
CS 55:
Security and Privacy

SQL injection attacks

2
https://xkcd.com/237/

3

Demo on VM

Start Firefox browser
Go to: http://www.seedlabsqlinjection.com
• Log in as Alice
• Username: alice
• Password: seedalice
• See Alice’s info

• Go to Edit Profile (at top)
• Change details

• Log in as admin
• Username: admin
• Password: seedadmin
• See all employee data

http://www.seedlabsqlinjection.com/

4

You use databases every day, but may not
think them about very much

Virtually all non-trivial
applications have a
database component

Databases are a set of
programs used to
Create, Read, Update, or
Delete (CRUD) data
through operations
called queries

Queries typically use
SQL to carry out queries

What characteristics
would you like in a
database?

5

Database skills are in high demand

https://techhub.dice.com/Dice-2020-Tech-Job-Report.html

Job placement firm Dice
analyzed 6 million job
postings for most frequently
sought tech skills in 2020

Employers are looking to hire
people with database skills

https://techhub.dice.com/Dice-2020-Tech-Job-Report.html

Relational
• MySQL/MariaDB (open source, but

owned by Oracle, MariaDB is fork)
• Oracle (king of the hill, but

expensive)
• Microsoft SQL Server (also Access,

easy to use compared with Oracle)

NoSQL
• Mongo (most popular NoSQL, has

security concerns?)
• Redis (in-memory data structure

store, used as a database, cache
and message broker)

• Cassandra (hybrid key-value and
column-oriented DB)

• Couchbase (key/value store)

0

200

400

600

800

1000

1200

1400

1600

1800

Nov-1
2

May-
13

Nov-1
3

May-
14

Nov-1
4

May-
15

Nov-1
5

May-
16

Nov-1
6

May-
17

Nov-1
7

May-
18

Nov-1
8

May-
19

Nov-1
9

Po
pu

la
rit

y
sc

or
e

Database popularity

Oracle

MySQL

SQL Server

Redis

Cassandra
Couchbase

6

There are number of popular DBMS’s in
use today; we will use MySQL
Popular Database Management Systems Our focus

MongoDB

https://db-engines.com/en/ranking_trend

Relational databases

NoSQL databases

https://db-engines.com/en/ranking_trend

7

Agenda

1. SQL tutorial

2. SQL injection attacks

3. Countermeasures

8

Big picture of relational database design

Relational Database Management System (RDBMS)
• Normally represented graphically as a cylinder
• Holds data in relations (tables)

Relations (tables)
• Each relation holds data about people, places, things or

events (nouns)
• Tables consist of rows and columns
• Each row (tuple or relation instance) represents one

person, place, thing, or event
• Each column (field or attribute) represents one aspect

of a person, place, thing, or event (e.g., last name)
• A column (FK) can refer to a column (PK) in another

table, creating a relationship between tables

Database schema
• Logical collection of tables and relationships
• Minimizes storing multiple copies of data
• Look up additional data in another table if needed

using key
Silberschatz, Abraham, Henry F. Korth, and Shashank Sudarshan. Database system concepts. 7th Edition. New York: McGraw-Hill, 2019.

Data in a relational database
• Data stored in relations (tables)
• Relations are made up of relation instances (rows or tuples)
• Relation instances are made up of a fixed number of

attributes (fields or columns) of fixed type
• Related relations are contained in a schema (aka database)
• Database may store multiple schemas 9

Relational database systems store data in
relations (aka tables) made up of attributes
Instructors
relation

Relation
instances

attributes Relational database table

Metadata

College database
schema

Courses

Rooms

Instructors

Silberschatz, Abraham, Henry F. Korth, and Shashank Sudarshan. Database system concepts. 7th Edition. New York: McGraw-Hill, 2019.

