CS 50:

Software Design and Implementation

Software specifications

Software development overview

Developer

Customer

Today’s focus
Independent

Common understanding of terms, customer’s needs
Procurement Regulatory, standards bodies, industry group needs

* The “shalls”

. . * Requirements spec: functionality, cost, performance goals
SpeC|f|cat|on * Design spec: inputs/outputs, functional decomposition, pseudo code
. Implementation spec: define APIs, interfaces, test plan

* Turn specifications into working code
. * Correctness
Implementation « Clarity/Simplicity

* Generality

* Performance

0S, HW, Environment

* Unit testing

. * Integration testing
TeStmg * Regression testing

* Fuzztesting
* Acceptance testing

* Demonstrate progress
Feed back . Incorporate customer feedback
* Avoid scope creep! 2

Dependent

» 1. Procurement

2. Specifications

3. Activity

Procurement overview

Make vs
buy

The first decision when a new software

system is needed is to MAKE or BUY

Which should you do?
MAKE No hard and fast rules! BUY <

Pros | normally prefer to buy unless ppos
* Highly customizable * Company has unique need .« Fast implementation
. Solves company’s * This software gives us a time

unique problem competitive advantage « May have lower cost
* Own code base (what if New software system * Vendor maintains

external developer @ software

goes out of business?)
* Fits with other tools

Cons Code escrow: Cons

* May b? more * Vendor puts code in repo where Code may belong to
eXpensive customer can get it if vendor goes vendor (unless agreed

* May need to hire out of business otherwise)
employees with the Good idea? * Get updates at
right skill set vendor’s pace

* Not practical for non-trivial systems .
* Should you do it? * Operational support

5
+ YES! (be realistic about what you get) M3y be unclear

Adapted from https://codeit.us/blog/build-vs-buy-software

Procurement overview
Internal
staff
Make
External
Make vs company
buy

Customlze

If decision is to MAKE, then the next

decision is who should do the work

MAKE

External development company

e RFP: Customers write detailed specs
of what needs to be completed
(government projects!)

* RFIl: Specs are more open-ended, or customer may
not yet be sure of specs, looking for approaches

* Companies write proposals on why they should do
the work, competing to win contract

* Tout extensive expertise in the industry or area

of project
* Normally estimate time and costs
Customer decides to MAKE * Customer ultimately selects a company to do the
Step 1: choose developer work after a “bake off”
* In-house staff
* External developer Internal staff

* |dentify staff who will work on project
* Opportunity cost for other projects (lab time

discussion)
* Identify any hardware or software that must be
RFP: Request For Proposal 7
RFIl: Request For Information purChased

If the decision is to BUY, then the next

(V) §

CONFIGURE ?
®° Large systems (think ERP or $ Vendor creates

"out-or-eox" CRM) can often be configured TIME AND COST

to a large degree

* Even so, there are limits to:
* What the software can do

questlon IS to CONFIGURE or CUSTOMIZE

CUSTOMIZE

extensions/modifications can be
made to existing software to fit
business needs

* Might be able to get license for

e What the vendor is internal developers to

willing to do

Pros
* Cheaper and faster

Cons

e Often better off changing
business to fit software than
changing software to fit

business

ERP = Enterprise Resource Planning
CRM = Customer Relationship Management

extend/modify system
Which should you do?
| prefer configuration Ppros
when appropriate for ¢ Get software that fits business
business needs
Cons
* Vendor support multiple versions
* Vendor may not build exactly
what customer wants
e Customizations need to update
when software updates

Best of breed components vs integrated

Best of breed Which should you do?
* I've done both

* My best advice: if it
doesn’t give you a
competitive edge, lean

toward integrated solution
Shipping (slightly fewer operational
Pros headaches)
e Better targeted solutions — can choose products .

with rich functionality
e Easier for vendors to be the best in their area if they
do one thing (hard to be the best at everything!) .
e Access to the latest technology
e Modular application maintenance may reduce
company disruptions

Cons .
e Likely need to integrate components yourself
* Brittle — if components change, must re-integrate

Adapted from https://www.mapcom.com/blog/best-of-breed-vs-monolithic-systems-finding-the-best-software-solutions-philosophy/

* | don’t have a good answer

Integrated solution

Pros

One vendor — “Jack of all trades” system
with everything under one umbrella

Components designed to work together
Unified support — “one throat to choke”

Cons

Probably not the best at anything if trying to
do everything

Tied to a single ecosystem — committing to
one system and their technology roadmap

for the entire company .

