
CS 50:
Software Design and Implementation

Querier design

2

Agenda

1. Union and intersect

2. Math operator precedence

3. Query operator precedence

4. Activity

3

Users enter query words, and the querier
must implement AND and OR operations

Query word1

1, 5

7, 2

12, 3

Query word2

5, 1

6, 4

3, 6

DocID, count of
pages containing
dartmouth

Example:
Doc1 contains
word1 5 times

DocID, count of
pages containing
algorithm

Example:
Doc 6 contains
word2 4 times

Note: currently no pages
contain both words

Example
Word 1 = dartmouth
word 2 = algorithm

Dartmouth appears on
sites 1, 7, and 12

Algorithm appears on
sites 3, 5, and 6

4

OR is the UNION of two sets

Query word1

1, 5

7, 2

12, 3

Query word2

5, 1

6, 4

3, 6

1, 5

7, 2

12, 3

5, 1

6, 4

3, 6

OR returns sites that
mention either
word (UNION)

Return sites sorted
by count
(3, 1, 6, 12, 7, 5)

Note: currently no pages
contain both words

dartmouth
OR

algorithm

5

AND is the INTERSECTION of two sets

Query word1

1, 5

7, 2

12, 3

Query word2

5, 1

6, 4

3, 6

dartmouth
OR

algorithm

1, 5

7, 2

12, 3

5, 1

6, 4

3, 6

AND returns sites
that mention
both words
(INTERSECTION)

Currently none

dartmouth
AND

algorithm

Note: currently no pages
contain both words

OR returns sites that
mention either
word (UNION)

Return sites sorted
by count
(3, 1, 6, 12, 7, 5)

6

Sometimes the same site contains multiple
query words

Query word1

1, 5

7, 2

12, 3

Query word2

5, 1

6, 4

3, 6

Now suppose pages 10 and 11
each contain query word 1 and 2

10, 3

11, 4

10, 9

11, 1

Page 10 contains Dartmouth 3
times and algorithm 9 times

Page 11 contains Dartmouth 4
times and algorithm 1 time

7

OR adds the counts from each site

Query word1

1, 5

7, 2

12, 3

Query word2

5, 1

6, 4

3, 6

1, 5

7, 2

12, 3

5, 1

6, 4

3, 6

OR adds counts from
each site for overlaps

Still return sites sorted
by count
(10, 3, 11, 1, 6, 12, 7, 5)

10, 3

11, 4

10, 9

11, 1

10, 12

11, 5

Now suppose pages 10 and 11
each contain query word 1 and 2

dartmouth
OR

algorithm

8

AND takes the minimum count between
both sites

Query word1

1, 5

7, 2

12, 3

Query word2

5, 1

6, 4

3, 6

1, 5

7, 2

12, 3

5, 1

6, 4

3, 6

AND takes the
minimum of each
site
Return sites
sorted by count
(10, 11)

10, 3

11, 4

10, 9

11, 1

10, 12

11, 5

10, 3

11, 1

OR adds counts from
each site for overlaps

Still return sites sorted
by count
(10, 3, 11, 1, 6, 12, 7, 5)

Now suppose pages 10 and 11
each contain query word 1 and 2

dartmouth
OR

algorithm

dartmouth
AND

algorithm

9

AND takes the minimum count between
both sites

Query word1

1, 5

7, 2

12, 3

Query word2

5, 1

6, 4

3, 6

1, 5

7, 2

12, 3

5, 1

6, 4

3, 6

AND takes the
minimum of each
site
Return sites
sorted by count
(10, 11)

10, 3

11, 4

10, 9

11, 1

10, 12

11, 5

10, 3

11, 1

OR adds counts from
each site for overlaps

Still return sites sorted
by count
(10, 3, 11, 1, 6, 12, 7, 5)

If query words appear on more
than two sites, add counts for
OR, take min for AND

Now suppose pages 10 and 11
each contain query word 1 and 2

dartmouth
OR

algorithm

dartmouth
AND

algorithm

10

Agenda

1. Union and intersect

2. Math operator precedence

3. Query operator precedence

4. Activity

11

In math, multiplication takes precedence
over addition

sum = a * b + c * d * e + f + g * h * i
= (a * b) + (c * d * e) + f + (g * h * i)

How to solve?
• Find all multiplications
• Do multiplications
• Add results and any additions (like f)

OR

Parse in one pass!
• Can think of “stepping away” to do

multiplication (higher precedence)
• Return for addition (lower precedence)