10

We will use the popular MySQL relational
database management system (RDBMS)

Log in to MySQL
$ mysql –uroot –pseedubuntu
Welcome to the MySQL monitor.
mysql>

Most relational databases use Structured Query
Language (aka S-Q-L, aka Sequel) to issue commands

If you use MySQL often, consider a tool such as
MySQL Workbench

11

See databases “SHOW DATABASES;” create
a new with “CREATE DATABASE <name>;”

See what databases already exist

Create new database

mysql> SHOW DATABASES;
+--------------------+
| Database |
+--------------------+
| information_schema |
| Users |
| dbtest |
| elgg_csrf |
| elgg_xss |
| mysql |
| performance_schema |
| phpmyadmin |
| sys |
+--------------------+
9 rows in set (0.00 sec)9 rows in set (0.00 sec)

mysql> CREATE DATABASE cs55;

Note: SQL commands
end with semicolon

By convention we
capitalize SQL
keywords, but it is not
required

12

Data is stored in tables; each table
represents a collection of related entities
Tell MySQL to use our new database and create an Employees table

mysql> USE cs55;
Database changed

mysql> CREATE TABLE `Employees` (
`ID` int(11) NOT NULL AUTO_INCREMENT,
`Name` varchar(30) NOT NULL,
`EID` varchar(7) NOT NULL,
`Password` varchar(60) DEFAULT NULL,
`Salary` int(11) DEFAULT NULL,
`SSN` varchar(11) DEFAULT NULL,
PRIMARY KEY (`ID`)

);
Query OK, 0 row affected (0.002 sec)

Create table named Employees

Add attributes (fields) about employees, give
name and data type

Table will have one row (record) per employee

Auto_increment means give each
entry a number one greater than the
previous entry, used for Key attribute

NOT NULL means the attribute must
have a value other than NULL

DEFAULT NULL means assign NULL
unless given another valueDatabase will look up employees

by their primary key (ID here)

13

Use “describe <table>” see the structure of
a database table

mysql> describe Employees;
+----------+-------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+----------+-------------+------+-----+---------+----------------+
ID	int(11)	NO	PRI	NULL	auto_increment
Name	varchar(30)	NO		NULL	
EID	varchar(7)	NO		NULL	
Password	varchar(60)	YES		NULL	
Salary	int(11)	YES		NULL	
SSN	varchar(11)	YES		NULL	
+----------+-------------+------+-----+---------+----------------+
6 rows in set (0.01 sec)

See the table’s structure with describe command

14

Show tables lists all tables in a database
schema

mysql> show tables;
+----------------+
| Tables_in_cs55 |
+----------------+
| Employees |
| Restaurants |
| Users |
+----------------+
3 rows in set (0.00 sec)

See the tables in a database schema

15

Structured Query Language (SQL) performs
CRUD operations on data

Create

Read

Update

Delete

INSERT INTO table (field1, field2, …)
VALUES (val1, val2, …)

SELECT *|field list
FROM table
WHERE conditions

UPDATE table
SET field1=val1, field2=val2
WHERE conditions

DELETE FROM table
WHERE conditions

CRUD

Add employee named Alice into table with INSERT command

See table rows with SELECT command

16

Use INSERT to add rows to the table; use
SELECT to see table rows

mysql> INSERT INTO Employees (Name, EID, Password, Salary, SSN)
VALUES ('Alice', 'EID5001', 'passwd123',80000, '111-11-1111');
Query OK, 1 row affected (0.01 sec)

mysql> SELECT * FROM Employees;
+----+------------+---------+-----------+--------+-------------+
| ID | Name | EID | Password | Salary | SSN |
+----+------------+---------+-----------+--------+-------------+
| 1 | Alice | EID5001 | passwd123 | 80000 | 111-11-1111 |
+----+------------+---------+-----------+--------+-------------+
1 row in set (0.00 sec)

mysql> SELECT Name, Salary FROM Employees;
+------------+--------+
| Name | Salary |
+------------+--------+
| Alice | 80000 |
+------------+--------+

SELECT * means
return all attributes

Can specify what attributes to return

SQL commands can span multiple
lines, end with semicolon

SELECT Name, Salary
FROM Employees;

17

WHERE clauses allow us to limit which
rows are returned
WHERE clause
WHERE clause is used to set conditions for several types of SQL
statements including SELECT, UPDATE, or DELETE