1. Procurement

» 2. Specifications

3. Activity

10

Three specifications are commonly used to

describe a software project

What needs to be done
Requirements

. What modules are needed
Design and how do they fit together

_ Specifics of how modules will
Implementation be implemented

=3
g

11

Requirements specification attempts to

capture what the customer wants built
Requirements spec

e Goal: capture what the customer wants built Design
e Attempts to provide common understanding between customer and developer
* Defines terms, assumptions, and limitations
* Shall means will
e Often addresses:
* Functionality - what should the system do?
* Performance - goals for speed, size, energy efficiency, etc.
* Compliance - with federal/state law or institutional policy
* Compatibility - with standards or with existing systems
* Security - against a specific threat model under certain trust assumptions
e Cost —what should the system cost to build?
* Timeline - when will various part of the system be completed? what are the
deadlines?
» Hardware/software - what hardware or software must be purchased or provisioned?
* Personnel - who will work on this project (or at least what skills are required e.g.,
C programmer, database admin)?

Implementation

Technique: have the
customer say back to you
what needs to be done

12

Crawler requirements spec gives big

picture, “shall do”, and definitions

Requirements Specification
In a requirements spec, shall do means must do. /

The TSE crawler is a standalone program that crawls the web and retrieves webpages starting from a “seed” URL. It parses the seed webpage, extracts
any embedded URLs, then retrieves each of those pages, recursively, but limiting its exploration to a given “depth”.

Big picture description

The crawler shall:

o . Define what the
1. execute from a command line with usage syntax ./crawler seedURL pageDirectory maxDepth
o where seedURL is an ‘internal’ directory, to be used as the initial URL, System Sha” do
o where pageDirectory is the (existing) directory in which to write downloaded webpages, and -
o where maxDepth is an integer in range [0..10] indicating the maximum crawl depth.
2. mark the pageDirectory asa ‘directory produced by the Crawler’ by creating a file named .crawler in that directory.
3. crawl all “internal” pages reachable from seedURL , following links to a maximum depth of maxDepth ; where maxDepth=0 means that
crawler only explores the page at seedURL , and maxDepth=1 means that crawler only explores the page at seedURL and those pages
to which seedURL links, and so forth inductively. It shall not crawl “external” pages.
4. print nothing to stdout, other than logging its progress; see an example format in the crawler Implementation Spec. Write each explored page
to the pageDirectory with a unique document ID, wherein
the document id starts at 1 and increments by 1 for each new page,
and the filename is of form pageDirectory/id ,

You will write your own

o 0 0o o

and the second line of the file is the depth,
o and the rest of the file is the page content (the HTML, unchanged).
5. exit zero if successful; exit with an error message to stderr and non-zero exit status if it encounters an unrecoverable error, including
out of memory
invalid number of command-line arguments
seedURL is invalid or not internal
maxDepth is invalid or out of range

unable to create a file of form pageDirectory/.crawler / a nd Iim itations

unable to create or write to a file of form pageDirectory/id

=]

© 0 0 o0 o

Definition: A normalized URL is the result of passing a URL through normalizeURL() ; see the documentation of that function in
tse/libcs50/webpage.h . An Internal URL is a URL that, when normalized, begins with http://cs50tse.cs.dartmouth.edu/tse/ .

One example: Http://CS50TSE.CS.Dartmouth.edu//index.html becomes http://cs50tse.cs.dartmouth.edu/index.html .
Assumption: The pageDirectory does not already contain any files whose name is an integer (i.e., 1, 2 ,..).

Limitation: The Crawler shall pause at least one second between page fetches, and shall ignore non-internal and non-normalizable URLs. (The purpose
is to avoid overloading our web server and to avoid causing trouble on any web servers other than the CS50 test server.)

