
CS 50:
Software Design and Implementation

Querier

2

Agenda

1. Querier

2. Fuzz testing

3. Activity

3

Crawler finds pages reachable from
seedURL and stores URL, depth, HTML

Querier Indexer Crawler

Given:
• seedURL
• directory to store results
• depth to search

Follow links to find all reachable
pages from seedURL < depth

Store in a separate file for each page
in given directory
• URL
• Depth
• HTML

Goal:
• Keep track of to crawl pages
• Do not revisit pages
ADTs?
• Bag to track pages to see
• Hashtable for fast look up of pages seenQuery

words

If your crawler didn’t work well, find example output at:
/thayerfs/courses/22fall/cosc050/workspace/tse/tse-output

Use these examples as a source for your indexer

4

Indexer uses crawler’s results and builds
data structure to find pages with words

Querier Indexer Crawler

Given:
• seedURL
• directory to store results
• depth to search

Follow links to find all ‘internal’
reachable pages from seedURL < depth

Store in a separate file for each page in
given directory
• URL
• Depth
• HTML

Goal:
• Keep track of to crawl pages
• Do not revisit pages
ADTs?
• Bag to track pages to see
• Hashtable for fast look up of pages seen

Goal:
• Fast look up of

documents containing
a given word

ADTs?
• Hashtable of words
• Set of Counters

Query
words

If your indexer didn’t work well,
find example output at:
$loc/tse/tse-output
(e.g., letters-index-6)

Use these examples as a source
for your querier

Given:
• crawler’s files

Parse each page’s HTML from
crawled web pages and
discover all words not inside
tags

Build data structure to find all
documents that contain each
discovered word and how
many times those words
appear

Save data structure

5

Querier finds and ranks pages containing
query words

Querier Indexer Crawler

Given:
• seedURL
• directory to store results
• depth to search

Follow links to find all ‘internal’
reachable pages from seedURL < depth

Store in a separate file for each page in
given directory
• URL
• Depth
• HTML

Goal:
• Keep track of to crawl pages
• Do not revisit pages
ADTs?
• Bag to track pages to see
• Hashtable for fast look up of pages seen

Goal:
• Fast look up of

documents containing
a given word

ADTs?
• Hashtable of words
• Set of Counters

Given:
• Indexer’s data structure
• Query words

Find web pages containing
query words

Rank pages based on how
many times each word appears

Consider AND and OR logic

Goal:
• Fast ranked list of

documents containing
query words

ADTs?
• Indexer’s hashtable of

sets of counters
Query
words

Given:
• crawler’s files

Parse each page’s HTML from
crawled web pages and
discover all words not inside
tags

Build data structure to find all
documents that contain each
discovered word and how
many times those words
appear

Save data structure

6

Querier takes AND as well as OR queries

Query
computer science

• Implicit AND between computer and science
• Pages must have both words

computer and science
• Same as first query

computer or science
• Returns pages that have either computer OR science

baseball or basketball or ultimate frisbee
• Baseball OR basketball OR (ultimate AND frisbee)

7

DEMO

$./querier $loc/tse/tse-output/letters-depth-6 $loc/tse/tse-output/letters-index-6
Query? first and search
Query: first and search
Matches 2 documents (ranked):
score 1 doc 3: http://cs50tse.cs.dartmouth.edu/tse/letters/B.html
score 1 doc 8: http://cs50tse.cs.dartmouth.edu/tse/letters/D.html

Query? tiny search engine
Query: tiny search engine
No documents match.

Query? NOTE we LOWERcase the query
Query: note we lowercase the query
No documents match.

Query? spaces do not matter
Query: spaces do not matter
No documents match.

Pass pages directory
and index

Enter
search
terms

Return results based on
number of times word
appears on each page
• AND: min of scores
• OR: add scores

Score
for each
page

Page
number

Page URL

Print
normalized
query

If no
matches,
say so

Normalized changes query
entered to lower case

Ignore
spaces

8

DEMO
Query? non-letter characters are disallowed
Error: bad character '-' in query.
Query? even digits as in cs50
Error: bad character '5' in query.
Query? and
Query: and
Error: 'and' cannot be first
Query? or
Query: or
Error: 'or' cannot be first
Query? what about and
Query: what about and
Error: 'and' cannot be last
Query? what about or
Query: what about or
Error: 'or' cannot be last
Query? ^D