Affects rows for which the predicate in the WHERE clause is TRUE
The predicate is a logical expression; multiple predicates can be
combined using keywords AND and OR

mysql> SQL command
WHERE predicate;

18

WHERE clauses can use AND and OR
WHERE clause

mysql> SELECT * FROM Employees;
+----+---------+---------+-----------+--------+-------------+
| ID | Name | EID | Password | Salary | SSN |
+----+---------+---------+-----------+--------+-------------+
1	Alice	EID5001	passwd123	80000	111-11-1111
2	Bob	EID5002	passwd123	80000	222-22-2222
3	Charlie	EID5003	passwd123	85000	333-33-3333
4	Denise	EID5004	passwd123	90000	444-44-4444
+----+---------+---------+-----------+--------+-------------+

mysql> SELECT * FROM Employees WHERE Name = 'Alice' OR EID='EID5003';
+----+---------+---------+-----------+--------+-------------+
| ID | Name | EID | Password | Salary | SSN |
+----+---------+---------+-----------+--------+-------------+
| 1 | Alice | EID5001 | passwd123 | 80000 | 111-11-1111 |
| 3 | Charlie | EID5003 | passwd123 | 85000 | 333-33-3333 |
+----+---------+---------+-----------+--------+-------------+
2 rows in set (0.00 sec)

Added some more employees before
this command

19

If WHERE clause always evaluates to true,
then all rows are affected
WHERE clause

mysql> SELECT * FROM Employees WHERE 1=1;
+----+---------+---------+-----------+--------+-------------+
| ID | Name | EID | Password | Salary | SSN |
+----+---------+---------+-----------+--------+-------------+
1	Alice	EID5001	passwd123	80000	111-11-1111
2	Bob	EID5002	passwd123	80000	222-22-2222
3	Charlie	EID5003	passwd123	85000	333-33-3333
4	Denise	EID5004	passwd123	90000	444-44-4444
+----+---------+---------+-----------+--------+-------------+

1 always equals 1, so true for all rows
Returns all rows

Seems like an odd thing to point out,
stand by…

20

UPDATE modified records, normally using
WHERE clause
UPDATE command

mysql> UPDATE Employees SET Salary=82000 WHERE ID=1;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * FROM Employees;
+----+---------+---------+-----------+--------+-------------+
| ID | Name | EID | Password | Salary | SSN |
+----+---------+---------+-----------+--------+-------------+
1	Alice	EID5001	passwd123	82000	111-11-1111
2	Bob	EID5002	passwd123	80000	222-22-2222
3	Charlie	EID5003	passwd123	85000	333-33-3333
4	Denise	EID5004	passwd123	90000	444-44-4444
+----+---------+---------+-----------+--------+-------------+
4 rows in set (0.00 sec)

Give Alice a raise

Alice now has a new salary

21

SQL commands can have comments,
MySQL supports three different types

mysql> SELECT * FROM Employees; # comment to end of line
mysql> SELECT * FROM Employees; -- comment to end of line
mysql> SELECT * FROM /* In-line comment */ Employees;

22

Agenda

1. SQL tutorial

2. SQL injection attacks

3. Countermeasures

23

Today applications (and users) normally
access a database through an API

Metadata

Database
Management

System (DBMS)

Course

Room

Three-tiered architecture

Instructor

Network API

Smart phone
apps

Web browser

“Thick client” apps

College database
schema

24

Today applications (and users) normally
access a database through an API

Metadata

Database
Management

System (DBMS)

Course

Room

Three-tiered architecture

Instructor

Network API

Smart phone
apps

Web browser

“Thick client” apps

Tier 1: DBMS
• Manages database

structure
• Controls access to

database
• Allows data to be

shared

Advantages
1. Allows data to be

shared between
multiple applications

2. Creates a single
repository of
knowledge

3. Manages security

College database
schema

25

Today applications (and users) normally
access a database through an API

Metadata

Database
Management

System (DBMS)