Design

Implementation

and the first line of the file is the URL, requirements spec in futu re Iabs

Define terms, assumptions,

13

The design specification describes

subsystems in a hardware agnostic way

Design spec
* Goal: describe needed modules of solution
* Hardware agnostic
* Gives data flow through modules
e Often provides:
e User interface
* Inputs and outputs
* Functional decomposition into modules
* Pseudo code for logic/flow
* Major data structures
* Error handling and recovery
* Testing plan

Requirements

Implementation

14

Crawler desigh spec

Design Specification Requirements

In this document we reference the Requirements Specification and focus on the implementation-independent design decisions. The knowledge unit
noted that an design spec may include many topics; not all are relevant to the TSE or the Crawler. Here we focus on the core subset:

User interface User inte rface

Inputs and outputs

Functional decomposition into modules I d I-
Pseudo code (plain English-like langltjage) for logic/algorithmic flow ® H e re 0 n y Co m m a n I n e

Major data structures

Testing plan ° Real project may include Implementation
User interface & screen mockups

As described in the Requirements Spec, the crawler's only interface with the user is on the command-line; it must always have three arguments.

$ crawler seedURL pageDirectory maxDepth

For example, to crawl one of the CS50 test sites, store the pages found in a subdirectory data/letters in the current directory, and to search only

depths 0, 1, and 2, use this command line: I n p uts a n d

$ mkdir ../data/letters
$./crawler http://cs50tse.cs.dartmouth.edu/tse/letters/index.html ../data/letters 2 outputs

Inputs and outputs <«

Input: there are no file inputs; there are command-line parameters described above.

Output: Per the Requirements spec, the crawler will save each explored webpage to a file, one webpage per file, using a unique documentID asthe
file name. For example, the top file of the website would have documentID 1, the next webpage access from a link on that top page would be
documentID 2, and so on. Within each of these files, crawler writes:

= the full page URL on the first line,
* the depth of the page (where the seedURL is considered to be depth 0) on the second line,
* the page contents (i.e., the HTML code), beginning on the third line.

Functional decomposition into modules
We anticipate the following modules or functions: - M od u I e S n ee d ed

1. main, which parses arguments and initializes other modules
2. crawler, which loops over pages to explore, until the list is exhausted E

3. pagefetcher, which fetches a page from a URL

4. pagescanner, which extracts URLs from a page and processes each one

5. pagesaver, which outputs a page to the the appropriate file

And some helper modules that provide data structures:

1. bag of pages we have yet to explore
2. hashtable of URLs we've seen so far

15

Crawler design spec (continued)

Pseudo code for logic/algorithmic flow Requirements

The crawler will run as follows:

parse the command line, validate parameters, initialize other modules

add seedURL to the bag of webpages to crawl, marked with depth=0 H' h I I d

add seedURL to the hashtable of URLs seen so far -

while there are more webpages in the bag: Ig eve pseu o
extract a webpage (URL,depth) item from the bag

pause for one second COde fOf StitChing Implementation

use pagefetcher to retrieve a webpage for that URL
use pagesaver to write the webpage to the pageDirectory with a unique document ID modules together
if the webpage depth is < maxDepth, explore the webpage to find the links it contains:
use pagescanner to parse the webpage to extract all its embedded URLs
for each extracted URL:
normalize the URL (per requirements spec)
if that URL is internal (per requirements spec): Genera"y not
try to insert that URL into the *hashtable* of URLs seen;
if it was already in the table, do nothing; ° o po
if it vas added to the table: algorithm specific
create a new webpage for that URL, marked with depth+l
add that new webpage to the bag of webpages to be crawled

Notice that our pseudocode says nothing about the order in which it crawls webpages. Recall that our bag abstract data structure explicitly denies any
promise about the order of items removed from a bag. That's ok. The result may or may not be a Breadth-First Search, but for the crawler we don't
care about the order as long as we explore everything within the maxDepth neighborhood.

The crawler completes and exits when it has nothing left in its bag - no more pages to be crawled. The maxDepth parameter indirectly determines the
number of pages that the crawler will retrieve.

