
CS 50:
Software Design and Implementation

C basics

2

Agenda

1. Data types

2. Memory layout

3. Activity

3

C allows more precision when allocating
variables than other languages

Data type Print Description
void the void type
bool %d the Boolean type, representing true/false

4

C allows more precision when allocating
variables than other languages

Data type Print Description
void the void type
bool %d the Boolean type, representing true/false
Integers
char %c the character type

short %h the short integer type (sometimes shorter than int)

int %d the standard integer type

long %ld the longer integer type (sometimes longer than int)

5

C allows more precision when allocating
variables than other languages

Data type Print Description
void the void type
bool %d the Boolean type, representing true/false
Integers
char %c the character type

short %h the short integer type (sometimes shorter than int)

int %d the standard integer type

long %ld the longer integer type (sometimes longer than int)

Floating point

float %f the standard floating-point (real) type

double %f the extra precision floating-point type

long double %LF the super precision floating-point type

6

Integer types have different sizes and two
versions; define range of possible values

Data type
Typical
Size (bytes) Range

char 1 -128 to 127

unsigned char 1 0 to 255

short 2 -32,768 to 32,767

unsigned short 2 0 to 65,535

int 4 -2,147,483,648 to 2,147,483,647

unsigned int 4 0 to 4,294,967,295

long int 8 -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

unsigned long int 8 0 to 18,446,744,073,709,551,615

Adapted from https://www.tutorialspoint.com/cprogramming/c_data_types.htm

Signed version (default), most significant bit is sign (0=positive, 1=negative)
Unsigned version, most significant bit part of value (so 2 times larger possible)

Typical size, not guaranteed to
this width on every system!

Use sizeof() to check size

Integer types

7

Integer data types have a signed and an
unsigned version that affects their range

Data type
Typical
Size (bytes) Range

char 1 -128 to 127

unsigned char 1 0 to 255

int 4 -2,147,483,648 to 2,147,483,647

unsigned int 4 0 to 4,294,967,295

short 2 -32,768 to 32,767

unsigned short 2 0 to 65,535

long int 8 -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

unsigned long int 8 0 to 18,446,744,073,709,551,615

bool 1 bit 0 or 1

Adapted from https://www.tutorialspoint.com/cprogramming/c_data_types.htm

Include <stdbool.h> to get Boolean data type
Often see int used for Boolean where 0 = false, everything else is true

Integer types

8

Floating point data types can hold numeric
values with decimal components

Adapted from https://www.tutorialspoint.com/cprogramming/c_data_types.htm

Data type
Typical
size (bytes) Range Decimal places

float 4 1.2E-38 to 3.4E+38 6 decimal places

double 8 2.3E-308 to 1.7E+308 15 decimal places

long double 10 3.4E-4932 to 1.1E+4932 19 decimal places

Floating point types

9

Use sizeof to check how many bytes each
type takes
range.c

12 #include <stdio.h>
13 #include <stdlib.h>
14 #include <limits.h>
15 #include <float.h>
16 #include <stdbool.h>
17
18 int main(int argc, char** argv) {
19 //note: sizeof returns an unsigned long
20 printf("Integers\tBytes \tMin \t\tMax\n");
21 printf("boolean\t\t%ld\t%d\t\t%d\n",sizeof(bool),0,1);
22 printf("char\t\t%ld\t%d\t\t%d\n",sizeof(bool),CHAR_MIN,CHAR_MAX);
23 printf("short\t\t%ld\t%d\t\t%d\n",sizeof(short),SHRT_MIN,SHRT_MAX);
24 printf("int\t\t%ld\t%d\t%d\n",sizeof(int),INT_MIN,INT_MAX);
25 //casting long min and max as double for formatting in scientific notation
26 printf("long\t\t%ld\t%e\t%e\n",sizeof(long),(double)LONG_MIN,(double)LONG_MAX);
27
28 printf("\nFloating points\n");
29 printf("float\t\t%ld\t%e\t%e\n",sizeof(float),FLT_MIN,FLT_MAX);
30 printf("double\t\t%ld\t%e\t%e\n",sizeof(double),DBL_MIN,DBL_MAX);
31
32 return 0;
33 }

