
CS 50:
Software Design and Implementation

Tiny Search Engine

2

Agenda

1. Review web concepts

2. Web search overview

3. Crawler demo

4. Activity

CS10 Review: To transfer data between
computers we use pre-defined protocols
• Network protocols define how data will be exchanged so everyone

knows the “rules”
• There are dozens of protocols used for different purposes:
• TCP/IP, FTP
• Wi-Fi, Bluetooth

• HyperText Transfer Protocol (HTTP) is the protocol commonly used
by the World Wide Web to get HyperText Markup Language
(HTML) documents that describe how to render a web page

• We use a Uniform Resource Locator (URL) to specify what page we
want to get:
http://www.cs.dartmouth.edu/~tjp/cs10/index.html

Network protocols

Protocol:
how we will
talk (http)

Computer
that has data

Directory where
data located

File (assume index.html or
index.php if not provided) 3

4

Client makes a request to a Server for a
web page; Server responds to request

Web server

Process

Your browser

Request:
http://www.cs.dartmouth.edu/~tjp/cs10/index.html

Response:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type" content="text/html;charset=utf-8" />
<title>CS 10 | Problem solving | Fall 2018</title>
</head>

<body>
<div id="page">
<div id="header">
<div id="title">CS 10</div>
<div id="subtitle">Problem Solving via Object Oriented Programming</div>

</div> …

Browser interprets
HTML text and
renders page

A web page is simply a text document with
a description of what to display on the
screen (and maybe some Javascript for
user interaction) in a format called HTML

cs.dartmouth.edu

Big idea:
• Client makes

request to server
for web page

• Server responds
to client’s request

5

Web pages are just a text document
written in HTML, which uses tags

1 <!DOCTYPE html>
2 <html>
3 <body>
4 <h1>My First Heading</h1>
5
6 My first paragraph
7
8 Link to page2
9 </body>
10 </html>

Tag declares this is an
HTML file HTML and nested body section

<h1> mean Heading size 1 (big)
</h1> means end tag <h1>

We care about <a> tags (anchor tags)
• These are links to other pages
• href give URL to another page
• We will use a “test Internet” on plank

You will not write
any HTML for CS50

Our search engine
will look for words
outside of tags for
queries

Tags are mainly for
formatting

We will provide you with a C function
(getNextURL) to parse the HTML

Feel free to write your own if you prefer!

6

Agenda

1. Review web concepts

2. Web search overview

3. Crawler demo

4. Activity

7

How a search engine works

https://www.youtube.com/watch?v=BNHR6IQJGZs

8

Our search engine will proceed in three
stages: crawler->indexer->querier

Crawler Indexer Querier

• Start from a specified
“seed” URL

• Fetch page pointed to by
seed URL

• Make a log of this page,
saving URL, page depth
(how far from seed, where
seed has depth=0), and
HTML of the page

• Scan page for links to
other pages

• Follow links and repeat
• Do not repeat page

9

Our search engine will proceed in three
stages: crawler->indexer->querier

Crawler Indexer Querier

• Start from a specified
“seed” URL

• Fetch page pointed to by
seed URL

• Make a log of this page,
saving URL, page depth
(how far from seed, where
seed has depth=0), and
HTML of the page

• Scan page for links to
other pages

• Follow links and repeat
• Do not repeat page

• Start with results of
crawler’s logs

• Process logs to create
index where given a word,
can find all pages that
contain that word (we will
use Lab 3 hash tables and
counters)

• Store index

10

Our search engine will proceed in three
stages: crawler->indexer->querier

Crawler Indexer Querier

• Start from a specified
“seed” URL

• Fetch page pointed to by
seed URL

• Make a log of this page,
saving URL, page depth
(how far from seed, where
seed has depth=0), and
HTML of the page

• Scan page for links to
other pages

• Follow links and repeat
• Do not repeat page

• Start with results of
crawler’s logs

• Process logs to create
index where given a word,
can find all pages that
contain that word (we will
use Lab 3 hash tables and
counters)

• Store index

• Start with indexer’s stored
index

• Get user’s query which
may contain AND as well
as OR queries

• Search index for pages
with highest matching
score

• Return results in sorted
order

11

Google’s implementation is more
complicated than ours

Arvind Arasu, Junghoo Cho, Hector Garcia-Molina, Andreas Paepcke, and Sriram Raghavan. Searching the Web. ACM Transactions on Internet Technology 1, 1 (Aug. 2001), 2–43.

