CS 50:

Software Design and Implementation

valgrind

» 1. Memory errors

2. Memory leaks

3. Activity

Often programs will compile and run, but

may have sneaky memory bugs

Memory error
* Invalid read/write of size X — The program was observed to read/write X bytes of
memory that was invalid. Common causes include:
e accessing beyond the end of a heap block
* accessing memory that has been freed
e accessing into an unallocated region such as from use of a uninitialized pointer.

e Use of uninitialized value or Conditional jump or move depends on uninitialized
value(s) — access memory not initialized or use uninitialized values in a conditional

* Source and destination overlap in memcpy() — attempt to copy data from one
location to another and range intersects

* Invalid free() — attempt to free non-heap address or free same block more than once

Adapted from https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/guide_valgrind.html

Invalid read/write of size X

1
2
3
4
5
6
7
8
9

#include <stdio.h>
#include <stdlib.h> Runs just fine!
#include <string.h>
$ mygcc valgrind_test.c
const int SIZE = 10; $./a.out
name: Alice A. Anderson
typedef struct node {
char s*xname;
struct node *xnext;
} Node;
Node xhead = NULL;

int main() {

head = malloc(sizeof(struct node));
head->name = malloc(sizeof(char)*SIZE);
strcpy(head->name,"Alice A. Anderson");

head—>next = NULL;
printf("name: %s\n“,head—>na6:3?\\\\

free(head->name); Name is too long
free(head);

return 0;

valgrind_test.c

Invalid read/write of size X

valgrind_test.c

1 #include <stdio.h>

2 #include <stdlib.h> Runs just fine!

3 #include <string.h>

4 $ mygcc valgrind_test.c
5 const int SIZE = 10; 1 . d iS $./a.out

gt Get struct node 4 myva 9”-“ \ name: Alice A. Anderson
s " Char sname; ouralias $ alias myvalgrind
9 struct node sknext; alias myvalgrlrlld— valgrind —-leak-check=full —-show-
10 } Node; leak—-kinds=all

11

12 Node xhead = NULL;

13

14 int main() {

15

16 head = malloc(sizeof(struct node));

17 head->name = malloc(sizeof(char)*SIZE);

18 strcpy(head->name,"Alice A. Anderson");

19 head—>next = NULL;
20 printf("name: %s\n“,head—>na4§??\\\~
21
22 free(head->name); Name is too long
23 free(head);
24 return 0;
25 }

Invalid read/write of size X

Valgrind shows strcpy writes beyond end of ~ Vvalgrind_test.c

1 #include <stdio.h>
2 #include <stdlib.h> string, and also reading it during printf
3 #include <string.h>
4 $ mygcc valgrind_test.c
i - . $./a.out
5 const int SIZE = 10; name: Alice A. Anderson
3) $ glias myvalgrinq ; Leakki w
7 typedef struct node { alias myv?lgrlnd— valgrind —--leak-check=full —--show-leak-kinds=a
$ myvalgrind ./a.out
8 char s*xname; ==7314== Memcheck, a memory error detector
9 struct node xnext; ==7314== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
10 } Node; ==7314== Using Valgrlnd = 3] i g with —h for copyright info
’ ==7314== Co ” .out
11 ==73
_ . 14== Invalid write of size 8
12 Node xhead = NULL; 14— ot 0x10872E: (:18)
13 ==7314== Address 0x522f098 is 8 bytes inside a block of size 10 alloc'd
14 int lnaij() { ==7314== at 0x4C31BOF: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd6
X.50)
15 ==7 by 0x108709: main (test.c:17)
16 h = mall sizeof(struct node)); ==7314==
ead a EC((: ode)) ;) ==7314== Invalid write oT Stre=2
17 head->name = malloc(sizeof(char)xSIZE); ==7314== at 0x108732: main (test.c:18)
18 strcpy(head->name,"Alice A. Anderson"); ==7314== Address 0x522f@a0 is 6 bytes after a block of size 10 alloc'd
19 head->next NULL ==7314== at 0x4C31BOF: mall nd/vgpreload_memcheck-amd64-
linux.so)
20 »prlntf(“name' %s\n", head—>nam‘e)\ ==7314= X108709: main (test.c:17)
==73145
21 ==7344== Invalid read of size 1
22 free(head—>name); Name |S too Iong 314== at 0x4C34D@4: strlen (in /usr/lib/valgrind/vgpreload_memcheck-amd64
fr h . inux.so)
23 ee(eacli), ==7314== by @x4E9B4A2: vfprintf (vfprintf.c:1643)
24 return 0; ==7314== by Ox4EA2EES: printf (printf.c:33)
25 } ==7314== by 0x108764:

Jnain (test.ci20)
=7314== Address 0x522f09a is @ bytes after a block of size 10 alloc'd
= at 0x4C31BOF: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd
i)

==7314==
<snip>

by 0x108709: main (test.c:17)

Use of uninitialised value or Conditional jump or

move depends on uninitialised value(s)

The program read the value of a memory location that was not previously valgrind_test2.c
written to, i.e. uses random junk. The second more specifically indicates the
read occurred in the test expression in an if/for/while.