10

Use sizeof to check how many bytes each
type takes
range.c

12 #include <stdio.h>
13 #include <stdlib.h>
14 #include <limits.h>
15 #include <float.h>
16 #include <stdbool.h>
17
18 int main(int argc, char** argv) {
19 //note: sizeof returns an unsigned long
20 printf("Integers\tBytes \tMin \t\tMax\n");
21 printf("boolean\t\t%ld\t%d\t\t%d\n",sizeof(bool),0,1);
22 printf("char\t\t%ld\t%d\t\t%d\n",sizeof(bool),CHAR_MIN,CHAR_MAX);
23 printf("short\t\t%ld\t%d\t\t%d\n",sizeof(short),SHRT_MIN,SHRT_MAX);
24 printf("int\t\t%ld\t%d\t%d\n",sizeof(int),INT_MIN,INT_MAX);
25 //casting long min and max as double for formatting in scientific notation
26 printf("long\t\t%ld\t%e\t%e\n",sizeof(long),(double)LONG_MIN,(double)LONG_MAX);
27
28 printf("\nFloating points\n");
29 printf("float\t\t%ld\t%e\t%e\n",sizeof(float),FLT_MIN,FLT_MAX);
30 printf("double\t\t%ld\t%e\t%e\n",sizeof(double),DBL_MIN,DBL_MAX);
31
32 return 0;
33 }

$ mygcc range.c
$./a.out
Integers Bytes Min Max
boolean 1 0 1
char 1 -128 127
short 2 -32768 32767
int 4 -2147483648 2147483647
long 8 -9.223372e+18 9.223372e+18

Floating points
float 4 1.175494e-38 3.402823e+38
double 8 2.225074e-308 1.797693e+308

11

Use sizeof to check how many bytes each
type takes
range.c

12 #include <stdio.h>
13 #include <stdlib.h>
14 #include <limits.h>
15 #include <float.h>
16 #include <stdbool.h>
17
18 int main(int argc, char** argv) {
19 //note: sizeof returns an unsigned long
20 printf("Integers\tBytes \tMin \t\tMax\n");
21 printf("boolean\t\t%ld\t%d\t\t%d\n",sizeof(bool),0,1);
22 printf("char\t\t%ld\t%d\t\t%d\n",sizeof(bool),CHAR_MIN,CHAR_MAX);
23 printf("short\t\t%ld\t%d\t\t%d\n",sizeof(short),SHRT_MIN,SHRT_MAX);
24 printf("int\t\t%ld\t%d\t%d\n",sizeof(int),INT_MIN,INT_MAX);
25 //casting long min and max as double for formatting in scientific notation
26 printf("long\t\t%ld\t%e\t%e\n",sizeof(long),(double)LONG_MIN,(double)LONG_MAX);
27
28 printf("\nFloating points\n");
29 printf("float\t\t%ld\t%e\t%e\n",sizeof(float),FLT_MIN,FLT_MAX);
30 printf("double\t\t%ld\t%e\t%e\n",sizeof(double),DBL_MIN,DBL_MAX);
31
32 return 0;
33 }

$ mygcc range.c
$./a.out
Integers Bytes Min Max
boolean 1 0 1
char 1 -128 127
short 2 -32768 32767
int 4 -2147483648 2147483647
long 8 -9.223372e+18 9.223372e+18

Floating points
float 4 1.175494e-38 3.402823e+38
double 8 2.225074e-308 1.797693e+308

Chose the size that fits your needs

If you know you will not need large integer
numbers, can choose short (2 bytes) instead
of int (4 bytes)