Only allow alphabetic
characters

Queries cannot
start or end with
AND or OR

Queries also
cannot have two
operators (AND,
OR) consecutively

9

Agenda

1. Querier

2. Fuzz testing

3. Activity

10

Fuzz testing sends random input to the
querier
202 static void
203 generateQuery(const wordlist_t* wordlist, const wordlist_t* dictionary)
204 {
205 // some parameters that affect query generation
206 const int maxWords = 6; // generate 1..maxWords
207 const float orProbability = 0.3; // P(OR between two words)
208 const float andProbability = 0.2; // P(AND between two words)
209 const float dictProbability = 0.2; // P(draw from dict instead of wordlist)
210
211 int qwords = rand() % maxWords + 1; // number of words in query
212 for (int qw = 0; qw < qwords; qw++) {
213 // draw a word either dictionary or wordlist
214 if ((rand() % 100) < (dictProbability * 100)) {
215 printf("%s ", dictionary->words[rand() % dictionary->nWords]);
216 } else {
217 printf("%s ", wordlist->words[rand() % wordlist->nWords]);
218 }
219
220 // last word?
221 if (qw < qwords-1) {
222 // which operator to print?
223 int op = rand() % 100;
224 if (op < (andProbability * 100)) {
225 printf("AND ");
226 }
227 else if (op < (andProbability * 100 + orProbability * 100)) {
228 printf("OR ");
229 }
230 }
231 }
232 printf("\n");
233 }

Words from index Words from dictionary

Generate query
with qwords in it

Pick random word from
either words from index
or dictionary

Put an AND or OR operator
randomly, but not first or last!

11

Fuzz testing sends random input to the
querier
202 static void
203 generateQuery(const wordlist_t* wordlist, const wordlist_t* dictionary)
204 {
205 // some parameters that affect query generation
206 const int maxWords = 6; // generate 1..maxWords
207 const float orProbability = 0.3; // P(OR between two words)
208 const float andProbability = 0.2; // P(AND between two words)
209 const float dictProbability = 0.2; // P(draw from dict instead of wordlist)
210
211 int qwords = rand() % maxWords + 1; // number of words in query
212 for (int qw = 0; qw < qwords; qw++) {
213 // draw a word either dictionary or wordlist
214 if ((rand() % 100) < (dictProbability * 100)) {
215 printf("%s ", dictionary->words[rand() % dictionary->nWords]);
216 } else {
217 printf("%s ", wordlist->words[rand() % wordlist->nWords]);
218 }
219
220 // last word?
221 if (qw < qwords-1) {
222 // which operator to print?
223 int op = rand() % 100;
224 if (op < (andProbability * 100)) {
225 printf("AND ");
226 }
227 else if (op < (andProbability * 100 + orProbability * 100)) {
228 printf("OR ");
229 }
230 }
231 }
232 printf("\n");
233 }

$./fuzzquery $loc/tse/tse-output/letters-index-6 10 0
./fuzzquery: generating 10 queries from 22 words
fourier AND traversal
this OR the the OR tse computational
biology playground OR computational
answers breadth search OR computational OR Mississippians
OR fast
algorithm OR coding eniac the AND home OR breadth
traversal computational playground coding OR the
fast
search the OR fast
home
transform OR huffman OR depth AND graph AND transform

Words from index
Number of
queries to
make

Random
seed

12

Pipe fuzzer’s queries to querier to test
$./fuzzquery $loc/tse/tse-output/letters-index-6 10 0 | ./querier $loc/tse/tse-output/letters-depth-6 $loc/tse/tse-output/letters-index-6
./fuzzquery: generating 10 queries from 22 words
Query: fourier and traversal
No documents match.

Query: this or the the or tse computational
Matches 1 documents (ranked):
score 2 doc 1: http://cs50tse.cs.dartmouth.edu/tse/letters/index.html

Query: biology playground or computational
Matches 1 documents (ranked):
score 1 doc 9: http://cs50tse.cs.dartmouth.edu/tse/letters/C.html

Query: answers breadth search or computational or mississippians or fast
Matches 2 documents (ranked):
score 1 doc 9: http://cs50tse.cs.dartmouth.edu/tse/letters/C.html
score 1 doc 7: http://cs50tse.cs.dartmouth.edu/tse/letters/F.html

Query: algorithm or coding eniac the and home or breadth
Matches 2 documents (ranked):
score 1 doc 2: http://cs50tse.cs.dartmouth.edu/tse/letters/A.html
score 1 doc 3: http://cs50tse.cs.dartmouth.edu/tse/letters/B.html

Query: traversal computational playground coding or the
Matches 1 documents (ranked):
score 1 doc 1: http://cs50tse.cs.dartmouth.edu/tse/letters/index.html

Query: fast
Matches 1 documents (ranked):
score 1 doc 7: http://cs50tse.cs.dartmouth.edu/tse/letters/F.html

Crawled pages Indexed pages

Issues?
• Should change random seed

(otherwise queries always
the same)

• Does not check if results are
correct

• Does show if program
crashes!