1 #include <stdio.h> H H |
2 #include <stdlib.h> Runs JUSt fine! :
3 #include <string.h> 2 ml/’gcguflg"l"d—tes'fz-c
4 name: Alice
5 const int SIZE = 10;
6
7 typedef struct node {
8 char xname;
9 struct node *xnext;
10 } Node;
11
12 Node xhead = NULL; Strcat concatenates
13 .
14 int main() { St”ngs
15
16 head = #falloc(sizeof(struct node));
17 hea name = malloc(sizeof(char)*SIZE);
18 strcat(head—>name,"Alice"); w Alice
19 head—>next = NULL;
20 printf(''name: %s\n",head->name); NOW
21 .
22 free(head->name) ; fits
23 free(head);
24 return 0;
25 }

Use of uninitialised value or Conditional jump or

move depends on uninitialised value(s)

The program read the value of a memory location that was not previously valgrind_test2.c
written to, i.e. uses random junk. The second more specifically indicates the
read occurred in the test expression in an if/for/while.

Ooo~NOULE WN R

NNNNNNRRRRPRRRRPRR
URAWNROOVONOUDMWNR®

Valgrind shows strcat concatenates

#include <stdio.h> Runs just fine! uninitialized memory with “Alice”

#include <stdlib.h>
#include <string.h>

const int SIZE = 10;

typedef struct node {

char s*xname;

struct node *xnext;
} Node;

Node *head = NULL; Strcat concatenates
strings

int main() {
head = #falloc(sizeof(struct node));
hea name = malloc(sizeof(char)*SIZE);
strcat(head->name,"Alice"); w Alice
head—>next = NULL;
printf(''name: %s\n",head->name); NOW

free(head—>name) ; fits
free(head);
return 0;

$ mygcc valgrind_test2.c

$./a.out

name: Alice

$ myvalgrind ./a.out

==7720== Memcheck, a memory error detector

==7720== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==7720== Using Valgrind-3.13.0 and LibVEX; rerun with —-h for copyright info
==7720== Command: ./a,qut

==7720==

==772@<= Conditional jump or move depends on uninitialised value(s)
==772Q== at 0x10872C: main (valgrind_test2.c:18)

==7720==>

name: Alice
==7720==
==7720== HEAP SUMMARY:

==7720== in use at exit: @ bytes in @ blocks

==7720== total heap usage: 3 allocs, 3 frees, 1,050 bytes allocated
==7720==

==7720== All heap blocks were freed —— no leaks are possible
==7720==

==7720== For counts of detected and suppressed errors, rerun with: -v
==7720== Use ——track-origins=yes to see where uninitialised values come from
==7720== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: @ from Q)

Invalid free()

The program attempted to free a non-heap address or free the same block valgrind_test3.c
more than once.

Valgrind shows location of

1 #include <stdio.h> Runs but core double free
2 #include <stdlib.h> . Larind 5
: : mygcc valgrind_test3.c
2 #include <string.h> dump at & aout
name: Alice
5 const int SIZE = 10; unknown free(): double free detected in tcache 2
6 | t. Aborted (core dumped)
ocation $ myvalgrind ./a.out
7 typedef struct nodtla { 3 myvalgrind ./a.out
8 char *name; ==8066== Memcheck, a memory error detector
9 struct node *xnext; ==8066== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
10 } Node; ==8066== Using Valgrind-3.13.0 i 0 with —h for copyright info
11 ==8066== Command: .
==8066==
12 Node xhead = NULL; . . FIoe AL
13 strcpy copies strings Invalid free() / delete / delete[] / realloc()
14 int main at 0x4C32D3B: free (in /usr/lib/valgrind/vgpreload_memcheck-
. O (as before)
.] by 0x10877F: main (valgrind_test3.c:24)
16 head ?AOC(Slzeof(st ruct node)); 8066== Address 0x522040 is P DYTES IMSTOE T Block of size 16 free'd
17 head-#ame = malloc(sizeof(char)*SIZE); 8066== at 0x4C32D3B: free (in /usr/lib/valgrind/vgpreload_memcheck-
- strepy(head—>name, "Alice™); dggglinux'zmw 108770: main (valgrind_test3.c:23)
_ - . = == y 0x : main (valgrind_test3.c:
19 he&.ld >nﬁXt .NELL',, . ==8Q66== Block was alloc'd at
g? prlntf(name: %s\n",head->name); ==80 at 0x4C31BOF: malloc (in /usr/lib/valgrind/vgpreload_memchec
amd64-
22 free(head-—>name); ==8066== 0x1086EC: main (valgrind_test3.c:16)
23 free(head);
24 free(head); head
25 return 0; freed
26 }
twice

