mygcc -o bagsimple bag.c bagsimple.c readlinep.c

Even our bag module is starting to get complex to compile!
• bagsimple.c - a simple example of an application that uses the bag module
• bag.h - declarations that form the interface to the bag module
• bag.c - functions that define the implementation of the bag module.
• Since we also use the readlinep module, we must now compile the program

with a command like:

1. Remembering to include all needed files
starts to become difficult

2. Plus if there aren’t any changes to a file,
no need to recompile it
• This isn’t a problem with the

examples we’ve seen so far – they
each take a few seconds to compile

• Larger projects (say the Linux kernel)
can take hours to compile

A Makefile solves these problems! https://xkcd.com/303/

4

The make program reads a file called
Makefile and runs commands in Makefile
By default, the make command
looks for a file called Makefile
(can change name of file with –f)

Makefile must follow specific
syntax

target: dependent files
command 1
command 2

Target is what to create

Dependent files are
those needed to
create the target

Commands to run to
create target
Must begin with a tab
(spaces do not work!)

5

The make program reads a file called
Makefile and runs commands in Makefile

dumplings: veggies flour
@echo "Making dumplings"

veggies:
@echo "Buying vegetables"

flour:
@echo "Buying flour"

Makefile
By default the make command
looks for a file called Makefile
(can change name of file with –f)

Makefile must follow specific
syntax

target: dependent files
command 1
command 2

To make dumplings
we will need
vegetables and flour

Dumplings target
“depends” on
veggies and flour

$ make dumplings
Buying vegetables
Buying flour
Making dumplings
$ make flour
Buying flour
$ make veggies
Buying vegetables
$ make
Buying vegetables
Buying flour
Making dumplings

Gives what
is needed
to create
veggies and
flour

File is called Makefile

make dumplings
cause make to
create veggies
and then flour

You can also
execute veggies
and flour targets
on their own

Running make
without a target runs
the first target
(dumplings here)

6

Agenda

1. Makefiles

2. Compiling bagsimple with make

3. Activity

7

Overview: read names from stdin and store
in a bag, print and free bag when done

Includes bag.h and readlinep.h
Uses implementation from bag.c
1. Creates new bag (bag_new)
2. Reads names of arbitrary length from

stdin (readlinep)
• Loop until control-D
• Add each name (bag_insert)

3. Print all names in the bag (bag_print)
4. Delete the bag and free all dynamic

memory (bag_delete)

bag.h

Declares
• bag_new
• bag_insert
• bag_extract
• bag_print
• bag_delete

bag.c

Includes bag.h
Implements
• bag_new
• bag_insert
• bag_extract
• bag_print
• bag_delete

bagsimple.c

Includes readlinep.h
Implements
• freadlinep
• Readlinep (freadlinep

but from stdin)

readlinep.c

readline.h
Declares
• freadlinp
• readlinep

$ mygcc -o bagsimple bag.c readlinep.c bagsimple.c
$./bagsimple

8

Compiling the bagsimple from last class
becomes somewhat tedious

$ mygcc -o bagsimple bagsimple.c bag.c readlinep.c

Alias we set up in bash_profile
alias mygcc='gcc -Wall -pedantic -std=c11 -ggdb'

Output executable as bagsimple Compile and link into
bagsimple executable
• bagsimple.c (includes bag.h

and readlinep.h)
• bag.c (includes bag.h)
• readlinep.c (includes

readlinep.h)
• Starting to get complicated to type
• If one file changes, need to re-compile all files
• We can do better!
• We will use make and Makefiles from now on

9

A Makefile gives instructions on how to
compile targets based on dependencies

bagsimple: bag.o bagsimple.o readlinep.o
gcc -o bagsimple bag.o bagsimple.o readlinep.o

bag.o: bag.c bag.h
gcc -c bag.c

bagsimple.o: bagsimple.c bag.h readlinep.h
gcc -c bagsimple.c

readlinep.o: readlinep.c readlinep.h
gcc -c readlinep.c

Bagsimple target depends on object
files from bag modules and readlinep

Makebag1

Once all the .o files are
update to date, link them
together into an
executable called
bagsimple

bag.o depends on bag.c and bag.h
If they change, recompile bag.c

Bagsimple depends on
bagsimple.c plus two headers,
bag.h and readlinep.h
(run head -15 bagsimple.c)
If those files change, recompile
bagsimple.c to object file

