
CS 50:
Software Design and Implementation

File I/O



2

A note about Lab 2

word.c [filename] [filename] …
A dash (–) indicates read from stdin instead of a file

Example:
./words file1 – file2

1. Read file1 and print all the words in the file with one word per line
2. Read from stdin (due to the dash) instead of a file and print all words input, 

each word on its own line (use control-D to end input from stdin)
3. Read file2 and print all the words in the file with one word per line 



3

Agenda

1. Write files

2. Read files

3. Activity



4

stdin, stdout, and stderr are always 
available for input and output
#include <stdio.h>

int main() {
int class = 50;
char department[] = "Computer Science";

fprintf(stdout, "Course: %s %03d\n", department, class);
fprintf(stderr, "Message to stderr for class %03d\n",class);

return 0;
}

$ mygcc stdout_stderr.c
$ ./a.out
Course: Computer Science 050
Message to stderr for class 050

stdin, stdout, stderr do not need 
to be opened or closed

fprintf prints formatted output to a file
• stdin, stdout, stderr are treated as files by Linux
• fprintf(stdout, “…”) is equivalent to printf(“…”)
• printf prints to stdout
• fprintf can print to files too

“%03d” left pads with 0 for three places
If class == 1 would become 001

stdout_stderr.c

See man 3 fprintf
for more details on 
format specifiers



5

Use fopen to open a file, make sure to 
check the operation succeeded!

#include<stdio.h>

int main(int argc, char *argv[]) {
FILE *fp;

printf("Trying to open %s\n",argv[1]);
fp = fopen(argv[1],"r");
if (fp == NULL) {

fprintf(stderr,"Unable to open %s\n",argv[1]);
return 1;

}
printf(”Successfully opened %s\n", argv[1]);
fclose(fp);

return 0;
}

Create file pointer fp

Attempt to open file

Check if 
operation 
succeeded

Returns 
NULL if not

Here we print to stderr if 
operations fails, then exit 
with status code 1

Remember status code 0 
means successful 
completionDon’t forget to close the 

file when done

Modes:
• r = read
• w=write
• r+ = read/write
• a=append

open_file.c

Defensive programming, 
assume operation failed!



6

fprintf can write to files, here we write 
to the file name given by argv[1] 
#include<stdio.h>
#include<stdbool.h>

char class[] = "CS50";

bool check_params(int expected, int received) {
if (received != expected) {

fprintf(stderr,"Expecting %i parameters, but got %i\n",expected,received);
return false;

}
return true;

}

int main(int argc, char *argv[]) {
FILE *fp;

//check parameters
if (!check_params(2, argc)) {

return 1;
}

//open file
fp = fopen(argv[1],"w");
if (fp == NULL) {

fprintf(stderr,"Unable to open %s\n",argv[1]);
return 2;

}

//write data
fprintf(fp,"This is the first line\n");
fprintf(fp,"This is the second line\n");
fprintf(fp,"The class name is %s\n",class);

fclose(fp);
return 0;

}

stdbool.h gives boolean data types

Check that we got expected number of  
parameters
Write to stderr if not, then exit
Defensive!

“w” opens for writing
Creates or erases existing file

Return different status 
codes for different errors
Defensive!

fprintf writes to file 
pointed to by fp

write_file.c



7

fprintf can write to files, here we write 
to the file name given by argv[1] 

$ mygcc write_file.c
$ ./a.out test.txt
$ cat test.txt
This is the first line
This is the second line
The class name is CS50

write_file.c

Lines written to file with name 
given by parameter 1

#include<stdio.h>
#include<stdbool.h>

char class[] = "CS50";

bool check_params(int expected, int received) {
if (received != expected) {

fprintf(stderr,"Expecting %i parameters, but got %i\n",expected,received);
return false;

}
return true;

}

int main(int argc, char *argv[]) {
FILE *fp;

//check parameters
if (!check_params(2, argc)) {

return 1;
}

//open file
fp = fopen(argv[1],"w");
if (fp == NULL) {

fprintf(stderr,"Unable to open %s\n",argv[1]);
return 2;

}

//write data
fprintf(fp,"This is the first line\n");
fprintf(fp,"This is the second line\n");
fprintf(fp,"The class name is %s\n",class);

fclose(fp);
return 0;

}



8

Several functions can write to a file and 
return the number of characters written
Function Description

int fputc( int c, FILE *fp ); Writes the character c, cast to an unsigned 
char, to fp