1. Memory errors

» 2. Memory leaks

3. Activity

10

Often programs will compile and run, but

may have sneaky memory bugs

Memory leak
* Definitely lost — heap-allocated memory never freed, but lost pointer to it

* Indirectly lost - heap-allocated memory never freed to which only pointers to it are lost
(e.g., free head, but loose rest of list)

* Possibly lost - heap-allocated memory never freed, but Valgrind is not sure if there is a
pointer to it

* Still reachable - heap-allocated memory never freed to which the program still has a
pointer at exit (typically this means a global variable points to it).

11

Adapted from https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/guide_valgrind.html

Definitely lost

heap-allocated memory that was never freed to which the program no longer valgrind_test4.c
has a pointer. Valgrind knows that you once had the pointer, but have since
lost track of it. This memory is definitely orphaned.

1 #include <stdio.h> H
2 #include <stdlib.h> Runs flne
3 #include <string.h> zjzfﬁ:MWMdJe“mc
4 name: Alice
5 const int SIZE = 10;
6
7 typedef struct node {
8 char xname;
9 struct node *xnext;
10 } Node;
11
12 Node xhead = NULL;
13
14 int main() {
15
16 head = malloc(sizeof(struct node));
17 head->name = malloc(sizeof(char)*SIZE);
18 strcpy(head—>name,"Alice");
19 head—>next = NULL;
20 printf("name: %s\n",head->name);
21
22 free(head);
i return 0 N Double free

fixed

12

Definitely lost

heap-allocated memory that was never freed to which the program no longer valgrind_test4.c
has a pointer. Valgrind knows that you once had the pointer, but have since

lost track of it. This memory is definitely orphaned. Valgrind shows location of

1 #include <stdio.h> Runs fine malloc that was not freed

2 #include <stdlib.h> _

3 #include <string.h> z r;‘:’f:t"a'g""d—te““"

4 . name: Alice

5 const int SIZE = 10; S myvalgrind ./a.out

6 ==8354== Memcheck, a memory error detector

7 tvpedef struct n ==8354== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.

3 yp h Od? { ==8354== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info

char xname; ==8354== Command: ./a.out

9 struct node xnext; ==8354==
10 } Node; name: Alice
11 ==8354==

==8354== HEAP SUMMARY:
12 Node xhead = NULL ’ name not ==8354== in use at exit: 10 bytes in 1 blocks
13 ==8354== total heap usage: 3 allocs, 2 frees, 1,050 bytes allocated
14 int main() { f —=8354==
reed ==8354== 10 bytes in 1 blocks are definitely lost in | d1of1
15 == == ytes in 1 blocks are definitely lost in loss record 1 o
_ . . ==8354==at 0x4C31BOF: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
16 head = mallgC(sizeof(struct node)); ==8354== by 0x108709: main (valgrind_test4.c:17)
17 head->name®= malloc(sizeof(char)*SIZE); --8354-=
18 strcpy(head->name,"Alice"); ==8354== LEAK SUMMARY:
19 head—>next = NULL; ==8354==definitely lost: 10 bytes in 1 blocks
. ==8354== indirectly lost: 0 bytes in 0 blocks
1 . o 1 _ .

20 prlntf(name: %s\n ’ head >name) ’ ==8354== possibly lost: 0 bytes in 0 blocks
21 ==8354==still reachable: 0 bytes in 0 blocks
22 free(head); ==8354== suppressed: 0 bytes in 0 blocks
23 return 0; ==8354==
24} 0; Free h ead ==8354== For counts of detected and suppressed errors, rerun with: -v

==8354== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

13

Indirectly lost

heap-allocated memory that was never freed to which the only pointers to it valgrind_test5.c
also are lost. For example, if you orphan a linked list, the first node would be
definitely lost, the subsequent nodes would be indirectly lost.

1 #include <stdio.h>

2 #include <stdlib.h> Runs fine

3 #include <string.h> .