Readlinep.o depends on
readlinep.c and readlinep.h

If those files change, recompile
readlinep.c to object file

-c flag stops compilation after .o produced

10

A Makefile gives instructions on how to
compile targets based on dependencies

bagsimple: bag.o bagsimple.o readlinep.o
gcc -o bagsimple bag.o bagsimple.o readlinep.o

bag.o: bag.c bag.h
gcc -c bag.c

bagsimple.o: bagsimple.c bag.h readlinep.h
gcc -c bagsimple.c

readlinep.o: readlinep.c readlinep.h
gcc -c readlinep.c

Makebag1

$ make -f Makebag1
gcc -c bag.c
gcc -c bagsimple.c
gcc -c readlinep.c
gcc -o bagsimple bag.o bagsimple.o readlinep.o
$ make -f Makebag1
make: 'bagsimple' is up to date.

-f flag tells Makefile to use Makebag1
If omitted, make looks for a file named Makefile
If do not specify target, make runs the first one

No need to recompile
Everything is up to date

bagsimple: bag.o bagsimple.o readlinep.o
gcc -o bagsimple bag.o bagsimple.o readlinep.o

11

Make knows .o files come from .c files!

Make knows .o files come from .c files
If make can not find .o file, it will compile
.c file with same name to make a .o file

Makebag1a

12

Make knows .o files come from .c files!
bagsimple: bag.o bagsimple.o readlinep.o

gcc -o bagsimple bag.o bagsimple.o readlinep.o

$ rm *.o
rm: remove regular file 'bag.o'? y
rm: remove regular file 'bagsimple.o'? y
rm: remove regular file 'readlinep.o'? y

Makebag1a

Remove .o so make will
recompile dependencies

13

Make knows .o files come from .c files!
bagsimple: bag.o bagsimple.o readlinep.o

gcc -o bagsimple bag.o bagsimple.o readlinep.o

$ rm *.o
rm: remove regular file 'bag.o'? y
rm: remove regular file 'bagsimple.o'? y
rm: remove regular file 'readlinep.o'? y
$ make -f Makebag1a
cc -c -o bag.o bag.c
cc -c -o bagsimple.o bagsimple.c
cc -c -o readlinep.o readlinep.c
$ gcc -o bagsimple bag.o bagsimple.o readlinep.o

Makebag1a

Make compiles .c that matches .o

Remove .o so make will
recompile dependencies

14

Make knows .o files come from .c files!
bagsimple: bag.o bagsimple.o readlinep.o

gcc -o bagsimple bag.o bagsimple.o readlinep.o

$ rm *.o
rm: remove regular file 'bag.o'? y
rm: remove regular file 'bagsimple.o'? y
rm: remove regular file 'readlinep.o'? y
$ make -f Makebag1a
cc -c -o bag.o bag.c
cc -c -o bagsimple.o bagsimple.c
cc -c -o readlinep.o readlinep.c
$ gcc -o bagsimple bag.o bagsimple.o readlinep.o
$ touch bag.c
$ make -f Makebag1a
cc -c -o bag.o bag.c
gcc -o bagsimple bag.o bagsimple.o readlinep.o

Makebag1a

Remove .o so make will
recompile dependencies

Update bag.c and make again
Recompiles only bag.c

Make compiles .c that matches .o

15

Make knows .o files come from .c files!
bagsimple: bag.o bagsimple.o readlinep.o

gcc -o bagsimple bag.o bagsimple.o readlinep.o

$ rm *.o
rm: remove regular file 'bag.o'? y
rm: remove regular file 'bagsimple.o'? y
rm: remove regular file 'readlinep.o'? y
$ make -f Makebag1a
cc -c -o bag.o bag.c
cc -c -o bagsimple.o bagsimple.c
cc -c -o readlinep.o readlinep.c
$ gcc -o bagsimple bag.o bagsimple.o readlinep.o
$ touch bag.c
$ make -f Makebag1a
cc -c -o bag.o bag.c
gcc -o bagsimple bag.o bagsimple.o readlinep.o
$ touch bag.h
$ make -f Makebag1a
make: 'bagsimple' is up to date