Major data structurers

Major data structures For crawler we will use Lab 3

Helper modules provide all the data structures we need:

* bag of webpage (URL, depth) structures
* hashtable of URLs
* webpage contains all the data read for a given webpage, plus the URL and the depth at which it was fetched

Testing plan

Test plan
We've established a 'playground’ with three different sites for CS50 crawlers to explore. These sites are located at

http://cs50tse.cs.dartmouth.edu/tse/ (letters | toscrape | wikipedia): ° H ow wi I I yo u kn ow if t h e

. Letters(small).
S ey code works are expected?

Each site has several HTML files hosted on Dartmouth servers. We use these servers in case your code runs amok, it only affects those servers not the 16
wider Internet!

A sampling of tests that should be run:

The implementation specification describes

how modules will be implemented

Implementation spec

Requirements

e Goal: describe modules in language, operating system, and hardware Design

dependent manner

i Impl tati
e Often includes:

Detailed pseudo code for each of the objects, components, and
functions

Definition of detailed APIs, interfaces, function prototypes and
their parameters

Data structures (e.g., struct names and members),

Security and privacy properties

Error handling and recovery

Resource management

Persistent storage (files, database, etc).

Detailed testing plan

17

Crawler implement spec

Implementation Specification

Requirements
L S e e L e e R L B Dl @ Spac At A0 Aot o0 e INMLITON e Scuwe. The
B alge N BARI T A " w Ca Dy N0 ade WAy SR POt AR e (et e 1 THE W e Comien. e vt f00u 00 10 Ce
e

o Dun areciaw

o Comrd Nowe pasdo Code K0 vwald New, And for sach of B Moo DeSI n
T e T e e g
o E0or hand g AnS recevwy

. Data structures
Data structures (here from Lab 3) Implementation

0 LA Tl B3 TG0 B DO OF POges a0 M0ed 00 Be Criewind, A0 3 RAIEAS o SRLE TAAL wh PO B0 Auring O Cr. KD 1T ety
Tre cO0 of 1% PAP AN » WD K eaulie L SMATEe B 200ACH, & ot 00 HOTE. ur MRS Lol Mt D00 SOt L 0w I G0 M
BRI O88 I C5 90 18 e 3 Ko Kol 10000 Dt & g KO8 OF 208 wobk il | A00 100 Muigrenent)

Control flow

Tre Conmdar (6 gl wented i one e SEMLar. O o fouwr fanction
1. main
Tre mals Aactundmply CAll parssligs Wd aravl |, thoe mals 2ove

2. parseArgs Details on individual

St MUl 11 e COMMARD Lne, SalinGT TN 80 T FancTion el st ouly I sacceadd

.
o M O ARRRIRL L WO The SRL IS AR T K AN WOMRM SR S0y SAERAliaeTEL W LATALAIAALIRL Yun welpage.d fu nctlons
o« W papsalisilany N SRLLL) e g

o M0y SO K AoRd, OVE A0 ST S0 KEANT AN SuIt 00 20, /

o AW BAEDRPLA | S0 1L K M NEag N e g P

3. crawl

20T 0l weh WG NON AeadIRL 10 MAADwgAL MO GG PR papealisdbary - Fudocode

Likg Lhe SeedTEL AL depih ¥

age Cowm Lhe b
e fe

4. pageScan

T AUncT o DIphmantl Uhe Pujwicaoney Santarad i 10 Codgn. Gt 3 Welgupe |, LA T v Dage 30 UUact iy Wl IURLQ, hgnoring noe
Lo I R SR POE AWMLY G D00 B 0. 0t 100 PO | A0 T SO0 TE BOLN TN PATAN S BAges Aeak AMDTO LN 303
PREes LG il | Pasdccode

While Lhedw L6 Ahether TEL Lk Lhe page
AF LAl TRL s

PETTITa Y

AF LhaL wese

dinale »

LAAREL b

hpage Lale Lhe Rasbiaboe

® L Fas L0
* LhLe Lhe bay

Eimn Lhe WL 18

Crawler implement spec (continued)