12

In math, multiplication takes precedence
over addition

sum = a * b + c * d * e + f + g * h * i
= (a * b) + (c * d * e) + f + (g * h * i)

Rules:
initialize sum = 0, prod = 1
read one token at a time

If read number
prod *= number

if read *
continue

if read +
sum += prod
prod = 1

return sum + prod

Formula can’t end with * or +

13

In math, multiplication takes precedence
over addition

Read Sum Prod Notes
Start 0 1

sum = a * b + c * d * e + f + g * h * i
= (a * b) + (c * d * e) + f + (g * h * i)

Rules:
initialize sum = 0, prod = 1
read one token at a time

If read number
prod *= number

if read *
continue

if read +
sum += prod
prod = 1

return sum + prod

Formula can’t end with * or +

14

In math, multiplication takes precedence
over addition

Read Sum Prod Notes
Start 0 1
a prod *a = a

sum = a * b + c * d * e + f + g * h * i
= (a * b) + (c * d * e) + f + (g * h * i)

Rules:
initialize sum = 0, prod = 1
read one token at a time

If read number
prod *= number

if read *
continue

if read +
sum += prod
prod = 1

return sum + prod

Formula can’t end with * or +

Step away for
multiplication

a

15

In math, multiplication takes precedence
over addition

Read Sum Prod Notes
Start 0 1
a prod *a = a
* continue

sum = a * b + c * d * e + f + g * h * i
= (a * b) + (c * d * e) + f + (g * h * i)

Rules:
initialize sum = 0, prod = 1
read one token at a time

If read number
prod *= number

if read *
continue

if read +
sum += prod
prod = 1

return sum + prod

Formula can’t end with * or +

Step away for
multiplication

a

16

In math, multiplication takes precedence
over addition

Read Sum Prod Notes
Start 0 1
a prod *a = a
* continue
b prod * b = a * b

sum = a * b + c * d * e + f + g * h * i
= (a * b) + (c * d * e) + f + (g * h * i)

Rules:
initialize sum = 0, prod = 1
read one token at a time

If read number
prod *= number

if read *
continue

if read +
sum += prod
prod = 1

return sum + prod

Formula can’t end with * or +

Step away for
multiplication

a * b

17

In math, multiplication takes precedence
over addition

Read Sum Prod Notes
Start 0 1
a prod *a = a
* continue
b prod * b = a * b
+ sum + prod 1 = 0 + a * b

sum = a * b + c * d * e + f + g * h * i
= (a * b) + (c * d * e) + f + (g * h * i)

Rules:
initialize sum = 0, prod = 1
read one token at a time

If read number
prod *= number

if read *
continue

if read +
sum += prod
prod = 1

return sum + prod

Formula can’t end with * or +

“Return” for
addition

a * b +

18

In math, multiplication takes precedence
over addition

Read Sum Prod Notes
Start 0 1
a prod *a = a
* continue
b prod * b = a * b
+ sum + prod 1 = 0 + a * b
c prod * c = c

sum = a * b + c * d * e + f + g * h * i
= (a * b) + (c * d * e) + f + (g * h * i)

Rules:
initialize sum = 0, prod = 1
read one token at a time

If read number
prod *= number

if read *
continue

if read +
sum += prod
prod = 1

return sum + prod

Formula can’t end with * or +

Step away for
multiplication

a * b +

a*b

19

In math, multiplication takes precedence
over addition

Read Sum Prod Notes
Start 0 1
a prod *a = a
* continue
b prod * b = a * b
+ sum + prod 1 = 0 + a * b
c prod * c = c
* continue

sum = a * b + c * d * e + f + g * h * i
= (a * b) + (c * d * e) + f + (g * h * i)

Rules:
initialize sum = 0, prod = 1
read one token at a time

If read number
prod *= number

if read *
continue

if read +
sum += prod
prod = 1

return sum + prod

Formula can’t end with * or +

Step away for
multiplication

a * b +

a*b
*

c

20

In math, multiplication takes precedence
over addition

Read Sum Prod Notes
Start 0 1
a prod *a = a
* continue
b prod * b = a * b
+ sum + prod 1 = 0 + a * b
c prod * c = c
* continue
d prod * d = c * d

sum = a * b + c * d * e + f + g * h * i
= (a * b) + (c * d * e) + f + (g * h * i)

