
CS 50:
Software Design and Implementation

valgrind



2

Agenda

1. Memory errors

2. Memory leaks

3. Activity



3

Often programs will compile and run, but 
may have sneaky memory bugs

Memory error
• Invalid read/write of size X – The program was observed to read/write X bytes of 

memory that was invalid. Common causes include:
• accessing beyond the end of a heap block
• accessing memory that has been freed
• accessing into an unallocated region such as from use of a uninitialized pointer.

• Use of uninitialized value or Conditional jump or move depends on uninitialized 
value(s) – access memory not initialized or use uninitialized values in a conditional

• Source and destination overlap in memcpy() – attempt to copy data from one 
location to another and range intersects

• Invalid free() – attempt to free non-heap address or free same block more than once

Adapted from https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/guide_valgrind.html



4

Invalid read/write of size X
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 const int SIZE = 10;
6
7 typedef struct node {
8 char *name;
9 struct node *next;
10 } Node;
11
12 Node *head = NULL;
13
14 int main() {
15
16 head = malloc(sizeof(struct node));
17 head->name = malloc(sizeof(char)*SIZE);
18 strcpy(head->name,"Alice A. Anderson");
19 head->next = NULL;
20 printf("name: %s\n",head->name);
21
22 free(head->name);
23 free(head);
24 return 0;
25 }

Name is too long

$ mygcc valgrind_test.c
$ ./a.out
name: Alice A. Anderson

Runs just fine!
valgrind_test.c



5

Invalid read/write of size X
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 const int SIZE = 10;
6
7 typedef struct node {
8 char *name;
9 struct node *next;
10 } Node;
11
12 Node *head = NULL;
13
14 int main() {
15
16 head = malloc(sizeof(struct node));
17 head->name = malloc(sizeof(char)*SIZE);
18 strcpy(head->name,"Alice A. Anderson");
19 head->next = NULL;
20 printf("name: %s\n",head->name);
21
22 free(head->name);
23 free(head);
24 return 0;
25 }

Name is too long

$ mygcc valgrind_test.c
$ ./a.out
name: Alice A. Anderson
$ alias myvalgrind
alias myvalgrind='valgrind --leak-check=full --show-
leak-kinds=all'

Runs just fine!

myvalgrind is 
our alias

valgrind_test.c



$ mygcc valgrind_test.c
$ ./a.out
name: Alice A. Anderson
$ alias myvalgrind
alias myvalgrind='valgrind --leak-check=full --show-leak-kinds=all'
$ myvalgrind ./a.out
==7314== Memcheck, a memory error detector
==7314== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==7314== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info
==7314== Command: ./a.out
==7314==
==7314== Invalid write of size 8
==7314== at 0x10872E: main (test.c:18)
==7314== Address 0x522f098 is 8 bytes inside a block of size 10 alloc'd
==7314== at 0x4C31B0F: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-
linux.so)
==7314== by 0x108709: main (test.c:17)
==7314==
==7314== Invalid write of size 2
==7314== at 0x108732: main (test.c:18)
==7314== Address 0x522f0a0 is 6 bytes after a block of size 10 alloc'd
==7314== at 0x4C31B0F: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-
linux.so)
==7314== by 0x108709: main (test.c:17)
==7314==
==7314== Invalid read of size 1
==7314== at 0x4C34D04: strlen (in /usr/lib/valgrind/vgpreload_memcheck-amd64-
linux.so)
==7314== by 0x4E9B4A2: vfprintf (vfprintf.c:1643)
==7314== by 0x4EA2EE5: printf (printf.c:33)
==7314== by 0x108764: main (test.c:20)
==7314== Address 0x522f09a is 0 bytes after a block of size 10 alloc'd
==7314== at 0x4C31B0F: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-
linux.so)
==7314== by 0x108709: main (test.c:17)
<snip>

6

Invalid read/write of size X
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 const int SIZE = 10;
6
7 typedef struct node {
8 char *name;
9 struct node *next;
10 } Node;
11
12 Node *head = NULL;
13
14 int main() {
15
16 head = malloc(sizeof(struct node));
17 head->name = malloc(sizeof(char)*SIZE);
18 strcpy(head->name,"Alice A. Anderson");
19 head->next = NULL;
20 printf("name: %s\n",head->name);
21
22 free(head->name);
23 free(head);
24 return 0;
25 }