12

Use sizeof to check how many bytes each
type takes
range.c

12 #include <stdio.h>
13 #include <stdlib.h>
14 #include <limits.h>
15 #include <float.h>
16 #include <stdbool.h>
17
18 int main(int argc, char** argv) {
19 //note: sizeof returns an unsigned long
20 printf("Integers\tBytes \tMin \t\tMax\n");
21 printf("boolean\t\t%ld\t%d\t\t%d\n",sizeof(bool),0,1);
22 printf("char\t\t%ld\t%d\t\t%d\n",sizeof(bool),CHAR_MIN,CHAR_MAX);
23 printf("short\t\t%ld\t%d\t\t%d\n",sizeof(short),SHRT_MIN,SHRT_MAX);
24 printf("int\t\t%ld\t%d\t%d\n",sizeof(int),INT_MIN,INT_MAX);
25 //casting long min and max as double for formatting in scientific notation
26 printf("long\t\t%ld\t%e\t%e\n",sizeof(long),(double)LONG_MIN,(double)LONG_MAX);
27
28 printf("\nFloating points\n");
29 printf("float\t\t%ld\t%e\t%e\n",sizeof(float),FLT_MIN,FLT_MAX);
30 printf("double\t\t%ld\t%e\t%e\n",sizeof(double),DBL_MIN,DBL_MAX);
31
32 return 0;
33 }

$ mygcc range.c
$./a.out
Integers Bytes Min Max
boolean 1 0 1
char 1 -128 127
short 2 -32768 32767
int 4 -2147483648 2147483647
long 8 -9.223372e+18 9.223372e+18

Floating points
float 4 1.175494e-38 3.402823e+38
double 8 2.225074e-308 1.797693e+308

Chose the size that fits your needs

Same for float (4 bytes) vs double (8 bytes)

13

Other data types include arrays, strings,
structs, and pointers

Array Contiguous block of memory that
holds multiple items of the same type
Zero-indexed

int myNumbers[] = {25, 50, 75, 100};
printf("%d", myNumbers[0]); //25

14

Other data types include arrays, strings,
structs, and pointers

Array Contiguous block of memory that
holds multiple items of the same type
Zero-indexed

int myNumbers[] = {25, 50, 75, 100};
printf("%d", myNumbers[0]); //25

String An array of characters, terminated by
a \0 character

char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0’};
printf(“%s\n”, greeting);

15

Other data types include arrays, strings,
structs, and pointers

Array Contiguous block of memory that
holds multiple items of the same type
Zero-indexed

int myNumbers[] = {25, 50, 75, 100};
printf("%d", myNumbers[0]); //25

String An array of characters, terminated by
a \0 character

char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0’};
printf(“%s\n”, greeting);

Struct A little like an object in Java, but
without code (data only)

struct Books {
char title[50];
char author[50]

};

16

Other data types include arrays, strings,
structs, and pointers

Array Contiguous block of memory that
holds multiple items of the same type
Zero-indexed

int myNumbers[] = {25, 50, 75, 100};
printf("%d", myNumbers[0]); //25

String An array of characters, terminated by
a \0 character

char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0’};
printf(“%s\n”, greeting);

Struct A little like an object in Java, but
without code (data only)

struct Books {
char title[50];
char author[50]

};

Pointer A variable that stores the address of
another variable

char *p;

Will cover these soon!

17

Agenda

1. Data types

2. Memory layout

3. Activity

18

Physical memory is addressed from low to
high

High address
(0xFFFFFFFF)

Low address
(0x00000000)

Physical address

Adapted from Computer and Internet Security by Du

19

When a process allocates memory, MMU
maps from the logical address to physical

High address
(0xFFFFFFFF)

Low address
(0x00000000)

Physical address

Process 1
MMU

Logical address

0x5000

Process 1

Adapted from Computer and Internet Security by Du

20

Another process can allocate same logical
address, but will map to different physical

High address
(0xFFFFFFFF)

Low address
(0x00000000)

Physical address

Process 1
MMU

Logical address

0x5000

Process 1

Process 2
MMU

Logical address

0x5000

Process 2

• Processes do not know exactly where they are in physical memory
• Process reference virtual address space as if it was all available to them
• MMU converts logical address to physical address in RAM

Adapted from Computer and Internet Security by Du

21

Virtual memory is laid out so that the heap
and stack grow toward each other

Stack

Text

Data

BSS

Heap

High address

Low address Program code
(read only)

Global variables initialized by
programmer (int a =3;)

Uninitialized and static global
variables (static int b;)

Dynamic memory (malloc)

Local variables
inside functions

Linux virtual memory layout

Adapted from Computer and Internet Security by Du

int x = 100; //allocated in data segment

void main() {
//allocated on stack
int a=2;
float b=2.5;