Rules:
initialize sum = 0, prod = 1
read one token at a time

If read number
prod *= number

if read *
continue

if read +
sum += prod
prod = 1

return sum + prod

Formula can’t end with * or +

Step away for
multiplication

a * b +

a*b

c * d
*

21

In math, multiplication takes precedence
over addition

Read Sum Prod Notes
Start 0 1
a prod *a = a
* continue
b prod * b = a * b
+ sum + prod 1 = 0 + a * b
c prod * c = c
* continue
d prod * d = c * d
* continue

sum = a * b + c * d * e + f + g * h * i
= (a * b) + (c * d * e) + f + (g * h * i)

Rules:
initialize sum = 0, prod = 1
read one token at a time

If read number
prod *= number

if read *
continue

if read +
sum += prod
prod = 1

return sum + prod

Formula can’t end with * or +

Step away for
multiplication

a * b + *
c * d

a*b

22

In math, multiplication takes precedence
over addition

Read Sum Prod Notes
Start 0 1
a prod *a = a
* continue
b prod * b = a * b
+ sum + prod 1 = 0 + a * b
c prod * c = c
* continue
d prod * d = c * d
* continue
e prod * e = c * d* e

sum = a * b + c * d * e + f + g * h * i
= (a * b) + (c * d * e) + f + (g * h * i)

Rules:
initialize sum = 0, prod = 1
read one token at a time

If read number
prod *= number

if read *
continue

if read +
sum += prod
prod = 1

return sum + prod

Formula can’t end with * or +

Step away for
multiplication

a * b + *
c * d * e

a*b

23

In math, multiplication takes precedence
over addition

Read Sum Prod Notes
Start 0 1
a prod *a = a
* continue
b prod * b = a * b
+ sum + prod 1 = 0 + a * b
c prod * c = c
* continue
d prod * d = c * d
* continue
e prod * e = c * d* e
+ sum + prod 1 = 0 + a * b + c * d * e

sum = a * b + c * d * e + f + g * h * i
= (a * b) + (c * d * e) + f + (g * h * i)

Rules:
initialize sum = 0, prod = 1
read one token at a time

If read number
prod *= number

if read *
continue

if read +
sum += prod
prod = 1

return sum + prod

Formula can’t end with * or +

Return for
addition

Notice: only add
prod to sum on +

a * b + *
c * d * e

a*b

+

a*b + c *d *e

24

In math, multiplication takes precedence
over addition

Read Sum Prod Notes
Start 0 1
a prod *a = a
* continue
b prod * b = a * b
+ sum + prod 1 = 0 + a * b
c prod * c = c
* continue
d prod * d = c * d
* continue
e prod * e = c * d* e
+ sum + prod 1 = 0 + a * b + c * d * e
f prod * f = f

sum = a * b + c * d * e + f + g * h * i
= (a * b) + (c * d * e) + f + (g * h * i)

Rules:
initialize sum = 0, prod = 1
read one token at a time

If read number
prod *= number

if read *
continue

if read +
sum += prod
prod = 1

return sum + prod

Formula can’t end with * or +

Step away for
multiplication

a * b +
c * d * e

a*b

+

a*b + c *d *e

f

25

In math, multiplication takes precedence
over addition

Read Sum Prod Notes
Start 0 1
a prod *a = a
* continue
b prod * b = a * b
+ sum + prod 1 = 0 + a * b
c prod * c = c
* continue
d prod * d = c * d
* continue
e prod * e = c * d* e
+ sum + prod 1 = 0 + a * b + c * d * e
f prod * f = f
+ sum + prod 1 = 0 + a * b + c * d * e + f

sum = a * b + c * d * e + f + g * h * i
= (a * b) + (c * d * e) + f + (g * h * i)

Rules:
initialize sum = 0, prod = 1
read one token at a time

If read number
prod *= number

if read *
continue

if read +
sum += prod
prod = 1

return sum + prod

Formula can’t end with * or +
Return for
addition

Notice: only add
prod to sum on +

a * b +
c * d * e

a*b

+

a*b + c *d *e

f
+

a*b + c *d *e +f

26

In math, multiplication takes precedence
over addition

Read Sum Prod Notes
Start 0 1
a prod *a = a
* continue
b prod * b = a * b
+ sum + prod 1 = 0 + a * b
c prod * c = c
* continue
d prod * d = c * d
* continue
e prod * e = c * d* e
+ sum + prod 1 = 0 + a * b + c * d * e
f prod * f = f
+ sum + prod 1 = 0 + a * b + c * d * e + f
g prod * g = g

sum = a * b + c * d * e + f + g * h * i
= (a * b) + (c * d * e) + f + (g * h * i)

