
CS 50:
Software Design and Implementation

Cohesion and coupling



2

Agenda

1. Coupling and cohesion

2. Activity



3

Question

Why break programs up into routines (functions)?

Routines should be well named:
• Name should be a strong verb followed by object (printCalendar())
• Name should describe its return value (numberOfNonzeros())
• a boolean function name should sound like a question (isInternalURL())

A good routine name:
• avoids nondescriptive verbs (like do, perform)
• describes everything the routine does
• is as long as necessary
• follows naming conventions!



4

Cohesion describes how closely operations 
in a routine are related
Cohesion

Think of lines of code as dots 
on plot

Conceptually lines of code are 
tightly grouped with strong 
cohesion

Strong cohesion is desired

“Do one thing, and do it well”

Conceptual



5

Good routines have strong cohesion
Cohesion Conceptual

Acceptable cohesion:
• Functional cohesion (strongest and best kind): 

performs one and only one operation
• Sequential cohesion: contains operations that must be 

performed in a sequential order
• Communicational cohesion: contains operations that 

make use of the same data, but are not otherwise 
related

• Temporal cohesion: contains operations that do 
several things, because all are done at the same time

Avoid: solve by breaking routine into multiple routines:
• Procedural cohesion: contains operations that must be 

performed in a sequential order, but don’t share the 
same data 

• Logical cohesion: several things in a routine, only one 
executed, depending on a flag parameter. (Exception -
it can be ok if using a switch statement to call one of 
many other (cohesive) functions.)

• Coincidental cohesion: no apparent reason for things 
to be together in a routine!



6

Coupling is strength of connection between 
routines; it is a complement to cohesion
Coupling Conceptual

Think of functions like clusters

Weak coupling has loose 
connections between 
functions

Weak coupling is desired

Clusters do not overlap



7

Good routines have weak coupling
Coupling Conceptual

Coupling
• Simple-data coupling: the only data 

passed from one routine to another 
is through parameters, and is 
nonstructured

• Data-structure coupling: one 
routine passes a data structure to 
another; best if it really needs the 
whole data structure

• Control coupling: one routine tells 
the other what to do

• Global-data coupling: two routines 
use the same global data; may be 
tolerable if read-only

• Pathological coupling: one routine 
uses the data inside the other 
routine. (Somewhat hard to do in C 
and C++.)



8

Poor cohesion: routines do many things; 
poor coupling: unneeded connections
Coupling and cohesion Conceptual

Poor cohesion:
• Routine do many things that are 

not closely related

Poor coupling:
• Routines have unnecessarily 

strong connectivity between them



9

Example from calendar/datebook 
application
5 * adapted from C++ code used in CS23, January 1996.
6 */
7
8 // pseudo-code from a calendar/datebook application
9
10 typedef struct date date_t;
11 typedef struct calendar calendar_t;
12 typedef struct event event_t;
13
14 // given one date, compute the next date;
15 // account for leap years, etc.
16 date_t* date_next(date_t* day);
17
18 // compute the number of days from "this" date until "that" date
19 int date_ComputeDaysUntil(const date_t* this, const date_t* that);
20
21 // return current date
22 date_t* date_today(void);
23
24 // print calendar
25 void calendar_print1(calendar_t* cal)
26 {
27 // print the month name
28 // print the day names
29 // for each row, print the dates in that row
30 }
31
32 // print calendar
33 void calendar_print2(calendar_t* cal, int which, date_t* day)
34 {
35 // if which==1
36 // print the month name
37 // print the day names
38 // for each row, print the dates in that row
39 // else if which==2
40 // print the month name, day name, and day number
41 // print the events occurring on that day
42 }
43

Functional cohesion; good name

Functional cohesion; simple data 
coupling; good name

Functional cohesion; no coupling; good name

Sequential cohesion, perhaps; data 
structure coupling; terrible name!

Logical cohesion; data structure 
coupling; terrible name!



10

Example from calendar/datebook 
application
44 // print calendar
45 void calendar_print3(calendar_t* cal)
46 {
47 // print the month name, day name, and day number
48 // foreach event occurring on that day
49 // print the time of the event
50 // print the type of event
51 // print the description of the event
52 }
53
54 void DoPrintBook(calendar_t* cal, const char* intro,
55 image_t* frontCover, image_t* backCover)
56 {
57 // print the frontCover
58 // print the intro
59 // foreach month
60 // foreach day of that month
61 // calendar_print2(cal, 2, day);
62 // print the backCover
63 }
64
65 calendar_t theCalendar; // the calendar we use below
66
67 void Initialize(string filename, window_t* window)
68 {
69 // initialize theCalendar
70 // for each event read from the file
71 // add event to the calendar
72 // initialize the window
73 // create some buttons on the window
74 // current date = Today()
75 // display the current day in window
76 // look for any events in the next hour
77 // pop up dialog box for each such event
78 // Update(cal, window);
79 }
80
81 void Update(date_t* today, window_t* window)
82 {
83 // check the current time
84 // look through theCalendar.eventlist for events on date "today"

Sequential cohesion, perhaps; data 
structure coupling; terrible name!

Sequential cohesion; data structure 
coupling; name should be 
calendar_print()

Hidden global variable causes invisible 
coupling below

Sequential cohesion; data structure 
coupling; global data coupling; 
incomplete description

Temporal cohesion; data structure and 
global data coupling; vague name



11

Agenda

1. Coupling and cohesion

2. Activity



12



13