Other modules
pagedir

e cware

Requirements

Gt wadds PAIRILILS 00 e Te Bapeer (e) e SHOR) ITERE 3 ige L6 L COMOR Y|, Aad anng it
20 2 Crawies paaduced - Jk nuired i 7 L W Choe 10w Toe LR BE D e o, o/ EORGE | 3 sacapedits Wi e

T Details on individual
functions

Design

6L Lhe pathanme fu U

Implementation

libes50

e i T e of LBOS0, NGt (Wdly iy, AARALMBLS | 200 Webpage . Gee Thar dhectiny far radule biaces The rew
W R BE0e 00 MR A0 B apbge L CAJCIL, 1A SLCH 3 pige TS T Wit wd 1 (et page for LWL
AN g, R G 36 T AOIATTeY TS 1 Do S0 Ndied, bebpige Tebch eufwon D 1acond Seuy fw 408 I 14 B
ST i 1 g e T 301 o T

Function prototypes

Function prototypes (e.g.,

Betated SecTiptans of wAh furcHion s NENTECE & pOonvided 36 3 pOragraph COmmen Jricr Lo mch uncion | bapbemantation b 60,

s e <« anlnterface in Java)

" MRRIEL, Chast paqeOliwetiny, Gusab Lok BaaTepdl))
Ly LY pageaToCuawl, badbiabie L% pugeaZees))

pagedir

Betated decrpte
soprated bice

A Farcrion s WEmTace K poovided B & pragriph COmmes vicr Lo ach furcon | cacavatien i Beaedli.d aadusx

" pagesiiectoey))
L page, cenat

* pageClinctiny, ewaat Len @eln)y

Error handling and recovery

M e Commans e BACMIHE 2% oy Chahed S0ar0 Iy UTh STCLIWS MW MM 3 wrh DG UM IRUE 8 3 LIS I IR
10 e 400 A P30S K S0

Error handling

- Wy SO I B by VIAYX O e M Akt I, AR (0 1 3 g NS LG LT
W AL B ey TS 0 b O I T 3w T BAOEAN 13 SIS fibeardy| B 1N g

"o 5042 4018 (1M

AL LS AN M R (MR ARl & T Bl KL Smcrienad, o, ¥ 5 Auncton eceves el

Thar Gk, LAl @000 I A M Aaacied WaNaly: I SEANM. bdawdiis 1AL eure s 1 there K Ay otle Taating e
SSRMLAE (e, Abaing the Damker o 800S0 WAM 1 3 1he WRLEAER i LT M8 whae LILC Mo 808 (e bevadis, 200 the Sraskic
Soes 2t Lo 11 4 8 fatad

Testing plan

e 20 Mg LALIO (e 1 TG P

Unit testing

Trve 2% oty Ows itk ATawher A% pAgaci]. The Crwher IGrmeits che whobs oyvaen and It oved bebom. The paged i nft K dy; & Could b
et g & et £

e Unit, regression, and

Tre o e L e SAADSPALL g e T £ Fr (ORI ML, vt el e J8ALRR (ny ° °

M OSHMD B05E; Lave o Ragebuciary W i mieihg A 13 CHpane (W WLEE = | Bgu fen A t t t t I

L s i g i r i Integration test pian
e rooma

Integration/system testing

WO wTEE B KT Lkl AR TR vk e e e L, WA Sty 6 Command ie It P, & ohaueece of racation
T taizig axch of TR G 0 (0. S, B 1 W VAT e
aRdiape a2 Gopts 1) TG, rank vw M thawe (350 wobckms | LOAUAIN 33 gt 01,500, LORIEAPS A copetd O,
M 0,1 31 R SR G) B ¥ L i ah L T O OF Ak | A WS T COMMARK LM 5 K 1
Cxie. Wiy COTIC Bk Dy SR T8 EE, Wl By aphing L s TRIBNE K1 e MABICIVE AAQES IR L

Twler Can Lk & kg e 20

For Lab 4, on noted In the cslgmeent, you moy subeelt @ sredler St run. Farthermrons, we recoesmend Surring off vt

r dorge!

19

koyping cutus for Shese

3, &1 wy rcke Lewiing.oat 1

1. Procurement

2. Specifications

» 3. Activity

20

21