Rules:
initialize sum = 0, prod = 1
read one token at a time

If read number
prod *= number

if read *
continue

if read +
sum += prod
prod = 1

return sum + prod

Formula can’t end with * or +
Step away for
multiplication

g

a*b + c *d *e +f

27

In math, multiplication takes precedence
over addition

Read Sum Prod Notes
Start 0 1
a prod *a = a
* continue
b prod * b = a * b
+ sum + prod 1 = 0 + a * b
c prod * c = c
* continue
d prod * d = c * d
* continue
e prod * e = c * d* e
+ sum + prod 1 = 0 + a * b + c * d * e
f prod * f = f
+ sum + prod 1 = 0 + a * b + c * d * e + f
g prod * g = g
* continue

sum = a * b + c * d * e + f + g * h * i
= (a * b) + (c * d * e) + f + (g * h * i)

Rules:
initialize sum = 0, prod = 1
read one token at a time

If read number
prod *= number

if read *
continue

if read +
sum += prod
prod = 1

return sum + prod

Formula can’t end with * or +
Step away for
multiplication

g

a*b + c *d *e +f

28

In math, multiplication takes precedence
over addition

Read Sum Prod Notes
Start 0 1
a prod *a = a
* continue
b prod * b = a * b
+ sum + prod 1 = 0 + a * b
c prod * c = c
* continue
d prod * d = c * d
* continue
e prod * e = c * d* e
+ sum + prod 1 = 0 + a * b + c * d * e
f prod * f = f
+ sum + prod 1 = 0 + a * b + c * d * e + f
g prod * g = g
* continue
h prod * h = g * h

sum = a * b + c * d * e + f + g * h * i
= (a * b) + (c * d * e) + f + (g * h * i)

Rules:
initialize sum = 0, prod = 1
read one token at a time

If read number
prod *= number

if read *
continue

if read +
sum += prod
prod = 1

return sum + prod

Formula can’t end with * or +
Step away for
multiplication

g *h

a*b + c *d *e +f

29

In math, multiplication takes precedence
over addition

Read Sum Prod Notes
Start 0 1
a prod *a = a
* continue
b prod * b = a * b
+ sum + prod 1 = 0 + a * b
c prod * c = c
* continue
d prod * d = c * d
* continue
e prod * e = c * d* e
+ sum + prod 1 = 0 + a * b + c * d * e
f prod * f = f
+ sum + prod 1 = 0 + a * b + c * d * e + f
g prod * g = g
* continue
h prod * h = g * h
* continue

sum = a * b + c * d * e + f + g * h * i
= (a * b) + (c * d * e) + f + (g * h * i)

Rules:
initialize sum = 0, prod = 1
read one token at a time

If read number
prod *= number

if read *
continue

if read +
sum += prod
prod = 1

return sum + prod

Formula can’t end with * or +
Step away for
multiplication

g *h

a*b + c *d *e +f

30

In math, multiplication takes precedence
over addition

Read Sum Prod Notes
Start 0 1
a prod *a = a
* continue
b prod * b = a * b
+ sum + prod 1 = 0 + a * b
c prod * c = c
* continue
d prod * d = c * d
* continue
e prod * e = c * d* e
+ sum + prod 1 = 0 + a * b + c * d * e
f prod * f = f
+ sum + prod 1 = 0 + a * b + c * d * e + f
g prod * g = g
* continue
h prod * h = g * h
* continue
i prod * i = g * h * i

sum = a * b + c * d * e + f + g * h * i
= (a * b) + (c * d * e) + f + (g * h * i)

Rules:
initialize sum = 0, prod = 1
read one token at a time

If read number
prod *= number

if read *
continue

if read +
sum += prod
prod = 1

return sum + prod

Formula can’t end with * or +
Step away for
multiplication

g *h *i

a*b + c *d *e +f

31

In math, multiplication takes precedence
over addition

Read Sum Prod Notes
Start 0 1
a prod *a = a
* continue
b prod * b = a * b
+ sum + prod 1 = 0 + a * b
c prod * c = c
* continue
d prod * d = c * d
* continue
e prod * e = c * d* e
+ sum + prod 1 = 0 + a * b + c * d * e
f prod * f = f
+ sum + prod 1 = 0 + a * b + c * d * e + f
g prod * g = g
* continue
h prod * h = g * h
* continue
i prod * i = g * h * i

end sum + prod = 0 + a * b + c * d * e + f + g * h * i

sum = a * b + c * d * e + f + g * h * i
= (a * b) + (c * d * e) + f + (g * h * i)