13

Agenda

1. Querier

2. Fuzz testing

3. Activity

14

Users enter query words, and the querier
must implement AND and OR operations

Query word1

1, 5

7, 2

12, 3

Query word2

5, 1

6, 4

3, 6

DocID, count of
pages containing
dartmouth

Example:
Doc1 contains
word1 5 times

DocID, count of
pages containing
algorithm

Example:
Doc 6 contains
word2 4 times

Note: currently no pages
contain both words

Example
Word 1 = dartmouth
word 2 = algorithm

Dartmouth appears on
sites 1, 7, and 12

Algorithm appears on
sites 3, 5, and 6

15

OR is the UNION of two sets

Query word1

1, 5

7, 2

12, 3

Query word2

5, 1

6, 4

3, 6

1, 5

7, 2

12, 3

5, 1

6, 4

3, 6

OR returns sites that
mention either
word (UNION)

Return sites sorted
by count
(3, 1, 6, 12, 7, 5)

Note: currently no pages
contain both words

dartmouth
OR

algorithm

16

AND is the INTERSECTION of two sets

Query word1

1, 5

7, 2

12, 3

Query word2

5, 1

6, 4

3, 6

dartmouth
OR

algorithm

1, 5

7, 2

12, 3

5, 1

6, 4

3, 6

AND returns sites
that mention
both words
(INTERSECTION)

Currently none

dartmouth
AND

algorithm

Note: currently no pages
contain both words

OR returns sites that
mention either
word (UNION)

Return sites sorted
by count
(3, 1, 6, 12, 7, 5)

17

Sometimes the same site contains multiple
query words

Query word1

1, 5

7, 2

12, 3

Query word2

5, 1

6, 4

3, 6

Now suppose pages 10 and 11
each contain query word 1 and 2

10, 3

11, 4

10, 9

11, 1

Page 10 contains Dartmouth 3
times and algorithm 9 times

Page 11 contains Dartmouth 4
times and algorithm 1 time

18

OR adds the counts from each site

Query word1

1, 5

7, 2

12, 3

Query word2

5, 1

6, 4

3, 6

1, 5

7, 2

12, 3

5, 1

6, 4

3, 6

OR adds counts from
each site for overlaps

Still return sites sorted
by count
(10, 3, 11, 1, 6, 12, 7, 5)

10, 3

11, 4

10, 9

11, 1

10, 12

11, 5

Now suppose pages 10 and 11
each contain query word 1 and 2

dartmouth
OR

algorithm

19

AND takes the minimum count between
both sites

Query word1

1, 5

7, 2

12, 3

Query word2

5, 1

6, 4

3, 6

1, 5

7, 2

12, 3

5, 1

6, 4

3, 6

AND takes the
minimum of each
site
Return sites
sorted by count
(10, 11)

10, 3

11, 4

10, 9

11, 1

10, 12

11, 5

10, 3

11, 1

OR adds counts from
each site for overlaps

Still return sites sorted
by count
(10, 3, 11, 1, 6, 12, 7, 5)

Now suppose pages 10 and 11
each contain query word 1 and 2

dartmouth
OR

algorithm

dartmouth
AND

algorithm

20

AND takes the minimum count between
both sites

Query word1

1, 5

7, 2

12, 3

Query word2

5, 1

6, 4

3, 6

1, 5

7, 2

12, 3

5, 1

6, 4

3, 6

AND takes the
minimum of each
site
Return sites
sorted by count
(10, 11)

10, 3

11, 4

10, 9

11, 1

10, 12

11, 5

10, 3

11, 1

OR adds counts from
each site for overlaps

Still return sites sorted
by count
(10, 3, 11, 1, 6, 12, 7, 5)

If query words appear on more
than two sites, add counts for
OR, take min for AND

