
CS 50:
Software Design and Implementation

Final Project

2

Agenda

1. Project details

2. Implementation

3. Grading

4. Tips

3

Project teams are on Canvas under Pages
Team Members Team Members

2 Chowdhary, Pratim 10 Cargill, Luke
Gathoni, Jackline Chen, Yuanhao
Harris, Paige Kiplagat, Ian
Marden, Ella Yu, Fangzhou

3 Kim, Ian 11 Agashe, Atharv
Miraz, Muhtasim Chiang, Brian
Rincon, Alejo Debs, Abdul Hadi
Twagizihirwe, Aimee Kevine Jbeniani, Lobna

4 D'avanzo, John 12 Fick, Alexander
Nakai, Paige Luo, Di
Owino, Maxwell Olson, Jakob
Rincon, Marco Suarez Burgos, Juan

5 Balkan, William 13 Elliott, Will
Hochschild, Isabella Park, Sookyoung
Mbesa, Muthoni Tucker, Logan
Moyo, Michael Turner, Grace

6 Gottschalk, Julia 14 Doyle, Rory
Liu, Helen Roe, Nathaniel
Toppan, Macy Rosenberg, Elias
Ye, Alexander Vogel, Charles

7 Chen, Emily 15 Jafarnia, Jon
Desir, Richard Lee, Youngjoo
Jha, Ishika Mwaniki, Walter
Li, Jessie Stropkay, Harrison

8 Cavdaroglu, Barkin 16 Anderson, Ravin
Hajjeh, Aya Capone, Matthew
Lampert, Daniel Fang, Jonathan
Pu, Yihan (Elaine) Jha, Kunal

9 Chantzi, Nikoleta
Hu, Wanxin
Lu, Eric
Zhao, Jennifer

Canvas will have the
latest if there are any
changes!

Pick one person to
accept the assignment,
then grant others
access to GitHub

4

Use reinforcement learning to play the
game of 21

Reinforcement learning
• Machine learning technique
• Agent:

• Observes the state of the
environment

• Takes an action based on its
observation

• Receives a reward based on its
action

• Explore (training) phase:
• Try random actions in each state
• Keep track of average reward for

each state

• Exploit (playing) phase:
• Choose the action with the

highest average reward in each
state

5

21 (aka blackjack) is played with a dealer
and one or more players

21
• Player initially dealt two cards face up
• Dealer dealt one card face down, one card

face up
• Objective: get as close to 21 points as

possible without going over
• Points are based on cards:

• Numbered cards (2-10) points are
same as number

• Face cards (Jack, Queen, King) are
worth 10 points

• Ace is worth either 1 or 11 points
(can change if more favorable)

• Sum points for each card to get total points
• Player actions:

• HIT: take another card
• STAND: stop taking cards

• Dealer actions:
• Takes cards after all players finish
• HITs until 17 points or more

Outcomes:
• BUST – player has more than 21 points

(dealer does not take cards if all players
bust)

• WIN – dealer busts or non-busted player
has more points than non-busted dealer

• LOOSE – non-busted player has fewer
points than non-busted dealer

• PUSH – non-busted player and non-
busted dealer have same points

• Reward:
• +1 WIN
• -1 LOOSE or BUST
• 0 PUSH

• Give reward to each action in a round
• Player has Five of Diamonds and Six

of Clubs cards (11 points) and HITs
• Gets Three of Hearts (14 points) and

HITs again
• Gets Seven of Spades (21 points) and

STANDS
• Each HIT/STAND decision should get

reward

Players observe cards, make decision, get
reward

Reinforcement learning
• Players observe the state of the

environment
• Player’s two cards
• Dealer’s face up cards

• Strategy: might choose to STAND if dealer
has a “bad” card
• Dealer has a Six of Clubs
• Player has Four of Hearts and Eight of

Diamonds (12 points)
• Assume dealer’s face down card is a 10
• If true, dealer must HIT 16, will BUST if

next card is 6 or greater
• Training phase

• Randomly HIT or STAND in each state
• Track average reward for decisions

made over thousands of hands

7

Training: play many hands and track
average reward in Q matrix

12 13 14 15 16 17 18 19 20

2

3

…

11

Player points

De
al

er
 p

oi
nt

s
Q matrix

12 13 14 15 16 17 18 19 20

2

3

…

11

Player points

De
al

er
 p

oi
nt

s

Average reward if HIT

Average reward if STAND

Use a three-
dimensional
array
• Player

points
• Dealer

points
• Action

(HIT or
STAND)

See course
web page for
tips on
quickly
calculating
average

You’ll have to deal with
a “soft” Ace also

8

Play phase: always choose the optimal
action, useful for end of class tournament

We will have a tournament
on the last day of class
• Your player program will

connect to my dealer
program

• Three tables of six teams
• Top two teams from

each table advance to
final round

• Ultimate champion will
be crowned!