Makebag1a

Problem: make does not
recompile if .h files changes

16

We must tell make about .h files that go
with .o files
bagsimple: bag.o bagsimple.o readlinep.o

gcc -o bagsimple bag.o bagsimple.o readlinep.o

bag.o: bag.h
bagsimple.o: bag.h readlinep.h
readlinep.o: readlinep.h
$ rm *.o
rm: remove regular file 'bag.o'? y
rm: remove regular file 'bagsimple.o'? y
rm: remove regular file 'readlinep.o'? y
$ make -f Makebag1b
cc -c -o bag.o bag.c
cc -c -o bagsimple.o bagsimple.c
cc -c -o readlinep.o readlinep.c
$ gcc -o bagsimple bag.o bagsimple.o readlinep.o

Makebag1b

Tell make that .h files go with
.o files

17

We must tell make about .h files that go
with .o files
bagsimple: bag.o bagsimple.o readlinep.o

gcc -o bagsimple bag.o bagsimple.o readlinep.o

bag.o: bag.h
bagsimple.o: bag.h readlinep.h
readlinep.o: readlinep.h
$ rm *.o
rm: remove regular file 'bag.o'? y
rm: remove regular file 'bagsimple.o'? y
rm: remove regular file 'readlinep.o'? y
$ make -f Makebag1b
cc -c -o bag.o bag.c
cc -c -o bagsimple.o bagsimple.c
cc -c -o readlinep.o readlinep.c
$ gcc -o bagsimple bag.o bagsimple.o readlinep.o
$ touch bag.h
$ make -f Makebag1b
cc -c -o bag.o bag.c
cc -c -o bagsimple.o bagsimple.c
gcc -o bagsimple bag.o bagsimple.o readlinep.o

Makebag1b

Changing .h causes
recompilation

Tell make that .h files go with
.h files

18

We commonly add a “test” for testing and
a “clean” target to remove old files
bagsimple: bag.o bagsimple.o readlinep.o

gcc -o bagsimple bag.o bagsimple.o readlinep.o

bag.o: bag.h
bagsimple.o: bag.h readlinep.h
readlinep.o: readlinep.h

test:
@echo “This is a test”

clean:
rm -f *.o
rm -f bagsimple

$ make –f Makebag1c test
This is a test
$ make –f Makebag1c clean
rm -f *.o
rm -f bagsimple

Makebag1c

Give target name to run that target

Delete .o files and executable
-f forces delete

Put testing code here to ensure same
tests can be run after changes are
made to program

19

Make provides macros that make things
simpler

1 # Makefile for the "bagsimple" program that uses the "bag" module.
2 #
3 # CS 50, Fall 2022
4
5 CC = gcc
6 CFLAGS = -Wall -pedantic -std=c11 -ggdb
7 PROG = bagsimple
8 OBJS = bagsimple.o bag.o readlinep.o
9 LIBS = -lm
10
11 .PHONY: all clean
12
13 all: bagsimple
14
15 # executable depends on object files
16 $(PROG): $(OBJS)
17 $(CC) $(CFLAGS) $(OBJS) $(LIBS) -o $(PROG)
18
19 # object files depend on header files
20 bagsimple.o: bag.h readlinep.h
21 bag.o: bag.h
22 readlinep.o: readlinep.h
23
24 clean:
25 rm -f $(PROG)
26 rm -f *.o

Macro format: MACRO = value
Make knows about CC macro, will use this as the compiler for .c files

Provide our compiler flags in CFLAGS

Name of executable to produce

Dependencies of executable
Any libraries needed such as math

Tells make these targets do not produce a file (not required)
Typing make with no target runs the first one, all commonly put first

PROG target = bagsimple
OBJS gives object file dependencies
CC tells which compiler to use
CFLAGS for compiler
LIBS gives any needed libraries to link

Same as previous

Makefile

so just typing “make” runs “make all”

20

Make also has several automatic macros

Automatic macros
$@ name of the current target
$? the list of dependencies that are newer than the target
$^ the list of dependencies for this target

For example, we could rewrite our bagsimple target as
$(PROG): $(OBJS)

$(CC) $(CFLAGS) $^ -o $@

21

Agenda

1. Makefiles

2. Compiling bagsimple with make

3. Activity

22