//allocated on heap
int *ptr = (int *)malloc(2*sizeof(int));

//values 5 and 6 stored on heap
ptr[0]=5;
ptr[1]=6;

//deallocate memory on heap
free(ptr);

}

22

Virtual memory is laid out so that the heap
and stack grow toward each other

Stack

Text

Data

BSS

Heap

High address

Linux virtual memory layout

Low address

Adapted from Computer and Internet Security by Du

int x = 100; //allocated in data segment

void main() {
//allocated on stack
int a=2;
float b=2.5;

//allocated on heap
int *ptr = (int *)malloc(2*sizeof(int));

//values 5 and 6 stored on heap
ptr[0]=5;
ptr[1]=6;

//deallocate memory on heap
free(ptr);

}

23

Virtual memory is laid out so that the heap
and stack grow toward each other

Stack

Text

Data

BSS

Heap

High address

Linux virtual memory layout

Low address

Adapted from Computer and Internet Security by Du

int x = 100; //allocated in data segment

void main() {
//allocated on stack
int a=2;
float b=2.5;

//allocated on heap
int *ptr = (int *)malloc(2*sizeof(int));

//values 5 and 6 stored on heap
ptr[0]=5;
ptr[1]=6;

//deallocate memory on heap
free(ptr);

}

24

Virtual memory is laid out so that the heap
and stack grow toward each other

Stack

Text

Data

BSS

Heap

High address

Linux virtual memory layout

Note: ptr is allocated on the stack,
memory it points to is on the heap

Low address

Adapted from Computer and Internet Security by Du

25

Frames are pushed onto the stack as
functions are called
Stack

Heap grows

void bar() {
…

}

void foo() {
bar();

}

void main() {
foo();

}

Stack grows

Execution begins in main()

Adapted from Computer and Internet Security by Du

26

Frames are pushed onto the stack as
functions are called
Stack

Heap grows

void bar() {
…

}

void foo() {
bar();

}

void main() {
foo();

}

Stack grows main

Execution begins in main()

main() parameters
and local variables
pushed onto stack
when execution
begins

Adapted from Computer and Internet Security by Du

27

Frames are pushed onto the stack as
functions are called
Stack

Heap grows

void bar() {
…

}

void foo() {
bar();

}

void main() {
foo();

}

Stack grows main

main() calls foo()

Adapted from Computer and Internet Security by Du

28

Frames are pushed onto the stack as
functions are called
Stack

Heap grows

void bar() {
…

}

void foo() {
bar();

}

void main() {
foo();

}

Stack grows main

foo foo() parameters and
local variables
pushed onto stack
when called by
main()

Return address to
main() also pushed
onto stack

Adapted from Computer and Internet Security by Du

29

Frames are pushed onto the stack as
functions are called
Stack

Heap grows

void bar() {
…

}

void foo() {
bar();

}

void main() {
foo();

}

Stack grows main

foo

Adapted from Computer and Internet Security by Du

foo() calls bar()

30

Frames are pushed onto the stack as
functions are called
Stack

Heap grows

void bar() {
…

}

void foo() {
bar();

}

void main() {
foo();

}

Stack grows main

foo

bar

Recursion works by pushing
new frames onto stack

Functions popped from
stack when they end

Adapted from Computer and Internet Security by Du

bar() parameters and
local variables
pushed onto stack
when called by foo()

Return address to
foo() also pushed
onto stack

31

Frames are pushed onto the stack as
functions are called
Stack

Heap grows

void bar() {
…

}

void foo() {
bar();

}

void main() {
foo();

}

Stack grows main

foo

Functions popped from
stack when they end

bar

Adapted from Computer and Internet Security by Du

bar() ends, popped
from stack

32

Frames are pushed onto the stack as
functions are called
Stack

Heap grows

void bar() {
…

}

void foo() {
bar();

}

void main() {
foo();

}

Stack grows main

foo
bar() ends, popped
from stack

Return address on
stack allows
execution to resume
where bar() was
called

Functions popped from
stack when they end

Adapted from Computer and Internet Security by Du

33

Frames are pushed onto the stack as
functions are called
Stack

Heap grows

void bar() {
…

}

void foo() {
bar();

