
CS 50:
Software Design and Implementation

Tiny Search Engine Indexer

2

Agenda

1. TSE component review

2. Indexer

3. Activity

3

Recall Bags, Sets, Hashtables, and Counters
from Lab 3

item
next

item
next

item
next

Bag (duplicates allowed) stores
item

uses
key

items
ordered retrieval insertion of

duplicates
bag yes no no any item allowed

4

Recall Bags, Sets, Hashtables, and Counters
from Lab 3

item
next

item
next

item
next

Bag (duplicates allowed) stores
item

uses
key

items
ordered retrieval insertion of

duplicates
bag yes no no any item allowed

set yes yes no by key error
Set (duplicates not allowed)

key
item
next

key
item
next

key
item
next

5

Recall Bags, Sets, Hashtables, and Counters
from Lab 3

item
next

item
next

item
next

Bag (duplicates allowed) stores
item

uses
key

items
ordered retrieval insertion of

duplicates
bag yes no no any item allowed

set yes yes no by key error

counters no yes no by key increments
count

Set (duplicates not allowed)
key

item
next

key
item
next

key
item
next

Counters (duplicates increment count)

key
count
next

key
count
next

key
count
next

6

Recall Bags, Sets, Hashtables, and Counters
from Lab 3

item
next

item
next

item
next

Bag (duplicates allowed) stores
item

uses
key

items
ordered retrieval insertion of

duplicates
bag yes no no any item allowed

set yes yes no by key error

counters no yes no by key increments
count

hashtable yes yes no by key error

Set (duplicates not allowed)
key

item
next

key
item
next

key
item
next

Counters (duplicates increment count)

key
count
next

key
count
next

key
count
next

Hash table (duplicates not allowed)

set_t
set_t
set_t

key
item
next

key
item
next

7

Crawler finds pages reachable from
seedURL and stores URL, depth, HTML

Querier Indexer Crawler

Given:
• seedURL
• directory to store results
• depth to search

Follow links to find all reachable
pages from seedURL < depth

Store in a separate file for each page
in given directory
• URL
• Depth
• HTML

Goal:
• Keep track of to crawl pages
• Do not revisit pages
ADTs?
• Bag to track pages to see
• Hashtable for fast look up of pages seenQuery

words

If your crawler didn’t work well, find example output at:
$loc/tse/tse-output

Use these examples as a source for your indexer

Reference these files, no need to make your own copy

8

Indexer uses crawler’s results and builds
data structure to find pages with words

Querier Indexer Crawler

Given:
• seedURL
• directory to store results
• depth to search

Follow links to find all ‘internal’
reachable pages from seedURL < depth

Store in a separate file for each page in
given directory
• URL
• Depth
• HTML

Goal:
• Keep track of to crawl pages
• Do not revisit pages
ADTs?
• Bag to track pages to see
• Hashtable for fast look up of pages seen

Given:
• crawler’s files

Parse each page’s HTML from
crawled web pages and
discover all words not inside
HTML tags

Build data structure to find all
documents that contain each
discovered word and how
many times those words
appear

Goal:
• Fast look up of

documents containing
a given word

ADTs?
• Hashtable of words
• Set of Counters

Query
words

9

Querier finds and ranks pages containing
query words

Querier Indexer Crawler

Given:
• seedURL
• directory to store results
• depth to search

Follow links to find all ‘internal’
reachable pages from seedURL < depth

Store in a separate file for each page in
given directory
• URL
• Depth
• HTML

Goal:
• Keep track of to crawl pages
• Do not revisit pages
ADTs?
• Bag to track pages to see
• Hashtable for fast look up of pages seen

Given:
• crawler’s files

Parse each page’s HTML from
crawled web pages and
discover all words not inside
tags

Build data structure to find all
documents that contain each
discovered word and how
many times those words
appear

Save data structure

Goal:
• Fast look up of

documents containing
a given word

ADTs?
• Hashtable of words
• Set of Counters

Given:
• Indexer’s data structure
• Query words

Find web pages containing
query words

Rank pages based on how
many times each word appears

Consider AND and OR logic

Goal:
• Fast ranked list of

documents containing
query words

ADTs?
• Indexer’s hashtable of

sets of counters
Query
words

10

Agenda

1. TSE component review

2. Indexer

3. Activity

11

The indexer builds a Hashtable of Sets of
Counters!

Keys are
words from
HTML pages
where
words are
not inside
HTML tags

Hashtable creates table of Sets
of pages that contain the word

Each item in Set
has key=word,
item is a Counter
for that word

Remember
multiple words
may hash to the
same table slot!