• I’ve provided a pre-
compiled dealer (with
debug info) program for
testing

Ideas for prize for
champion?

9

Agenda

1. Project details

2. Implementation

3. Grading

4. Tips

10

Implement a dealer and a player module
that communicate over TCP/IP sockets

Dealer program
• Runs from the command line
• Takes number of games to play and port number as

parameters (mine also takes number players)
• Sets up a server socket listening for clients (players) to

connect
• Once a client connects (you need only handle one client,

mine will handle up to six players), pass messages back
and forth over socket
• Create a deck of 52 cards for each game
• Shuffle the deck
• Deal cards to the player by sending messages with

the card suit and rank as a string (e.g., “Seven of
Hearts”)

• Receive HIT/STAND decisions from the client
• Calculate the game’s result (WIN, LOOSE, BUST, or

PUSH) and send a message to the client
• Reset and play again (you decide on how many

games to play)
• Send a QUIT message to the client when done

11

Player program should have two modes:
training and play

Player program
• Runs from the command line taking the player’s

name, server’s IP address, and PORT number as
parameters

• Connects to the server using a socket
• Training mode - plays many games with the

dealer program
• Choosing random actions in each state
• Must be able to write its Q tables to disk and

read them back
• Must be able to continue training after

reading the Q table from disk
• Play mode - makes optimal decisions based on

what it learned during training
• Reads Q table written to disk during training
• Uses table to make optimal decisions for

each state (e.g., dealer and player cards)

IMPORTANT
PORT = 8080 + team number!

Otherwise, we might have
issues with other team’s
communications

12

Follow these message passing guidelines

Messages
• JOIN <player name>: player asks to join game,

player name should not have spaces (use
underscore for spaces e.g., team_one_is_here)

• BEGIN: to keep dealer and player in sync, if a
player gets a BEGIN message, they should reset for
a new game (e.g., discard any cards)

• CARD: dealer sends player a card, rank will be
strings “Two” through “Ten”, “Jack”, “Queen”,
“King”, or “Ace”, suit will be “Diamonds”, “Hearts”,
“Clubs” or “Spades” (e.g., “CARD Nine of Hearts”)

• DEALER: dealer tells player the Rank of Suit of
dealer’s face-up card (e.g., “DEALER Ace of Clubs”)

• DECISION: dealer asks the player to make a
decision (either HIT or STAND)

• HIT or STAND: player tells the dealer their decision
based on player’s cards and dealer’s face-up card
(repeat until STAND or BUST)

• RESULT: dealer tells the player if they WIN, LOOSE,
BUST, or PUSH (followed by BEGIN if playing
multiple rounds)

• QUIT: dealer tells player to quit

If STAND or BUST

RESULT WIN | LOOSE | BUST | PUSH

13

Agenda

1. Project details

2. Implementation

3. Grading

4. Tips

14

Grading
Points

Peer evaluation 10

Documentation 15

Testing 10

Coding style 10

Functionality
• Cards/game rules
• Dealer module
• Player module
• Network module

Total

10
14
12

9
45

Makefiles 5

Memory leaks (valgrind) 5

Total 100

Extra credit 10

Peer evaluation:
• Survey to get sense of each team

member’s contributions
• We can also see GitHub commits!

Extra credit:
• Implement a text-based Graphical

User Interface using ncurses
• Up to 10 points available

15

Agenda

1. Project details

2. Implementation

3. Grading

4. Tips

16

Tips
Define what module you’ll need, consider:

1. Cards module used by dealer and player that models
• Individual cards
• A deck of 52 cards
• A hand of cards, which are the cards a player or dealer holds

2. Network module handles
• Server set up/tear down
• Socket connection/close
• Message passing from dealer to player, and player to dealer

3. Dealer – handles game play, decides on outcome
4. Player – implements reinforcement learning, with train and play modes

(use my dealer program to test your player program for the tournament)

Think carefully about how modules will interact
• Write your documentation first so everyone knows what to deliver (think of

an interface from CS 10)

17