Course

Room

Three-tiered architecture

Instructor

Network API

Smart phone
apps

Web browser

“Thick client” apps

Tier 1: DBMS
• Manages database

structure
• Controls access to

database
• Allows data to be

shared

Advantages
1. Allows data to be

shared between
multiple applications

2. Creates a single
repository of
knowledge

3. Manages security

College database
schema

Tier 2: API
• Provides access

to database via
web services

• May also be web
server for web
pages

Advantages
1. Abstracts data

access
2. Data storage can

be changed
without changing
all user
applications

26

Today applications (and users) normally
access a database through an API

Metadata

Database
Management

System (DBMS)

Course

Room

Three-tiered architecture

Instructor

Network API

Smart phone
apps

Web browser

“Thick client” apps

Tier 1: DBMS
• Manages database

structure
• Controls access to

database
• Allows data to be

shared

Advantages
1. Allows data to be

shared between
multiple applications

2. Creates a single
repository of
knowledge

3. Manages security

College database
schema

Tier 3:
Applications

Tier 2: API
• Provides access

to database via
web services

• May also be web
server for web
pages

Advantages
1. Abstracts data

access
2. Data storage can

be changed
without changing
all user
applications

27

Users do not typically issue their own SQL
commands

Metadata

Database
Management

System (DBMS)

Course

Room

Three-tiered architecture

Instructor

Network API

Smart phone
apps

Web browser

“Thick client” apps

Tier 1: DBMS
• Manages database

structure
• Controls access to

database
• Allows data to be

shared

College database
schema

Tier 3:
Applications

Tier 2: API
• Provides access

to database via
web services

• May also be web
server for web
pages

API interacts with DBMS (e.g.,
API issues SQL commands)

Users interact with applications
Applications call API (e.g., do not
issue SQL commands)

DBMS runs
query returns
results

Programming Involved

 SQL Injection Page 8

28

Most applications will need to get a user’s
input at some point, often from a browser

Login screen where the
user enters their
username and password

<form action=“getdata.php” method=“get”>
Username: <input type=”text” name=“username”>

Password: <input type=“text” name=“password”>

<input type=“submit” value=“Login>
</form>

Du, Wenliang. Computer & Internet Security: A Hands-on Approach. 2019.

Programming Involved

 SQL Injection Page 8

29

User input passed to web service API on
the server after the Login button clicked

<form action=“getdata.php” method=“get”>
Username: <input type=”text” name=“username”>

Password: <input type=“text” name=“password”>

<input type=“submit” value=“Login>
</form>

www.example.com/getdata.php?Username=Alice&Password=seedalice

Clicking submit button calls
PHP file on server named
getdata.php and passes
Username and Password
parameters in query string

getdata.php issues SQL
command to get data from
the database using
parameters passed in
query string

<?php
$name = $_GET[“Username”];
$pwd = $_GET[“Password”];
$sql = “SELECT id, name, salary

FROM credential
WHERE name=‘$name’ AND
Password=‘$pwd’”;

$result = $conn->query($sql);
?>

Du, Wenliang. Computer & Internet Security: A Hands-on Approach. 2019.

Programming Involved

 SQL Injection Page 8

30

The database fetches and returns the data
requested by the user

<form action=“getdata.php” method=“get”>
Username: <input type=”text” name=“username”>

Password: <input type=“text” name=“password”>

<input type=“submit” value=“Login>
</form>

www.example.com/getdata.php?Username=Alice&Password=seedalice

<?php
$name = $_GET[“Username”];
$pwd = $_GET[“Password”];
$sql = “SELECT id, name, salary

FROM credential
WHERE name=‘$name’ AND
Password=‘$pwd’”;

$result = $conn->query($sql);
?>

SELECT id, name, salary
FROM credential
WHERE name=‘Alice’ AND
Password=‘seedalice’

Database is queried
and returns
requested data

Key point: the user never
issues a SQL command
directly to the database, the
API does

Du, Wenliang. Computer & Internet Security: A Hands-on Approach. 2019.

31

PHP can connect to a MySQL database and
parse user parameters passed by GET

$_GET[‘param name’) returns
value in query string

Use $_POST[‘param name’] if
HTML POST command issued

Server side

Server side: create a connection
to the database

Du, Wenliang. Computer & Internet Security: A Hands-on Approach. 2019.