Rules:
initialize sum = 0, prod = 1
read one token at a time

If read number
prod *= number

if read *
continue

if read +
sum += prod
prod = 1

return sum + prod

Formula can’t end with * or +
Return for
addition

Notice: only add
prod to sum on +

g *h *i

a*b + c *d *e +f

+

a*b + c *d *e +f + g*h*i

32

Agenda

1. Union and intersect

2. Math operator precedence

3. Query operator precedence

4. Activity

33

In TSE, AND takes precedence over OR,
step away to handle AND, step back for OR

counters_t *result = NULL
counters_t *temp = NULL
//Note: v = union, ^ = intersection
Read query one word at a time

If read a word (not AND or OR)
find counters for this word in index (index_find(index, word))
if temp == NULL

temp = counters for word
else

temp = temp ^ counters for word //intersect on AND
else if read OR

result = result v temp //union on OR
temp = NULL

else if read AND
continue to next word //implicit AND between words

Return result v temp //union

computer and science or biology or depth first

result = NULL
temp = NULL

./querier $loc/tse/tse-output/toscrape-depth-2 $loc/tse/tse-output/toscrape-index-2

34

In TSE, AND takes precedence over OR,
step away to handle AND, step back for OR
computer and science or biology or depth first

result = NULL
temp = NULL

counters_t *result = NULL
counters_t *temp = NULL
//Note: v = union, ^ = intersection
Read query one word at a time

If read a word (not AND or OR)
find counters for this word in index (index_find(index, word))
if temp == NULL

temp = counters for word
else

temp = temp ^ counters for word //intersect on AND
else if read OR

result = result v temp //union on OR
temp = NULL

else if read AND
continue to next word //implicit AND between words

Return result v temp //union

35

In TSE, AND takes precedence over OR,
step away to handle AND, step back for OR

Query: computer
Matches 2 documents (ranked):
score 7 doc 380:
score 2 doc 166:

computer and science or biology or depth first

result = NULL
temp = NULL (380,7) (166,2)

counters_t *result = NULL
counters_t *temp = NULL
//Note: v = union, ^ = intersection
Read query one word at a time

If read a word (not AND or OR)
find counters for this word in index (index_find(index, word))
if temp == NULL

temp = counters for word
else

temp = temp ^ counters for word //intersect on AND
else if read OR

result = result v temp //union on OR
temp = NULL

else if read AND
continue to next word //implicit AND between words

Return result v temp //union

Step away to calculate AND
in temp

36

In TSE, AND takes precedence over OR,
step away to handle AND, step back for OR
computer and science or biology or depth first

result = NULL
temp = (380,7) (166,2)

counters_t *result = NULL
counters_t *temp = NULL
//Note: v = union, ^ = intersection
Read query one word at a time

If read a word (not AND or OR)
find counters for this word in index (index_find(index, word))
if temp == NULL

temp = counters for word
else

temp = temp ^ counters for word //intersect on AND
else if read OR

result = result v temp //union on OR
temp = NULL

else if read AND
continue to next word //implicit AND between words

Return result v temp //union

Step away to calculate AND
in temp

37

In TSE, AND takes precedence over OR,
step away to handle AND, step back for OR
computer and science or biology or depth first

result = NULL
temp = (380,7) (166,2)

counters_t *result = NULL
counters_t *temp = NULL
//Note: v = union, ^ = intersection
Read query one word at a time

If read a word (not AND or OR)
find counters for this word in index (index_find(index, word))
if temp == NULL

temp = counters for word
else

temp = temp ^ counters for word //intersect on AND
else if read OR

result = result v temp //union on OR
temp = NULL

else if read AND
continue to next word //implicit AND between words

Return result v temp //union

Query: science
Matches 129 documents (ranked):
score 9 doc 27:
score 6 doc 55:
score 6 doc 248:
score 4 doc 380:
<snip>

Step away to calculate AND
in temp

38

In TSE, AND takes precedence over OR,
step away to handle AND, step back for OR
computer and science or biology or depth first

result = NULL
temp = (380,7) (166,2)

counters_t *result = NULL
counters_t *temp = NULL
//Note: v = union, ^ = intersection
Read query one word at a time

If read a word (not AND or OR)
find counters for this word in index (index_find(index, word))
if temp == NULL

temp = counters for word
else

temp = temp ^ counters for word //intersect on AND
else if read OR

result = result v temp //union on OR
temp = NULL

else if read AND
continue to next word //implicit AND between words

Return result v temp //union

Query: science
Matches 129 documents (ranked):
score 9 doc 27:
score 6 doc 55:
score 6 doc 248:
score 4 doc 380:
<snip>

temp ^ science //intersect: take min of counts
score 4 doc 380:

