
CS 50:
Software Design and Implementation

Git and GitHub

2

Agenda

1. Git vs GitHub

2. Working with a repo

3. Branches

4. Activity

3

Git is a local Version Control System (VCS)

Git is a version control system
• Runs on your laptop
• Keeps local copy of code
• Can edit while offline
• Change history tracked in

local database (.git directory)

Person 1

4

Multiple people working on the same
project can run Git at the same time

Person 1 Person 2 Person n
Multiple people can run Git
• Each person keeps a local copy of

code on their computer
• Can edit code locally
• Each has history of all changes

…

Git is a version control system
• Runs on your laptop
• Keeps local copy of code
• Can edit while offline
• Change history tracked in

local database (.git directory)

5

Github is a cloud-based data repository

Person 1 Person 2 Person n

GitHub is an online repository
• Stores code
• Can sync to local computers
• There are others (bitbucket)

…

Multiple people can run Git
• Each person keeps a local copy of

code on their computer
• Can edit code locally
• Each has history of all changes

Git is a version control system
• Runs on your laptop
• Keeps local copy of code
• Can edit while offline
• Change history tracked in

local database (.git directory)

6

Changes made locally are pushed to
GitHub

Person 1 Person 2 Person n

“Push” changes made
locally to remote
repository

GitHub is an online repository
• Stores code
• Can sync to local computers
• There are others (bitbucket)

…

Multiple people can run Git
• Each person keeps a local copy of

code on their computer
• Can edit code locally
• Each has history of all changes

Git is a version control system
• Runs on your laptop
• Keeps local copy of code
• Can edit while offline
• Change history tracked in

local database (.git directory)

7

Other team members can pull the changes
from GitHub to stay in sync

Person 1 Person 2 Person n

“Push” changes made
locally to remote
repository

“Pull” changes from
remote repository to stay
in sync

GitHub is an online repository
• Stores code
• Can sync to local computers
• There are others (bitbucket)

…

Multiple people can run Git
• Each person keeps a local copy of

code on their computer
• Can edit code locally
• Each has history of all changes

Git is a version control system
• Runs on your laptop
• Keeps local copy of code
• Can edit while offline
• Change history tracked in

local database (.git directory)

8

Other team members can pull the changes
from GitHub to stay in sync

Person 1 Person 2 Person n

“Push” changes made
locally to remote
repository

“Pull” changes from
remote repository to stay
in sync

GitHub is an online repository
• Stores code
• Can sync to local computers
• There are others (bitbucket)

…
All local
databases
reflect
changes, even
if changes
made by
someone elseMultiple people can run Git

• Each person keeps a local copy of
code on their computer

• Can edit code locally
• Each has history of all changes

Git is a version control system
• Runs on your laptop
• Keeps local copy of code
• Can edit while offline
• Change history tracked in

local database (.git directory)

9

Files in Git can be one of several states;
initially they are untracked
Git on
your
laptop

Adapted from https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

Add/Delete/Modify
files in local working
directory

Files are not tracked
by Git unless you
tell it to track them

10

Use git add to tell Git to track new files or
to stage changes to existing files
Git on
your
laptop

Adapted from https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

Add/Delete/Modify
files in local working
directory

Example:
git add README.md

README is now staged to
be committed

Add/Delete/Modify
files in local working
directory

Stage updates
to go into next
commit

Use git add to
track new files or
stage modified
existing files

New files staged

Modified files staged

11

Use git commit to take a snapshot of the
code in your local database
Git on
your
laptop

Adapted from https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

Add/Delete/Modify
files in local working
directory

Example:
git commit –m “message”

Git takes a snapshot of the
added files, stores in local
database

Add/Delete/Modify
files in local working
directory

Stage updates
to go into next
commit

Commit staged
changes to local git
database (.git/)

Use git commit to
save snapshot

Committed files
revert to unmodified

12

Use git commit to take a snapshot of the
code in your local database
Git on
your
laptop

Adapted from https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

Add/Delete/Modify
files in local working
directory

Example:
git push –u origin main

Send changes to remote

Add/Delete/Modify
files in local working
directory

Stage updates
to go into next
commit

Commit staged
changes to local git
database (.git/)

After completing milestones,
push code to Github
repository in the cloud

13

Use git commit to take a snapshot of the
code in your local database
Git on
your
laptop

Adapted from https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

Add/Delete/Modify
files in local working
directory

Example:
git pull

Update local code with
remote repo

Add/Delete/Modify
files in local working
directory

Stage updates
to go into next
commit

Commit staged
changes to local git
database (.git/)

After completing milestones,
push code to Github
repository in the cloud

Other team members can
now pull your changes and
stay in sync

DO NOT edit files directly
in GitHub web interface,
use push and pull!