Construct SQL command from user input, then send command to
database for execution

32

Using user’s input in SQL command creates
an attack vector

Get user’s input from HTML GET

Put user’s input into
SQL command

Key point: what
the user types
becomes part
of the database
query

What could do
wrong?

Run
command

Print results

Du, Wenliang. Computer & Internet Security: A Hands-on Approach. 2019.

33

Do not trust user input

34

A malicious user could bypass
user/password checks
The intention of the web app developer by the following is for the
user to provide some data for the blank areas.

Assume that a user types “EID5002’#” in the eid entry. The SQL
statement will become the following

Everything after the # is treated as a comment, so the command is
Get information without knowing
the password because password
commented out!

Du, Wenliang. Computer & Internet Security: A Hands-on Approach. 2019.

35

A malicious user could bypass
user/password checks
• Let’s see if a user can get all the records from the database

assuming we don’t know all the EID’s in the database.
• We need to create a predicate for WHERE clause so that it is true

for all records.

User types a’ or 1=1 #

Now all employees are listed
because 1=1 is always true!

Du, Wenliang. Computer & Internet Security: A Hands-on Approach. 2019.

36

curl can launch attacks from the command
line
Using cURL, we can send out a form from a command-line, instead
of from a web page

Special characters need to be UTF-8 encoded for curl to work:

$ curl 'www.SeedLabSQLInjection.com/unsafe_home.php?username=alice&Password=seedalice'

Task 2: SQL Injection on SELECT Statement

The Login Page (index.html)�

The Code for Login (unsafe_home.php)�

 …

Task 2.1: Attack Using Web Interface�

Log into Admin's account without knowing Admin's password (you do know Admin's Name, which is Admin).�

Task 2.2: Using Command Line Tool�

Character UTF-8
' %27
%23

space %20

 URL Encoding:

 $ curl 'http: //www.seedlabsqlinjection.com/unsafe_home.php?username= &Password= '

Task 2.3: Append a New SQL Statement �

 (this task will fail due to the countermeasure, but students need to report their observations)

 SQL Injection Page 12

Du, Wenliang. Computer & Internet Security: A Hands-on Approach. 2019.

/* changepasswd.php */
<?php

$eid = $POST[‘EID’];
$oldpwd = $_POST[‘OldPassword’];
$newpwd = $_POST[‘NewPassword’];

$conn = new mysqli(“localhost:,”root”,”pwd”,”db”);
$sql = “UPDATE Employees

SET password=‘$newpwd’
WHERE eid=‘$eid’ and password=‘$oldpwd’”;

$result = $conn->query($sql);
$conn->close();

?>
37

Sometimes an adversary can change the
contents of the database

If the statement is UPDATE or
INSERT, we will have chance
to change the database

Password change form asks
for EID, old password, new
password

When Submit button clicked,
an HTTP POST sent to server-
side script changepasswd.php,
which uses an UPDATE
statement to change the
user’s password

Get user’s input
from HTTP POST

Use user’s input in SQL
UPDATE command

EID
Old Password
New Password paswd456

EID50000
paswd123

Note: adversary usually
doesn’t know what SQL looks
like on server, has to guess

Du, Wenliang. Computer & Internet Security: A Hands-on Approach. 2019.

38

Alice wants to give herself a raise

SQL statement sets two attributes: password and salary

UPDATE Employees
SET password=‘$newpwd’
WHERE eid=‘$eid’ AND password=‘$oldpwd’

UPDATE Employees
SET password=‘paswd456’
WHERE eid=‘EID5000’ AND password=‘paswd123’

EID
Old Password
New Password paswd456

EID50000
paswd123

Password change web form SQL command

Du, Wenliang. Computer & Internet Security: A Hands-on Approach. 2019.

39

Alice wants to give herself a raise

SQL statement sets two attributes: password and salary

UPDATE Employees
SET password=‘$newpwd’
WHERE eid=‘$eid’ AND password=‘$oldpwd’

UPDATE Employees
SET password=‘paswd456’, salary=100000 #’
WHERE eid=‘EID5000’ AND password=‘paswd123’

EID
Old Password
New Password paswd456’, salary=100000 #

EID50000
paswd123

Password change web form SQL command

Du, Wenliang. Computer & Internet Security: A Hands-on Approach. 2019.