}

void main() {
foo();

}

Stack grows main foo() ends, popped
from stack

Functions popped from
stack when they end

foo

Adapted from Computer and Internet Security by Du

34

Frames are pushed onto the stack as
functions are called
Stack

Heap grows

void bar() {
…

}

void foo() {
bar();

}

void main() {
foo();

}

Stack grows main

Functions popped from
stack when they end

foo() ends, popped
from stack

Return address on
stack allows
execution to resume
where foo() was
called

35

Frames are pushed onto the stack as
functions are called
Stack

Heap grows

void bar() {
…

}

void foo() {
bar();

}

void main() {
foo();

}

Stack grows main

Functions popped from
stack when they end

main() ends, popped
from stack

36

Static local variables are not stored on the
stack and retain value between calls

#include <stdio.h>

int f() {
static int i = 1;
i++;
return i;

}

int main() {
printf("%d\n", f());
printf("%d\n", f());
return 0;

}

$ mygcc -o static_test static_test.c
$./static_test
2
3

Static global variables and static functions can only
be called by functions in the same C program file in
which the static global variable or function is defined

Use extern keyword to access functions and variables
in another C file

We will soon get to multi-file programs!

Goes out of scope if not static
Static variable retains value between calls
Somewhat like global variable, but only visible in this function
Stored in Data segment not on stack, so does not get popped
from stack

static_test.c

37

If i is static, it is not allocated on the stack,
let’s confirm this is true

#include <stdio.h>

int f() {
static int i = 1;
i++;
return i;

}

int main() {
printf("%d\n", f());
printf("%d\n", f());
return 0;

}

$ mygcc -c -o static_test static_test.c
$ objdump -Sr static_test

static_test: file format elf64-x86-64

Disassembly of section .text:

0000000000000000 <f>:
#include <stdio.h>
/* static_test.c - demonstrate static local variables
*
*/
int f() {

0: f3 0f 1e fa endbr64
4: 55 push %rbp
5: 48 89 e5 mov %rsp,%rbp
static int i = 1;
i++;
8: 8b 05 00 00 00 00 mov 0x0(%rip),%eax # e <f+0xe>

a: R_X86_64_PC32 .data-0x4
e: 83 c0 01 add $0x1,%eax
11: 89 05 00 00 00 00 mov %eax,0x0(%rip) # 17 <f+0x17>

13: R_X86_64_PC32 .data-0x4
return i;

17: 8b 05 00 00 00 00 mov 0x0(%rip),%eax # 1d <f+0x1d>
19: R_X86_64_PC32 .data-0x4
}
1d: 5d pop %rbp
1e: c3 ret

static_test.c -c flag says stop after compile (do not link)

objdump program dumps executable
-Sr interleaves source code

i is in the data segment

38

If i is static, it is not allocated on the stack,
let’s confirm this is true

#include <stdio.h>

int f() {
static int i;// = 1;
i++;
return i;

}

int main() {
printf("%d\n", f());
printf("%d\n", f());
return 0;

}

$ mygcc -c -o static_test static_test.c
$ objdump -Sr static_test

static_test: file format elf64-x86-64

Disassembly of section .text:

0000000000000000 <f>:
#include <stdio.h>
/* static_test.c - demonstrate static local variables
*
*/
int f() {

0: f3 0f 1e fa endbr64
4: 55 push %rbp
5: 48 89 e5 mov %rsp,%rbp
static int i = 1;
i++;
8: 8b 05 00 00 00 00 mov 0x0(%rip),%eax # e <f+0xe>

a: R_X86_64_PC32 .bss-0x4
e: 83 c0 01 add $0x1,%eax
11: 89 05 00 00 00 00 mov %eax,0x0(%rip) # 17 <f+0x17>

13: R_X86_64_PC32 .bss-0x4
return i;

17: 8b 05 00 00 00 00 mov 0x0(%rip),%eax # 1d <f+0x1d>
19: R_X86_64_PC32 .bss-0x4
}
1d: 5d pop %rbp
1e: c3 ret

static_test.c Not initializing puts i in the BSS segment

i is in the BSS segment

39

Agenda

1. Data types

2. Memory layout

3. Activity

40