Step away to calculate AND
in temp

39

In TSE, AND takes precedence over OR,
step away to handle AND, step back for OR
computer and science or biology or depth first

result = NULL
temp = (380,4) (166,2)

counters_t *result = NULL
counters_t *temp = NULL
//Note: v = union, ^ = intersection
Read query one word at a time

If read a word (not AND or OR)
find counters for this word in index (index_find(index, word))
if temp == NULL

temp = counters for word
else

temp = temp ^ counters for word //intersect on AND
else if read OR

result = result v temp //union on OR
temp = NULL

else if read AND
continue to next word //implicit AND between words

Return result v temp //union

Query: science
Matches 129 documents (ranked):
score 9 doc 27:
score 6 doc 55:
score 6 doc 248:
score 4 doc 380:
<snip>

temp ^ science //intersect: take min of counts
score 4 doc 380:

Step away to calculate AND
in temp

40

In TSE, AND takes precedence over OR,
step away to handle AND, step back for OR
computer and science or biology or depth first

result = (380,4)
temp = NULL

counters_t *result = NULL
counters_t *temp = NULL
//Note: v = union, ^ = intersection
Read query one word at a time

If read a word (not AND or OR)
find counters for this word in index (index_find(index, word))
if temp == NULL

temp = counters for word
else

temp = temp ^ counters for word //intersect on AND
else if read OR

result = result v temp //union on OR
temp = NULL

else if read AND
continue to next word //implicit AND between words

Return result v temp //union

result = result v science //union: take sum of counts
score 4 doc 380:

temp = NULL

Step back to calculate OR in
result

41

In TSE, AND takes precedence over OR,
step away to handle AND, step back for OR
computer and science or biology or depth first

result = (380,4)
temp = NULL (40,2) (240,2) (58,1)

counters_t *result = NULL
counters_t *temp = NULL
//Note: v = union, ^ = intersection
Read query one word at a time

If read a word (not AND or OR)
find counters for this word in index (index_find(index, word))
if temp == NULL

temp = counters for word
else

temp = temp ^ counters for word //intersect on AND
else if read OR

result = result v temp //union on OR
temp = NULL

else if read AND
continue to next word //implicit AND between words

Return result v temp //union

Query: biology
Matches 3 documents (ranked):
score 2 doc 40:
score 2 doc 240
score 1 doc 58:

Step away to calculate AND
in temp

42

In TSE, AND takes precedence over OR,
step away to handle AND, step back for OR
computer and science or biology or depth first

result = (380,4) (40,2) (240,2) (58,1)
temp = NULL

counters_t *result = NULL
counters_t *temp = NULL
//Note: v = union, ^ = intersection
Read query one word at a time

If read a word (not AND or OR)
find counters for this word in index (index_find(index, word))
if temp == NULL

temp = counters for word
else

temp = temp ^ counters for word //intersect on AND
else if read OR

result = result v temp //union on OR
temp = NULL

else if read AND
continue to next word //implicit AND between words

Return result v temp //union

result = result v temp //union: take sum of counts
temp = NULL

Step back to calculate OR in
result

43

In TSE, AND takes precedence over OR,
step away to handle AND, step back for OR
computer and science or biology or depth first

result = (380,4) (40,2) (240,2) (58,1)
temp = NULL (161,2) (318,2) (385,2) (330,1)

counters_t *result = NULL
counters_t *temp = NULL
//Note: v = union, ^ = intersection
Read query one word at a time

If read a word (not AND or OR)
find counters for this word in index (index_find(index, word))
if temp == NULL

temp = counters for word
else

temp = temp ^ counters for word //intersect on AND
else if read OR

result = result v temp //union on OR
temp = NULL

else if read AND
continue to next word //implicit AND between words

Return result v temp //union

Query: depth
Matches 4 documents (ranked):
score 2 doc 161:
score 2 doc 318:
score 2 doc 385:
score 1 doc 330:

Step away to calculate AND
in temp

44

In TSE, AND takes precedence over OR,
step away to handle AND, step back for OR
computer and science or biology or depth first

result = (380,4) (40,2) (240,2) (58,1)
temp = (161,2) (318,2) (385,2) (330,1)

counters_t *result = NULL
counters_t *temp = NULL
//Note: v = union, ^ = intersection
Read query one word at a time