4 $ mygcc valgrind_test5.c
. $./a.out

5 const int SIZE = 10; femee Albice

6 name: Bob

7 typedef struct node {

8 char *xname;

9 struct node xnext;

10 } Node;

11 Allocate

12 Node *head = NULL; second node

14 int main() {

16 head = malloc(sizeof($§truct node));

17 head->name = malloc(gizeof(char)*SIZE);
18 strcpy(head->name,"Alice");

19 head—>next = NULL;
20 printf("name: %s\n"[fhead->name);

22 head->next = malloc(sizeof(Node));

23 head->next—>name = malloc(sizeof(char)*SIZE);
24 strcpy(head->next->name, " Bob");

25 head—>next—->next = NULL;

26 printf('"name: %s\n",head->next—>name);

28 free(head->name);
29 free(head);
30 return 0; L

Indirectly lost

heap-allocated memory that was never freed to which the only pointers to it

valgrind_test5.c

also are lost. For example, if you orphan a linked list, the first node would be
definitely lost, the subsequent nodes would be indirectly lost.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>

Runs fine

const int SIZE = 10;

typedef struct node {
char *xname;
struct node

O 00N Ul b

*xnext;

12 } Node; Allocate

}_3, Node xhead = NULL; second node

14 int main() {
15

16 head = malloc(sizeof($§truct node));

17 head->name = malloc(gizeof(char)*SIZE);
18 strcpy(head->name,"Alice");

19 head—>next = NULL;
20 printf("name: %s\n
21

22 head->next = malloc(sizeof(Node));

23 head->next—>name = malloc(sizeof(char)*SIZE);
24 strcpy(head->next->name, " Bob");

25 head—>next—->next = NULL;

26 printf('"name: %s\n",head->next—>name);

27

28 free(head—>name);

29 free(head);

30 return 0;

31 }

head->name) ;

$ mygcc valgrind_test5.c
$./a.out

name: Alice

name: Bob

$ myvalgrind ./a.out
==8938== Memcheck, a memory error detector

Second node definitely lost
Second name indirectly lost

==8938== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==8938== Using Valgrind-3.13.0 and LibVEX; rerun with —-h for copyright info
==8938== Command: ./a.out

==8938==

name: Alice

name: Bob

==8938==

==8938== HEAP SUMMARY:

==8938== in use at exit: 26 bytes in 2 blocks
==8938== total heap usage: 5 allocs, 3 frees, 1,076 bytes allocated
==8938==

==8938== 10 bytes in 1 blocks are indirectly lost in loss record 1 of 2

==8938== at 0x4C31BOF: malloc (in /usr/lib/valgrind/vgpreload_memcheck-—
amd64-1inux.so)

==8938== by 0x10877E: main (valgrind_test5.c:23)

==8938==

==8938== 26 (16 direct, 10 indirect) bytes in 1 blocks are definitely lost

in loss record 2 of 2

==8938== at 0x4C31BOF: malloc (in /usr/lib/valgrind/vgpreload_memcheck-—
amd64-1inux.so)

==8938== by 0x108760: main (valgrind_test5.c:22)

==8938==

definitely lost:
indirectly lost:

possibly lost:
still reachable:
suppressed:

16 bytes in 1 blocks
10 bytes in 1 blocks
0 bytes in @ blocks
0 bytes in @ blocks
0 bytes in @ blocks

==8938==
==8938==

==8938==
==8938== For counts of detected and suppressed errors, rerun with: -v
==8938== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: @ from @)

Still reachable

heap-allocated memory that was never freed to which the program still has a

pointer at exit (typically this means a global variable points to it).

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

Runs fine

const int SIZE = 10;

typedef struct node {
char *xname;
struct node
} Node;

OCoo~NOULE WN R

*xnext;

=
(S

Head is a
Node xhead = NULL; &« g|oba| variable

[T g
AWN PR

int main() {
head = malloc(sizeof(struct node));
head->name = malloc(sizeof(char)*SIZE);
strcpy(head->name,"Alice");
head—>next = NULL;
printf("name: %s\n",head->name);

NNR R R R R
PO WO NO WU

free(head->name) ;
return 0;

NN
w N
-~

S mygcc valgrind_test6.c

S ./a.out

name: Alice

S myvalgrind ./a.out

==9263== Memcheck, a memory error detector

==9263== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.

==9263== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info

==9263== Command: ./a.out

==9263==

name: Alice

==9263==

==9263== HEAP SUMMARY:

==9263== in use at exit: 16 bytes in 1 blocks

==9263== total heap usage: 3 allocs, 2 frees, 1,050 bytes allocated

==9263==

==9263== 16 bytes in 1 blocks are still reachable in loss record 1 of 1

==9263== at 0x4C31BOF: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==9263== by 0x1086EC: main (valgrind_test6.c:15)

==9263==

==9263== LEAKSIHAHIARTT

definitely lost: 0 bytes in 0 blocks

==9263== indirectly lost: O bytes in 0 blocks

==9263== possibly lost: 0 bytes in 0 blocks

==9263==still reachable: 16 bytes in 1 blocks

== suppressed: 0 bytes in 0 blocks

==9263==
==9263== For counts of detected and suppressed errors, rerun with: -v
==9263== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

valgrind_test6.c

16

1. Memory errors

2. Memory leaks

B 3. Activity

17

18