From man [command]



9

Several functions can write to a file and 
return the number of characters written
Function Description

int fputc( int c, FILE *fp ); Writes the character c, cast to an unsigned 
char, to fp

int putc(int c, FILE *fp); Equivalent to fputc()

From man [command]



10

Several functions can write to a file and 
return the number of characters written
Function Description

int fputc( int c, FILE *fp ); Writes the character c, cast to an unsigned 
char, to fp

int putc(int c, FILE *fp); Equivalent to fputc()

int fputs( const char *s, FILE *fp ); Writes the string s to fp, without its terminating 
null byte ('\0')

From man [command]



11

Several functions can write to a file and 
return the number of characters written
Function Description

int fputc( int c, FILE *fp ); Writes the character c, cast to an unsigned 
char, to fp

int putc(int c, FILE *fp); Equivalent to fputc()

int fputs( const char *s, FILE *fp ); Writes the string s to fp, without its terminating 
null byte ('\0')

int puts(const char *s); Writes the string s and a trailing newline to 
stdout (similar to System.out.println in Java)

From man [command]



12

Several functions can write to a file and 
return the number of characters written
Function Description

int fputc( int c, FILE *fp ); Writes the character c, cast to an unsigned 
char, to fp

int putc(int c, FILE *fp); Equivalent to fputc()

int fputs( const char *s, FILE *fp ); Writes the string s to fp, without its terminating 
null byte ('\0')

int puts(const char *s); Writes the string s and a trailing newline to 
stdout (similar to System.out.println in Java)

int fprintf(FILE *fp, const char *format, ...); Write output to fp; if fp is stdout, same as 
printf

From man [command]



13

Several functions can write to a file and 
return the number of characters written
Function Description

int fputc( int c, FILE *fp ); Writes the character c, cast to an unsigned 
char, to fp

int putc(int c, FILE *fp); Equivalent to fputc()

int fputs( const char *s, FILE *fp ); Writes the string s to fp, without its terminating 
null byte ('\0')

int puts(const char *s); Writes the string s and a trailing newline to 
stdout (similar to System.out.println in Java)

int fprintf(FILE *fp, const char *format, ...); Write output to fp; if fp is stdout, same as 
printf

int printf(const char *format, ...); Write output to stdout

From man [command]



14

Several functions can write to a file and 
return the number of characters written
Function Description

int fputc( int c, FILE *fp ); Writes the character c, cast to an unsigned 
char, to fp

int putc(int c, FILE *fp); Equivalent to fputc()

int fputs( const char *s, FILE *fp ); Writes the string s to fp, without its terminating 
null byte ('\0')

int puts(const char *s); Writes the string s and a trailing newline to 
stdout (similar to System.out.println in Java)

int fprintf(FILE *fp, const char *format, ...); Write output to fp; if fp is stdout, same as 
printf

int printf(const char *format, ...); Write output to stdout

int snprintf(char *str, size_t size, const char 
*format, ...);

Write a maximum of size bytes to the character 
string str

From man [command]



15

Agenda

1. Write files

2. Read files

3. Activity



16

Files can be read line by line, here we read 
the file name given by argv[1]
const int MAX_SIZE = 100;

bool check_params(int expected, int received) {
if (received != expected) {

fprintf(stderr,"Expecting %i parameters, but got %i\n",expected,received);
return false;

}
return true;

}

int main(int argc, char *argv[]) {
FILE* fp;
char buffer[MAX_SIZE];

//check parameters
if (!check_params(2,argc)) {

return 1;
}

//open file
fp = fopen(argv[1], "r");
if (fp == NULL) {

perror("Error opening file");
return 2;

}

//read line by line
while(fgets(buffer, MAX_SIZE, fp) != NULL) {

printf("%s",buffer);
}

fclose(fp);
return 0;

}

Buffer size in characters

Open file for reading with “r”
Check for error

perror will print your message, plus a 
description of the error (ex. file not found)

Read fp until: 
• end of line 
• end of file
• MAX_SIZE characters read

FOR GOODNESS SAKE DO NOT USE gets()!
Why not?
Possible buffer overflow because size not 
checked

read_file_line_by_line.c



17

Files can be read line by line, here we read 
the file name given by argv[1]
const int MAX_SIZE = 100;

bool check_params(int expected, int received) {
if (received != expected) {

fprintf(stderr,"Expecting %i parameters, but got %i\n",expected,received);
return false;