Now suppose pages 10 and 11
each contain query word 1 and 2

dartmouth
OR

algorithm

dartmouth
AND

algorithm

21

set_iterate2.c demonstrates UNION
20 int main()
21 {
22 set_t *setA, *setB, *result; // three sets
23
24 setA = mem_assert(set_new(), "setA");
25 setB = mem_assert(set_new(), "setB");
26 result = mem_assert(set_new(), "result");
27
28 printf("Empty result set: ");
29 set_print(result, stdout, itemprint);
30 putchar('\n');
31
32 printf("Building set A: ");
33 set_insert(setA, "Brown", intsave(10));
34 set_insert(setA, "Dartmouth", intsave(20));
35 set_insert(setA, "Yale", intsave(15));
36 set_insert(setA, "Harvard", intsave(8));
37 set_insert(setA, "Princeton", intsave(5));
38 set_insert(setA, "Columbia", intsave(1));
39 set_print(setA, stdout, itemprint);
40 putchar('\n');
41
42 printf("Building set B: ");
43 set_insert(setB, "Penn", intsave(7));
44 set_insert(setB, "Dartmouth", intsave(11));
45 set_insert(setB, "Cornell", intsave(9));
46 set_insert(setB, "Stanford", intsave(6));
47 set_insert(setB, "Princeton", intsave(3));
48 set_insert(setB, "Duke", intsave(12));
49 set_print(setB, stdout, itemprint);

Create three sets

Load setA and setB with
college string as key and a
score as item

114 static int *
115 intsave(int item)
116 {
117 int *saved =

mem_assert(malloc(sizeof(int)), "intsave");
118 *saved = item;
119 return saved;
120 }

Why do we call intsave?
set_insert takes a pointer to an item

set_iterate2.c

52 printf("\nMerge of setA into result: \n");
53 set_merge(result, setA);
54 set_print(result, stdout, itemprint);
55 putchar('\n');
56
57 printf("\nMerge of setB into result: \n");
58 set_merge(result, setB);
59 set_print(result, stdout, itemprint);
60 putchar('\n');
61
62 printf("\nDelete the sets...\n");
63 set_delete(setA, itemdelete);
64 set_delete(setB, itemdelete);
65 set_delete(result, itemdelete);
66 }

22

Merge setA into result, then merge setB
into result

Merge (UNION) setA into result
Print result

Delete all three sets when done

Merge setB into result
Print result

Result is initially empty set_iterate2.c

68 /* Merge the second set into the first set;
69 * the second set is unchanged.
70 */
71 static void
72 set_merge(set_t *setA, set_t *setB)
73 {
74 set_iterate(setB, setA, set_merge_helper);
75 }
76
77 /* Consider one item for insertion into the other set.
78 * If the other set does not contain the item, insert it;
79 * otherwise, update the other set's item with sum of item values.
80 */
81 static void
82 set_merge_helper(void *arg, const char *key, void *item)
83 {
84 set_t *setA = arg;
85 int *itemB = item;
86
87 // find the same key in setA
88 int *itemA = set_find(setA, key);
89 if (itemA == NULL) {
90 // not found: insert it
91 set_insert(setA, key, intsave(*itemB));
92 printf("\t%s added\n", key);
93 } else {
94 // add to the existing value
95 *itemA += *itemB;
96 printf("\t%s exists\n", key);
97 }
98 }

23

set_merge adds items from two sets if the
key is in both sets, else insert key, item

set_merge does a UNION
of two sets
• Saves result in first set
• set_merge_helper called

on each item in second set

setA passed as arg
Cast as set_t
Cast item as integer pointer to
setB’s item

If setA does not have key from
setB, add key and integer to setA

Otherwise, add itemB to itemA
to update setA

set_iterate2.c

24

Activity is to implement INTERSECT given
starter code in counters_intersect.c
20 int main()
21 {
22 // create two counters for demo
23 counters_t *c1 = mem_assert(counters_new(), "counters_new() failed");
24 counters_t *c2 = mem_assert(counters_new(), "counters_new() failed");
25
26 // init counters 1
27 counters_set(c1, 3, 6);
28 counters_set(c1, 4, 7);
29 counters_set(c1, 5, 1);
30 counters_set(c1, 7, 4);
31
32 // init counters 2
33 counters_set(c2, 1, 3);
34 counters_set(c2, 3, 2);
35 counters_set(c2, 5, 4);
36 counters_set(c2, 6, 6);
37 counters_set(c2, 7, 3);
38
39 // take the intersection, store the results in c1
40 counters_intersect(c1, c2);
41 counters_print(c1, stdout);
42 printf("\n");
43
44 // clean up
45 counters_delete(c1);
46 counters_delete(c2);
47
48 return 0;
49 }
50
51 // TODO: fill in this function
52 void counters_intersect(counters_t* ct1, counters_t* ct2)
53 {
54
55 }

Complete counters_intersect
to keep minimum of counts
where keys match

25