Each Counter
has key=docID
and a count of
how many
times the
word appears
in the
document

One Counter
for each
document that
contains word

Index data structure

12

Indexer demo: check provided crawler
output

$ ls $loc/tse/tse-output/
cs50-index-0 letters-depth-3/ letters-index-1 letters-index-5 toscrape-index-0 wikipedia-depth-0/ wikipedia-index-1
index.html letters-depth-4/ letters-index-2 letters-index-6 toscrape-index-1 wikipedia-depth-1/ wikipedia-index-1.s
letters-depth-0/ letters-depth-5/ letters-index-3 toscrape-depth-0/ toscrape-index-1~ wikipedia-depth-2/ wikipedia-index-2
letters-depth-1/ letters-depth-6/ letters-index-3.s toscrape-depth-1/ toscrape-index-2 wikipedia-index-0 wikipedia-index-2.s
letters-depth-2/ letters-index-0 letters-index-4 toscrape-depth-2/ toscrape-index-2.s wikipedia-index-0.s

$ ls $loc/tse/tse-output/letters-depth-6
1 2 3 4 5 6 7 8 9

$ vi $loc/tse/tse-output/letters-depth-6/1

Crawler output from our test sites provided in directories here
(in your crawler didn’t work well)

Directory tells website and depth

Crawler found 9 sites in letters using depth 6

1 http://cs50tse.cs.dartmouth.edu/tse/letters/index.html
2 0
3 <html>
4 <title>home</title>
5 This is the home page for a CS50 TSE playground.
6 A
7 </html>
8

Crawler output for page 1

13

Indexer demo: run indexer
$./indexer $loc/tse/tse-output/letters-depth-6 letters.index

1 Loaded: http://cs50tse.cs.dartmouth.edu/tse/letters/index.html
1 Indexing page: http://cs50tse.cs.dartmouth.edu/tse/letters/index.html
1 Add word to index: home
1 Inc word count: home
1 Add word to index: this
1 Inc word count: this
1 Add word to index: the
1 Inc word count: the
1 Inc word count: home
1 Add word to index: page
1 Inc word count: page
1 Add word to index: for
1 Inc word count: for
1 Add word to index: tse
1 Inc word count: tse
1 Add word to index: playground
1 Inc word count: playground
2 Loaded: http://cs50tse.cs.dartmouth.edu/tse/letters/A.html

<snip>

Crawler directory

File to save output

http://cs50tse.cs.dartmouth.edu/tse/letters/A.html

14

Indexer demo: run indexer
$./indexer $loc/tse/tse-output/letters-depth-6 letters.index

1 Loaded: http://cs50tse.cs.dartmouth.edu/tse/letters/index.html
1 Indexing page: http://cs50tse.cs.dartmouth.edu/tse/letters/index.html
1 Add word to index: home
1 Inc word count: home
1 Add word to index: this
1 Inc word count: this
1 Add word to index: the
1 Inc word count: the
1 Inc word count: home
1 Add word to index: page
1 Inc word count: page
1 Add word to index: for
1 Inc word count: for
1 Add word to index: tse
1 Inc word count: tse
1 Add word to index: playground
1 Inc word count: playground
2 Loaded: http://cs50tse.cs.dartmouth.edu/tse/letters/A.html

<snip>

File 1 URL

$ cat $loc/tse/tse-output/letters-depth-6/1
http://cs50tse.cs.dartmouth.edu/tse/letters/index.html
0
<html>
<title>home</title>
This is the home page for a CS50 TSE playground.
A
</html>

Process each word in HTML (no need to fetch page),
add to hashtable with counter for word

Move on to file 2

http://cs50tse.cs.dartmouth.edu/tse/letters/A.html

15

Indexer demo: view index created
$./indexer $loc/tse/tse-output/letters-depth-6 letters.index
… output…
$ vi letters.index

1 playground 1 1
2 page 1 1
3 coding 6 1
4 this 1 1
5 home 1 2 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1
6 depth 8 1
7 eniac 4 1
8 the 1 1
9 for 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1

10 breadth 3 1
11 tse 1 1
12 biology 9 1
13 first 3 1 8 1
14 search 3 1 8 1
15 huffman 6 1
16 traversal 5 1
17 transform 7 1
18 fourier 7 1
19 graph 5 1
20 algorithm 2 1
21 fast 7 1
22 computational 9 1

Crawler directory

File to save output

Format:
word docID count [docID count] …
Example: home appears on document 1 two times

indextest.c asks you to:
• Read an index from a file
• Write it back out to a file
• Check to see if the results are the same (you’ll need to

read an index for the querier)

16

Indexer high-level pseudo code
High-level pseudo code
1. Validate parameters (pageDirectory and output filename)
2. Read documents from the pageDirectory created by crawler where:

• the document id starts at 1 and increments by 1 for each new page found by crawler
• Filename is of form pageDirectory/documentID,
• First line of the file is the URL, second line of the file is the depth, rest of the file is

the page content (the HTML, unchanged)
3. Parse words not inside tags in each page’s HTML
4. Build an inverted-index data structure mapping from words to (documentID, count) pairs,

where each count represents the number of occurrences of the given word in the given
document

5. Write the index to a file (the querier will load this file in Lab 6)

The indexer may assume that
• pageDirectory has files named 1, 2, 3, …, without gaps.
• The content of files in pageDirectory follow the format as defined in the crawler

specs; thus your code (to read the files) need not have extensive error checking

17

Agenda

1. TSE component review

2. Indexer

3. Activity

18