14

Agenda

1. Git vs GitHub

2. Working with a repo

3. Branches

4. Activity

15

Starting a new project with Git begins with
git init in the working directory

$ cd ~/cs50/activities/day13
$ mkdir demo1
$ cd demo1
$ git init
Initialized empty Git repository in
/thayerfs/home/d84xxxx/cs50/activities/day13/demo1/.git/
$ ls -a
./ ../ .git/

Make a directory for a project and
change into it

Initialize Git in directory
Git creates subdirectory called .git

.git directory holds git preferences for this
project and database of changes to files

Currently no files are tracked by Git

Git only tracks files we tell it to track

Use git clone <repo URL> to begin with existing code already on GitHub

16

Files added to the working directory are
not tracked unless we tell Git to track them

$ cd ~/cs50/activities/day13
$ mkdir demo1
$ cd demo1
$ git init
Initialized empty Git repository in
/thayerfs/home/d84xxxx/cs50/activities/day13/demo1/.git/
$ ls -a
./ ../ .git/
$ vi README.md

Add a README.md file

Not tracked unless we Git to track it

17

git status gives the current state of the
working directory

$ git status
On branch main

No commits yet

Untracked files:
(use "git add <file>..." to include in what will be

committed)
README.md

nothing added to commit but untracked files present (use
"git add" to track)

Git knows README.md exists, but
is not tracking it

18

Use git add to track files to tell Git which
files to track

$ git add README.md
$ git status
On branch main

No commits yet

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: README.md

Tell Git to track README.md

To track all files, use git add .

(Well not quite all files, .gitignore is discussed shortly)

Check status again

README.md is now staged to be saved
in next commit (snapshot)

Not saved to history yet!

19

Use git commit to save a snapshot of the
code in the local history

$ git commit -m "Initial commit"
[main (root-commit) 2aec1ce] Initial commit
1 file changed, 2 insertions(+)
create mode 100644 README.md

$ git status
On branch main
nothing to commit, working tree clean

Commit writes change to local database
Can think of this like taking a snapshot
-m flag provides short message about changes made

Version are identified
by a SHA-1 hash of files

After commit, snapshot is taken
Git is up to date
Files are still only on local machine, but not
yet pushed to online repo (Github)

20

Create a repo on GitHub via web interface

Log into GitHub

Click New to create a new repo

21

Create a repo on GitHub via web interface

Give repo a name

22

Create a repo on GitHub via web interface

Make sure SSH is selected

Copy repo URL

23

Add the repo and push your code to that
repo

$ git remote -v
$ git remote add origin git@github.com:cs50-2022-fall/demo1.git
$ git push -u origin main
Enumerating objects: 3, done.
Counting objects: 100% (3/3), done.
Writing objects: 100% (3/3), 253 bytes | 19.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
To github.com:cs50-2022-fall/demo1.git
* [new branch] main -> main

Branch 'main' set up to track remote branch 'main' from
'origin'.

Currently not configured with a remote

Add remote called origin with repo URL

Push code to GitHub repo

Summary
Init
Edit file -> Add file -> Commit -> Push -> Repeat

24

Others can clone the code from GitHub

[MacBook]$ git clone git@github.com:cs50-2022-fall/demo1.git
Cloning into 'demo1'...
remote: Enumerating objects: 3, done.
remote: Counting objects: 100% (3/3), done.
remote: Total 3 (delta 0), reused 3 (delta 0), pack-reused 0
Receiving objects: 100% (3/3), done.
[MacBook]$ ls
demo1/
[MacBook]$ cd demo1
[MacBook]$ ls
README.md

On MacBook, not plank Clone repo using repo URL

Files clone to local machine

25

We normally include a .gitignore file so we
don’t push unnecessary files to the remote

$ vi $loc/activities/day13/.gitignore #standard CS50 .gitignore

<snip>
14
15 # Object files and libraries
16 *.o
17 *.a
18 a.out
<snip>

$ cp $loc/activities/day13/.gitignore .
$ git status
On branch main
Your branch is up to date with 'origin/main’.
Untracked files:

(use "git add <file>..." to include in what will be committed)
.gitignore
nothing added to commit but untracked files present (use "git add" to track)
$ git add .gitignore
$ git commit -m "added gitignore"
[main cc9defd] added gitignore
1 file changed, 38 insertions(+)
create mode 100644 .gitignore

$ git push
Enumerating objects: 4, done.
Counting objects: 100% (4/4), done.
Delta compression using up to 40 threads
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 715 bytes | 65.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
To github.com:cs50-2022-fall/demo1.git

2aec1ce..cc9defd main -> main

.gitignore file tells Git not to track files
that do not need to be tracked (normally
because they can be easily recreated like
*.o or executables)

Copy .gitignore into Git directory, add,
commit, and push

26

Agenda

1. Git vs GitHub

2. Working with a repo

3. Branches

4. Activity

27

Branches allow you to work on a branch
without changing other branches

Work done on a branch does not change other branches
Typically create a branch for a new feature and switch to that branch
• git branch <name>
• git switch <name> (old style was git checkout <name>)
Work on feature until debugged and working
• git push origin <name>
Merge back with main when done
• git switch main
• git merge <name>

https://git-school.github.io/visualizing-git/

NOTE: This site uses the old
master branch and uses
checkout instead of switch

28

Agenda

1. Git vs GitHub

2. Working with a repo

3. Branches

4. Activity

29