Name is too long

Valgrind shows strcpy writes beyond end of 
string, and also reading it during printf

valgrind_test.c



7

Use of uninitialised value or Conditional jump or 
move depends on uninitialised value(s)
The program read the value of a memory location that was not previously 
written to, i.e. uses random junk. The second more specifically indicates the 
read occurred in the test expression in an if/for/while.
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 const int SIZE = 10;
6
7 typedef struct node {
8 char *name;
9 struct node *next;
10 } Node;
11
12 Node *head = NULL;
13
14 int main() {
15
16 head = malloc(sizeof(struct node));
17 head->name = malloc(sizeof(char)*SIZE);
18 strcat(head->name,"Alice");
19 head->next = NULL;
20 printf("name: %s\n",head->name);
21
22 free(head->name);
23 free(head);
24 return 0;
25 }

$ mygcc valgrind_test2.c
$ ./a.out
name: Alice

strcat concatenates 
strings

Runs just fine!

valgrind_test2.c

Alice 
now 
fits



8

Use of uninitialised value or Conditional jump or 
move depends on uninitialised value(s)

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 const int SIZE = 10;
6
7 typedef struct node {
8 char *name;
9 struct node *next;
10 } Node;
11
12 Node *head = NULL;
13
14 int main() {
15
16 head = malloc(sizeof(struct node));
17 head->name = malloc(sizeof(char)*SIZE);
18 strcat(head->name,"Alice");
19 head->next = NULL;
20 printf("name: %s\n",head->name);
21
22 free(head->name);
23 free(head);
24 return 0;
25 }

$ mygcc valgrind_test2.c
$ ./a.out
name: Alice
$ myvalgrind ./a.out
==7720== Memcheck, a memory error detector
==7720== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==7720== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info
==7720== Command: ./a.out
==7720==
==7720== Conditional jump or move depends on uninitialised value(s)
==7720== at 0x10872C: main (valgrind_test2.c:18)
==7720==
name: Alice
==7720==
==7720== HEAP SUMMARY:
==7720== in use at exit: 0 bytes in 0 blocks
==7720== total heap usage: 3 allocs, 3 frees, 1,050 bytes allocated
==7720==
==7720== All heap blocks were freed -- no leaks are possible
==7720==
==7720== For counts of detected and suppressed errors, rerun with: -v
==7720== Use --track-origins=yes to see where uninitialised values come from
==7720== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

strcat concatenates 
strings

Runs just fine!
Valgrind shows strcat concatenates 
uninitialized memory with “Alice”

The program read the value of a memory location that was not previously 
written to, i.e. uses random junk. The second more specifically indicates the 
read occurred in the test expression in an if/for/while.

valgrind_test2.c

Alice 
now 
fits



1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 const int SIZE = 10;
6
7 typedef struct node {
8 char *name;
9 struct node *next;
10 } Node;
11
12 Node *head = NULL;
13
14 int main() {
15
16 head = malloc(sizeof(struct node));
17 head->name = malloc(sizeof(char)*SIZE);
18 strcpy(head->name,"Alice");
19 head->next = NULL;
20 printf("name: %s\n",head->name);
21
22 free(head->name);
23 free(head);
24 free(head);
25 return 0;
26 }

9

Invalid free()

$ mygcc valgrind_test3.c
$ ./a.out
name: Alice
free(): double free detected in tcache 2
Aborted (core dumped)
$ myvalgrind ./a.out
$ myvalgrind ./a.out
==8066== Memcheck, a memory error detector
==8066== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==8066== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info
==8066== Command: ./a.out
==8066==
name: Alice
==8066== Invalid free() / delete / delete[] / realloc()
==8066== at 0x4C32D3B: free (in /usr/lib/valgrind/vgpreload_memcheck-
amd64-linux.so)
==8066== by 0x10877F: main (valgrind_test3.c:24)
==8066== Address 0x522f040 is 0 bytes inside a block of size 16 free'd
==8066== at 0x4C32D3B: free (in /usr/lib/valgrind/vgpreload_memcheck-
amd64-linux.so)
==8066== by 0x108770: main (valgrind_test3.c:23)
==8066== Block was alloc'd at
==8066== at 0x4C31B0F: malloc (in /usr/lib/valgrind/vgpreload_memcheck-
amd64-linux.so)
==8066== by 0x1086EC: main (valgrind_test3.c:16)

strcpy copies strings 
(as before)

Runs but core 
dump at 
unknown 
location

Valgrind shows location of 
double free

The program attempted to free a non-heap address or free the same block 
more than once.

valgrind_test3.c

head
freed 
twice



10

Agenda

1. Memory errors

2. Memory leaks

3. Activity



11

Often programs will compile and run, but 
may have sneaky memory bugs

Memory leak
• Definitely lost – heap-allocated memory never freed, but lost pointer to it

• Indirectly lost - heap-allocated memory never freed to which only pointers to it are lost 
(e.g., free head, but loose rest of list)

• Possibly lost - heap-allocated memory never freed, but Valgrind is not sure if there is a 
pointer to it

• Still reachable - heap-allocated memory never freed to which the program still has a 
pointer at exit (typically this means a global variable points to it).