}
return true;

}

int main(int argc, char *argv[]) {
FILE* fp;
char buffer[MAX_SIZE];

//check parameters
if (!check_params(2,argc)) {

return 1;
}

//open file
fp = fopen(argv[1], "r");
if (fp == NULL) {

perror("Error opening file");
return 2;

}

//read line by line
while(fgets(buffer, MAX_SIZE, fp) != NULL) {

printf("%s",buffer);
}

fclose(fp);
return 0;

}

Buffer size in characters

Open file for reading with “r”
Check for error

Read fp until: 
• end of line 
• end of file
• MAX_SIZE characters read

$ mygcc read_file_by_line.c
$ ./a.out test.txt
This is the first line
This is the second line
The class name is CS50

read_file_line_by_line.c

perror will print your message, plus a 
description of the error (ex. file not found)



<snip>
int main(int argc, char *argv[]) {

FILE* fp;

//check parameters
if (!check_params(2,argc)) {

return 1;
}

//open file
fp = fopen(argv[1], "r");
if (fp == NULL) {

perror("Error opening file");
return 2;

}

//read char by char
while(!feof(fp)) {

printf("%c",(char)fgetc(fp));
}

fclose(fp);
return 0;

}

18

Files can also be read char by char

Loop until end of file

Read int and cast to char

No need to set buffer size here, reading one char at a time
See lecture extra on course web page

read_file_character_by_character.c

Open file and check for errors



19

Formatted data can be read using fscanf
read_formatted_data.c

$ cat > data.csv
Height,Width
10,5
15,7
20,3 
$ cat data.csv
Height,Width
10,5
15,7
20,3

Make data file 
with header 
row then two 
variables per 
line in csv 
format

Check file 
contain what 
we expect

27 int main(int argc, char *argv[]) {
28 FILE* fp;
29 int height, width;
30
31 //check parameters
32 if (!check_params(2,argc)) {
33 return 1;
34 }
35
36 //open file
37 fp = fopen(argv[1], "r");
38 if (fp == NULL) {
39 perror("Error opening file");
40 return 2;
41 }
42 //read header until new line or EOF
43 char c = fgetc(fp);
44 while (!feof(fp) && c != '\n') {
45 putc(c,stdout);
46 c = fgetc(fp);
47 }
48 printf("\n");
49
50 //read formatted data
51 int count = fscanf(fp,"%d,%d",&height, &width);
52 while(count == 2) {
53 printf("%d %d\n",height, width);
54 count = fscanf(fp,"%d,%d",&height, &width);
55 }
56
57 fclose(fp);
58 return 0;
59 }



27 int main(int argc, char *argv[]) {
28 FILE* fp;
29 int height, width;
30
31 //check parameters
32 if (!check_params(2,argc)) {
33 return 1;
34 }
35
36 //open file
37 fp = fopen(argv[1], "r");
38 if (fp == NULL) {
39 perror("Error opening file");
40 return 2;
41 }
42 //read header until new line or EOF
43 char c = fgetc(fp);
44 while (!feof(fp) && c != '\n') {
45 putc(c,stdout);
46 c = fgetc(fp);
47 }
48 printf("\n");
49
50 //read formatted data
51 int count = fscanf(fp,"%d,%d",&height, &width);
52 while(count == 2) {
53 printf("%d %d\n",height, width);
54 count = fscanf(fp,"%d,%d",&height, &width);
55 }
56
57 fclose(fp);
58 return 0;
59 }

20

Formatted data can be read using fscanf

Read and print 
header row

Pass address of variables to be changed with &

read_formatted_data.c

Open file and check for errors

$ cat > data.csv
Height,Width
10,5
15,7
20,3 
$ cat data.csv
Height,Width
10,5
15,7
20,3