40

Alice doesn’t like Bob…

SQL statement changes Bob’s password and sets salary to zero

UPDATE Employees
SET password=‘$newpwd’
WHERE eid=‘$eid’ AND password=‘$oldpwd’

UPDATE Employees
SET password=‘paswd456’, salary=0 #’
WHERE eid=‘EID5001’ # AND password=‘anything’

EID
Old Password
New Password paswd456’, salary=0 #

EID50001’ #
anything

Password change web form SQL command

Assume Alice knows
Bob’s EmployeeID
but does not know
Bob’s password

Du, Wenliang. Computer & Internet Security: A Hands-on Approach. 2019.

SQL statement becomes

41

Sometimes an adversary can execute
multiple commands

EID
Password

a’; DROP DATABASE db; #
anything

Login web form

SELECT Name, Salary, SSN
FROM Employees
WHERE eid=‘a’; DROP DATABASE db; #’

SELECT Name, Salary, SSN
FROM Employees
WHERE eid=‘$eid’

SQL command

Note: does not work
against MySQL because
mysqli does not allow
multiple queries

Semicolon ends statements
then second DROP DATABASE
command follows

Du, Wenliang. Computer & Internet Security: A Hands-on Approach. 2019.

42

Now we know why this is funny

https://xkcd.com/237/

43

The fundamental problem is mixing
untrustworthy user data and code

Untrusted
user data

Trusted
SQL code

X

Mix

SQL
statement

SQL
parser Execution

Untrusted user data
becomes part of SQL
statement

Statement is parsed and
executed, including user’s
malicious payload

Simplified SQL execution flow

The problem of mixing user
data and code is not limited
to just SQL!

Du, Wenliang. Computer & Internet Security: A Hands-on Approach. 2019.

44

Agenda

1. SQL tutorial

2. SQL injection attacks

3. Countermeasures

45

Approach 1: filter out dangerous data that
might be interpreted as code
Encode special characters tells parser to treat the encoded
character as data and not as code

Use MySQL real_escape_string to encode user data

Not recommended
Still mixes code and data

46

Approach 2: use prepared statements to
separate code and data

Parse
• Check syntax
• Check table and

columns exist

Compile
• Convert query

to machine
code

Optimize
• Choose optimal

execution plan

Adapted from: http://javabypatel.blogspot.com/2015/09/how-prepared-statement-in-java-prevents-sql-injection.html

Parse/Compile/
Optimize Cache Replace

placeholders Execute

High-level overview of SQL execution process

Cache
• Store optimized

query plan in
cache

• If command
submitted
again, skip prior
steps (already
done)

Replace placeholders
• Prepared statement

are not complete
statements

• Have placeholders
for some values

• But, format of
command is set now

• Placeholders filled
with literal values

• Place holder data
doesn’t change
command format

UPDATE Users SET UserName = ? AND Password = ?

Execute
• Query is executed
• Data is returned
• Malicious command

are stored in table as
text, not executed

47

Approach 2: use prepared statements to
separate code and data

Original approach mixes
code and user data

Instead, separate code and data
with prepared statement

Question marks are
placeholders for user data

Fill placeholders after
statement is compiled

Added benefit: possible
improved query performance!

Du, Wenliang. Computer & Internet Security: A Hands-on Approach. 2019.

48

Even if you use prepared statements, be
wary of data in your database!

Source: https://portswigger.net/web-security/sql-injection

Second-order attack:
User enters data with SQL embedded
Prepared statement does not run this code, data is stored in table

Later someone runs a command where user = ‘badguy’
Command executes; here resets admin password

Can’t trust
data in
database
either!

49

SQL injection attacks are still being found!

https://www.bleepingcomputer.com/news/security/freepik-data-breach-hackers-stole-83m-records-via-sql-injection/

August 2020

8.3M usernames and
passwords stolen via
SQL injection attack

SQL injection attacks
have been around for
a long time

We should know
better!

50