Adapted from https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/guide_valgrind.html



1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 const int SIZE = 10;
6
7 typedef struct node {
8 char *name;
9 struct node *next;
10 } Node;
11
12 Node *head = NULL;
13
14 int main() {
15
16 head = malloc(sizeof(struct node));
17 head->name = malloc(sizeof(char)*SIZE);
18 strcpy(head->name,"Alice");
19 head->next = NULL;
20 printf("name: %s\n",head->name);
21
22 free(head);
23 return 0;
24 }

12

Definitely lost

$ mygcc valgrind_test4.c
$ ./a.out
name: Alice

Runs fine

heap-allocated memory that was never freed to which the program no longer 
has a pointer. Valgrind knows that you once had the pointer, but have since 
lost track of it. This memory is definitely orphaned.

valgrind_test4.c

Double free 
fixed



1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 const int SIZE = 10;
6
7 typedef struct node {
8 char *name;
9 struct node *next;
10 } Node;
11
12 Node *head = NULL;
13
14 int main() {
15
16 head = malloc(sizeof(struct node));
17 head->name = malloc(sizeof(char)*SIZE);
18 strcpy(head->name,"Alice");
19 head->next = NULL;
20 printf("name: %s\n",head->name);
21
22 free(head);
23 return 0;
24 }

13

Definitely lost

$ mygcc valgrind_test4.c
$ ./a.out
name: Alice
$ myvalgrind ./a.out
==8354== Memcheck, a memory error detector
==8354== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==8354== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info
==8354== Command: ./a.out
==8354==
name: Alice
==8354==
==8354== HEAP SUMMARY:
==8354== in use at exit: 10 bytes in 1 blocks
==8354== total heap usage: 3 allocs, 2 frees, 1,050 bytes allocated
==8354==
==8354== 10 bytes in 1 blocks are definitely lost in loss record 1 of 1
==8354== at 0x4C31B0F: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==8354== by 0x108709: main (valgrind_test4.c:17)
==8354==
==8354== LEAK SUMMARY:
==8354== definitely lost: 10 bytes in 1 blocks
==8354== indirectly lost: 0 bytes in 0 blocks
==8354== possibly lost: 0 bytes in 0 blocks
==8354== still reachable: 0 bytes in 0 blocks
==8354== suppressed: 0 bytes in 0 blocks
==8354==
==8354== For counts of detected and suppressed errors, rerun with: -v
==8354== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

Runs fine
Valgrind shows location of 
malloc that was not freed

heap-allocated memory that was never freed to which the program no longer 
has a pointer. Valgrind knows that you once had the pointer, but have since 
lost track of it. This memory is definitely orphaned.

valgrind_test4.c

Free head

name not 
freed



1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 const int SIZE = 10;
6
7 typedef struct node {
8 char *name;
9 struct node *next;
10 } Node;
11
12 Node *head = NULL;
13
14 int main() {
15
16 head = malloc(sizeof(struct node));
17 head->name = malloc(sizeof(char)*SIZE);
18 strcpy(head->name,"Alice");
19 head->next = NULL;
20 printf("name: %s\n",head->name);
21
22 head->next = malloc(sizeof(Node));
23 head->next->name = malloc(sizeof(char)*SIZE);
24 strcpy(head->next->name,"Bob");
25 head->next->next = NULL;
26 printf("name: %s\n",head->next->name);
27
28 free(head->name);
29 free(head);
30 return 0;
31 }

14

Indirectly lost
heap-allocated memory that was never freed to which the only pointers to it 
also are lost. For example, if you orphan a linked list, the first node would be 
definitely lost, the subsequent nodes would be indirectly lost.