Last class we used 
sscanf to scan a string, 
today we use fscanf to
scan a file

fscanf reads fp and converts 
input to two comma 
separated integers here

fscan returns the number of 
successful conversions and 
EOF at end of file



27 int main(int argc, char *argv[]) {
28 FILE* fp;
29 int height, width;
30
31 //check parameters
32 if (!check_params(2,argc)) {
33 return 1;
34 }
35
36 //open file
37 fp = fopen(argv[1], "r");
38 if (fp == NULL) {
39 perror("Error opening file");
40 return 2;
41 }
42 //read header until new line or EOF
43 char c = fgetc(fp);
44 while (!feof(fp) && c != '\n') {
45 putc(c,stdout);
46 c = fgetc(fp);
47 }
48 printf("\n");
49
50 //read formatted data
51 int count = fscanf(fp,"%d,%d",&height, &width);
52 while(count == 2) {
53 printf("%d %d\n",height, width);
54 count = fscanf(fp,"%d,%d",&height, &width);
55 }
56
57 fclose(fp);
58 return 0;
59 }

21

Formatted data can be read using fscanf

Read and print 
header row

Pass address of variables to be changed with &

fscanf reads fp and converts 
input to two comma 
separated integers here

fscan returns the number of 
successful conversions and 
EOF at end of file

read_formatted_data.c

Open file and check for errors

Last class we used 
sscanf to scan a string, 
today we use fscanf to 
scan a file

$ cat > data.csv
Height,Width
10,5
15,7
20,3 
$ cat data.csv
Height,Width
10,5
15,7
20,3
$ mygcc read_formatted_data.c
$ ./a.out data.csv
Height,Width
10 5
15 7
20 3



22

Several functions can read from a file
Function Description

int fgetc(FILE *fp); Reads the next character from fp and returns it as 
an unsigned char cast to an int, or EOF on end of 
file or error

From man [command]



23

Several functions can read from a file
Function Description

int fgetc(FILE *fp); Reads the next character from fp and returns it as 
an unsigned char cast to an int, or EOF on end of 
file or error

int getc(FILE *fp); Equivalent to fgetc()

From man [command]



24

Several functions can read from a file
Function Description

int fgetc(FILE *fp); Reads the next character from fp and returns it as 
an unsigned char cast to an int, or EOF on end of 
file or error

int getc(FILE *fp); Equivalent to fgetc()

char *fgets(char *s, int size, FILE *fp); Reads in at most one less than size characters 
from fp and stores them into the buffer pointed 
to by s. Reading stops after an EOF or a 
newline. If a newline is read, it is stored into the 
buffer. A terminating null byte ('\0') is stored 
after the last character in the buffer

From man [command]



25

Several functions can read from a file
Function Description

int fgetc(FILE *fp); Reads the next character from fp and returns it as 
an unsigned char cast to an int, or EOF on end of 
file or error

int getc(FILE *fp); Equivalent to fgetc()

char *fgets(char *s, int size, FILE *fp); Reads in at most one less than size characters 
from fp and stores them into the buffer pointed 
to by s. Reading stops after an EOF or a 
newline. If a newline is read, it is stored into the 
buffer. A terminating null byte ('\0') is stored 
after the last character in the buffer

int scanf(const char *format, ...); Reads formatted input from stdin

From man [command]



26

Several functions can read from a file
Function Description

int fgetc(FILE *fp); Reads the next character from fp and returns it as 
an unsigned char cast to an int, or EOF on end of 
file or error

int getc(FILE *fp); Equivalent to fgetc()

char *fgets(char *s, int size, FILE *fp); Reads in at most one less than size characters 
from fp and stores them into the buffer pointed 
to by s. Reading stops after an EOF or a 
newline. If a newline is read, it is stored into the 
buffer. A terminating null byte ('\0') is stored 
after the last character in the buffer

int scanf(const char *format, ...); Reads formatted input from stdin

int fscanf(FILE *fp, const char *format, ...); Reads formatted input from fp

From man [command]



27

Several functions can read from a file
Function Description

int fgetc(FILE *fp); Reads the next character from fp and returns it as 
an unsigned char cast to an int, or EOF on end of 
file or error

int getc(FILE *fp); Equivalent to fgetc()

char *fgets(char *s, int size, FILE *fp); Reads in at most one less than size characters 
from fp and stores them into the buffer pointed 
to by s. Reading stops after an EOF or a 
newline. If a newline is read, it is stored into the 
buffer. A terminating null byte ('\0') is stored 
after the last character in the buffer

int scanf(const char *format, ...); Reads formatted input from stdin

int fscanf(FILE *fp, const char *format, ...); Reads formatted input from fp

int sscanf(const char *str,                      
const char *format, ...);

Reads formatted input from the string pointed to 
by str

From man [command]



28

Agenda

1. Write files

2. Read files

3. Activity



29