If read a word (not AND or OR)
find counters for this word in index (index_find(index, word))
if temp == NULL

temp = counters for word
else

temp = temp ^ counters for word //intersect on AND
else if read OR

result = result v temp //union on OR
temp = NULL

else if read AND
continue to next word //implicit AND between words

Return result v temp //union

Query: first
Matches 131 documents (ranked):
score 8 doc 27:
score 6 doc 37
score 6 doc 478:
<snip>
score 2 doc 385:
<snip> Step away to calculate AND

in temp
Implicit AND

45

In TSE, AND takes precedence over OR,
step away to handle AND, step back for OR
computer and science or biology or depth first

result = (380,4) (40,2) (240,2) (58,1)
temp = (161,2) (318,2) (385,2) (330,1)

counters_t *result = NULL
counters_t *temp = NULL
//Note: v = union, ^ = intersection
Read query one word at a time

If read a word (not AND or OR)
find counters for this word in index (index_find(index, word))
if temp == NULL

temp = counters for word
else

temp = temp ^ counters for word //intersect on AND
else if read OR

result = result v temp //union on OR
temp = NULL

else if read AND
continue to next word //implicit AND between words

Return result v temp //union

Query: first
Matches 131 documents (ranked):
score 8 doc 27:
score 6 doc 37
score 6 doc 478:
<snip>
score 2 doc 385:
<snip>

temp ^ first //intersect: take min of counts
score 2 doc 385:

Step away to calculate AND
in temp

46

In TSE, AND takes precedence over OR,
step away to handle AND, step back for OR
computer and science or biology or depth first

result = (380,4) (40,2) (240,2) (58,1)
temp = (161,2) (318,2) (385,2) (330,1)

counters_t *result = NULL
counters_t *temp = NULL
//Note: v = union, ^ = intersection
Read query one word at a time

If read a word (not AND or OR)
find counters for this word in index (index_find(index, word))
if temp == NULL

temp = counters for word
else

temp = temp ^ counters for word //intersect on AND
else if read OR

result = result v temp //union on OR
temp = NULL

else if read AND
continue to next word //implicit AND between words

Return result v temp //union

Query: first
Matches 131 documents (ranked):
score 8 doc 27:
score 6 doc 37
score 6 doc 478:
<snip>
score 2 doc 385:
<snip>

temp ^ first //intersect: take min of counts
score 2 doc 385:

Step away to calculate AND
in temp

47

In TSE, AND takes precedence over OR,
step away to handle AND, step back for OR
computer and science or biology or depth first

result = (380,4) (40,2) (240,2) (385,2) (58,1)
temp = (385,2)

counters_t *result = NULL
counters_t *temp = NULL
//Note: v = union, ^ = intersection
Read query one word at a time

If read a word (not AND or OR)
find counters for this word in index (index_find(index, word))
if temp == NULL

temp = counters for word
else

temp = temp ^ counters for word //intersect on AND
else if read OR

result = result v temp //union on OR
temp = NULL

else if read AND
continue to next word //implicit AND between words

Return result v temp //union

result = result v temp //union: take sum of counts

Step back to calculate OR in
result

48

In TSE, AND takes precedence over OR,
step away to handle AND, step back for OR
computer and science or biology or depth first

result = (380,4) (40,2) (240,2) (385,2) (58,1)
temp = (385,2)

counters_t *result = NULL
counters_t *temp = NULL
//Note: v = union, ^ = intersection
Read query one word at a time

If read a word (not AND or OR)
find counters for this word in index (index_find(index, word))
if temp == NULL

temp = counters for word
else

temp = temp ^ counters for word //intersect on AND
else if read OR

result = result v temp //union on OR
temp = NULL

else if read AND
continue to next word //implicit AND between words

Return result v temp //union

result = result v temp //union: take sum of counts

Query: computer and science or biology or depth first
Matches 5 documents (ranked):
score 4 doc 380:
score 2 doc 40:
score 2 doc 240:
score 2 doc 385:
score 1 doc 58:

Step back to calculate OR in
result

How to rank?
• Loop over result, find

largest and print
• Set largest count to 0
• Loop over result and find

next largest
• Repeat

49

Agenda

1. Union and intersect

2. Math operator precedence

3. Query operator precedence

4. Activity

50

51

set_iterate2.c demonstrated UNION of
two sets
68 /* Merge the second set into the first set;
69 * the second set is unchanged.
70 */
71 static void
72 set_merge(set_t *setA, set_t *setB)
73 {
74 set_iterate(setB, setA, set_merge_helper);
75 }
76
77 /* Consider one item for insertion into the other set.
78 * If the other set does not contain the item, insert it;
79 * otherwise, update the other set's item with sum of item values.
80 */
81 static void
82 set_merge_helper(void *arg, const char *key, void *item)
83 {
84 set_t *setA = arg;
85 int *itemB = item;
86
87 // find the same key in setA
88 int *itemA = set_find(setA, key);
89 if (itemA == NULL) {
90 // not found: insert it
91 set_insert(setA, key, intsave(*itemB));
92 printf("\t%s added\n", key);
93 } else {
94 // add to the existing value
95 *itemA += *itemB;
96 printf("\t%s exists\n", key);
97 }
98 }