valgrind_test5.c

Allocate 
second node

$ mygcc valgrind_test5.c
$ ./a.out
name: Alice
name: Bob

Runs fine



1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 const int SIZE = 10;
6
7 typedef struct node {
8 char *name;
9 struct node *next;
10 } Node;
11
12 Node *head = NULL;
13
14 int main() {
15
16 head = malloc(sizeof(struct node));
17 head->name = malloc(sizeof(char)*SIZE);
18 strcpy(head->name,"Alice");
19 head->next = NULL;
20 printf("name: %s\n",head->name);
21
22 head->next = malloc(sizeof(Node));
23 head->next->name = malloc(sizeof(char)*SIZE);
24 strcpy(head->next->name,"Bob");
25 head->next->next = NULL;
26 printf("name: %s\n",head->next->name);
27
28 free(head->name);
29 free(head);
30 return 0;
31 }

15

Indirectly lost
heap-allocated memory that was never freed to which the only pointers to it 
also are lost. For example, if you orphan a linked list, the first node would be 
definitely lost, the subsequent nodes would be indirectly lost.

valgrind_test5.c

Allocate 
second node

$ mygcc valgrind_test5.c
$ ./a.out
name: Alice
name: Bob
$ myvalgrind ./a.out
==8938== Memcheck, a memory error detector
==8938== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==8938== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info
==8938== Command: ./a.out
==8938==
name: Alice
name: Bob
==8938==
==8938== HEAP SUMMARY:
==8938== in use at exit: 26 bytes in 2 blocks
==8938== total heap usage: 5 allocs, 3 frees, 1,076 bytes allocated
==8938==
==8938== 10 bytes in 1 blocks are indirectly lost in loss record 1 of 2
==8938== at 0x4C31B0F: malloc (in /usr/lib/valgrind/vgpreload_memcheck-
amd64-linux.so)
==8938== by 0x10877E: main (valgrind_test5.c:23)
==8938==
==8938== 26 (16 direct, 10 indirect) bytes in 1 blocks are definitely lost
in loss record 2 of 2
==8938== at 0x4C31B0F: malloc (in /usr/lib/valgrind/vgpreload_memcheck-
amd64-linux.so)
==8938== by 0x108760: main (valgrind_test5.c:22)
==8938==
==8938== LEAK SUMMARY:
==8938== definitely lost: 16 bytes in 1 blocks
==8938== indirectly lost: 10 bytes in 1 blocks
==8938== possibly lost: 0 bytes in 0 blocks
==8938== still reachable: 0 bytes in 0 blocks
==8938== suppressed: 0 bytes in 0 blocks
==8938==
==8938== For counts of detected and suppressed errors, rerun with: -v
==8938== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

Runs fine Second node definitely lost
Second name indirectly lost



1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 const int SIZE = 10;
6
7 typedef struct node {
8 char *name;
9 struct node *next;
10 } Node;
11
12 Node *head = NULL;
13
14 int main() {
15 head = malloc(sizeof(struct node));
16 head->name = malloc(sizeof(char)*SIZE);
17 strcpy(head->name,"Alice");
18 head->next = NULL;
19 printf("name: %s\n",head->name);
20
21 free(head->name);
22 return 0;
23 }

16

Still reachable
heap-allocated memory that was never freed to which the program still has a 
pointer at exit (typically this means a global variable points to it).

valgrind_test6.c

Head is a 
global variable

$ mygcc valgrind_test6.c
$ ./a.out
name: Alice
$ myvalgrind ./a.out
==9263== Memcheck, a memory error detector
==9263== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==9263== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info
==9263== Command: ./a.out
==9263==
name: Alice
==9263==
==9263== HEAP SUMMARY:
==9263== in use at exit: 16 bytes in 1 blocks
==9263== total heap usage: 3 allocs, 2 frees, 1,050 bytes allocated
==9263==
==9263== 16 bytes in 1 blocks are still reachable in loss record 1 of 1
==9263== at 0x4C31B0F: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==9263== by 0x1086EC: main (valgrind_test6.c:15)
==9263==
==9263== LEAK SUMMARY:
==9263== definitely lost: 0 bytes in 0 blocks
==9263== indirectly lost: 0 bytes in 0 blocks
==9263== possibly lost: 0 bytes in 0 blocks
==9263== still reachable: 16 bytes in 1 blocks
==9263== suppressed: 0 bytes in 0 blocks
==9263==
==9263== For counts of detected and suppressed errors, rerun with: -v
==9263== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

head is not 
freed

Runs fine



17

Agenda

1. Memory errors

2. Memory leaks

3. Activity



18