Crawlers follow links
from several starting
URLs (like us, but we use
small “internal” Internet,
we have one crawler)

Pages are stored in page
repository (like us, but theirs
is the whole reachable web)

Indexer records
words on pages Google’s page

ranking mechanism
is their “secret
sauce” (ours is
simpler)

12

Agenda

1. Review web concepts

2. Web search overview

3. Crawler demo

4. Activity

13

We have established a “test Internet” to
use for the TSE project
http://cs50tse.cs.dartmouth.edu/tse/(letters|toscrape|wikipedia)
•letters (small)
•toscrape (medium)
•wikipedia (large)

letters

toscrape

wikipedia

Your code should check that all URLs start with
http://cs50tse.cs.dartmouth.edu/tse
(in case something goes wrong, we only crash plank!)
Use isInternal in webpage.c

http://cs50tse.cs.dartmouth.edu/tse/letters
https://cs50tse.cs.dartmouth.edu/tse/toscrape/
https://cs50tse.cs.dartmouth.edu/tse/wikipedia/

14

Crawler starts at a seed URL and indexes
reachable pages to a given depth

$./crawler http://cs50tse.cs.dartmouth.edu/tse/letters/index.html ../data 2
0 Fetched: http://cs50tse.cs.dartmouth.edu/tse/letters/index.html
0 Scanning: http://cs50tse.cs.dartmouth.edu/tse/letters/index.html
0 Found: http://cs50tse.cs.dartmouth.edu/tse/letters/A.html
0 Added: http://cs50tse.cs.dartmouth.edu/tse/letters/A.html
1 Fetched: http://cs50tse.cs.dartmouth.edu/tse/letters/A.html
1 Scanning: http://cs50tse.cs.dartmouth.edu/tse/letters/A.html
1 Found: https://en.wikipedia.org/wiki/Algorithm
1 IgnExtrn: https://en.wikipedia.org/wiki/Algorithm
1 Found: http://cs50tse.cs.dartmouth.edu/tse/letters/B.html
1 Added: http://cs50tse.cs.dartmouth.edu/tse/letters/B.html
1 Found: http://cs50tse.cs.dartmouth.edu/tse/letters/index.html
1 IgnDupl: http://cs50tse.cs.dartmouth.edu/tse/letters/index.html
2 Fetched: http://cs50tse.cs.dartmouth.edu/tse/letters/B.html

Your executable Seed URL Directory to store results

Depth to crawl

Started at
index.html
Then found
A.html

Ignored
Wikpedia page
(not in our test
Internet!)

Found B.html

Ignored index.html
because we’ve
already crawled it

15

The crawler stores data in a directory, each
reachable page has a file in that directory
$ cd ../data
data$ ls
1 2 3
data$ cat 1
http://cs50tse.cs.dartmouth.edu/tse/letters/index.html
0
<html>
<title>home</title>
This is the home page for a CS50 TSE playground.
A
</html>

data$ cat 2
http://cs50tse.cs.dartmouth.edu/tse/letters/A.html
1
<html>
<title>A</title>
A is for Algorithm.
B
home
</html>

List files in data directory
Here three pages were indexed, named 1…3 in order of discovery

For each web page
discovered:
Line 1: URL
Line 2: depth
Line 3: HTML for page

Do not make a file for the
same URL multiple times!

16

Agenda

1. Review web concepts

2. Web search overview

3. Crawler demo

4. Activity

In your group, start thinking about a design for the Crawler portion of the TSE.
Consider the following informal description of the Crawler:
• It takes three parameters: the URL for a web page to use as a starting point

(seed) for the crawl, the maximum depth it should crawl from that seed, and
the name of a directory where it can cache copies of the web pages it crawls

• It should start from a given URL called the seed. The web page at that URL is
said to be at depth 0.

• It should explore that URL; that is, it should download the web page at that
URL, and scan that page’s HTML for embedded links to URLs. (Assume you are
given a function that can pick URLs out of HTML). When exploring a page at
depth d, its embedded URLs refer to pages that are said to be at depth d+1

• Ignore URLs that don’t point at HTML
• Ignore URLs at depth greater than maxDepth
• Explore each non-ignored URL by downloading its HTML and scanning that HTML

for URLs, as above
• For each page it explores, it should create one file that contains the URL of

that page, its depth in the crawl, and the HTML for that page.
Discuss how you could structure a crawler to accomplish the above goals –
probably two nested loops – and leverage your Lab 3 data structures. 17

Activity

18

Two big questions for data structures to
use

What should you use to:
1. Keep track of web sites to explore?
2. Make sure you don’t visit a site more than one time?

19