Merge two sets, setB into setA
• Iterate over setB
• For each node in setB, pass setA as a

parameter (arg)
• Pass function to merge (merge_helper)
Store result in setA

void
161 set_iterate(set_t* set, void* arg,
162 void (*itemfunc)(void* arg, const char* key, void* item))
163 {
164 if (set != NULL && itemfunc != NULL) {
165 // call itemfunc with arg, on each item
166 for (setnode_t* node = set->head; node != NULL; node = node->next) {
167 (*itemfunc)(arg, node->key, node->item);
168 }
169 }
170 }

Cast arg as
set (setA)

In set_iterate
• Loop over all nodes
• Pass setB’s key and item

to merge_helper

Get key and item from setB node

If setB’s key not in setA
• insert setB’s key

and item to setA
else setB’s key in setA
• add items together

For TSE we will add
document counts for
UNION (OR)

52

counters_intersect.c demonstrated the
INTERSECTION of two counters

// TODO: fill in this function
60 void counters_intersect(counters_t* ct1, counters_t* ct2)
61 {
62 mem_assert(ct1, "counters 1 invalid");
63 mem_assert(ct2, "counters 2 invalid");
64
65 struct twocts args = {ct1, ct2};
66 counters_iterate(ct1, &args, intersect_helper);
67 }
68
69 void intersect_helper(void *arg, const int key, const int count)
70 {
71 struct twocts *two = arg;
72
73 counters_set(two->result, key, min(count, counters_get(two->another, key)));
74 }

Intersect two counters, ct1
and ct2
• Iterate over ct1
• For each node in ct1, pass

ct1 and ct2 as arg
parameter in struct with
two counters

• Pass function to intersect
(intersect_helper)

Store result in ct1

14 struct twocts {
15 counters_t *result;
16 counters_t *another;
17 };
.
.
.

Cast arg as struct

Update first counter in struct (ct1)
• Set ct1’s key to min of ct1’s value or ct2’s value

Remember,
counters_get
returns 0 if key not
found

For TSE we will min
document counts in
intersect (AND)

53

54

In math, multiplication takes precedence
over addition

sum = a * b + c * d * e + f + g * h * i = (a * b) + (c * d * e) + f + (g * h * i)
becomes
sum = 0

prod = 1
prod = prod * a
prod = prod * b

sum = sum + prod
prod = 1
prod = prod * c
prod = prod * d
prod = prod * e

sum = sum + prod
prod = 1
prod = prod * f

sum = sum + prod
prod = 1
prod = prod * g
prod = prod * h
prod = prod * I

sum = sum + prod

Track
• sum starting at 0
• prod starting at 1

If encounter term or multiplication,
multiply prod by term

Add prod to sum when
encounter addition
Reset prod to 1

If encounter term or multiplication,
multiply prod by term

NOTICE: we never add anything to sum other than prod

Can think of “stepping away” to do multiplication and
returning for addition

55

In TSE, AND takes precedence over OR
Query: computer science or algorithm or depth first

= (computer AND science) OR algorithm OR (depth AND first)

Can think of “stepping away” to do AND (intersection) and returning to do OR (union)
counters_t andSequence = NULL; //step away to calculate AND sequence
counters_t orSequence = NULL; //store final result combining OR sequences

Step away to calculate AND in andSequence
computer: andSequence = find_index(index, “computer”)
science: INTERSECT(andSequence, find_index(index, “science”)

OR (step back to merge andSequence with orSequence)
UNION(orSequence, andSequence) //add counts, store results in orSequence
andSequence = NULL

Step away to calculate AND in andSequence
algorithm: andSequence = find_index(index, “algorithm)

OR (step back to merge andSequence with orSequence)
UNION(orSequence, andSequence) //add counts, store results in orSequence
andSequence = NULL

Step away to calculate AND in andSequence
depth: andSequence = find_index(index, “depth”)
first: INTERSECT(andSequence, find_index(index, “first”)

All words process (step back to merge andSequence with orSequence)
UNION(orSequence, andSequence) //add counts, store results in orSequence
return orSequence

Accumulate
results in
orSequence

