
CS 55:
Security and Privacy

Packet sniffing and spoofing

Adapted from Computer and Internet Security by Du unless otherwise noted

2
https://xkcd.com/2259

3

Agenda

1. Network basics

2. Sending and receiving packets

3. Sniffing packets

4. Spoofing packets

4

The TCP/IP protocol stack uses layers to
transmit data over unreliable networks

Application

Transport

Network (Internet)

Link (Data Link)

Physical

Conceptual network layers
Interacts with application programs
Allows applications to access network resources
Interpretation of data is outside the scope of this layer
Examples: HTTP, SSH, FTP, SMTP

Provides host-to-host message delivery in message packets
May provide error control, flow control, application addressing (ports)
Examples: TCP (connection-oriented), UDP (connectionless)
TCP provides sequencing, dropped packet resend, traffic congestion routing

Moves packets (datagrams) across local area network boundaries (routing)
Each computer identified by an IP address (IP v4 or v6)
Also called Layer 3 or IP layer. (ICMP is here)

Adapted from https://www.guru99.com/tcp-ip-model.htm

Moves frames within a local area network (switching)
Each computer identified by a MAC address
Also called Layer 2, MAC layer, or Ethernet layer

How data is physically transmitted
• Transmitter converts logical 1’s and 0’s to electrical/light pulses or

phase/amplitude of radio frequency (RF) and sends down wire or over air
• Receiver converts electrical/light or RF back to logical 1’s and 0’s

I’ll refer to this as
the “protocol stack”

OSI model has 7
layers (application
called layer 7)

5

Messages travel down the stack from the
transmitter and up the stack at the receiver

Adapted from http://www.tcpipguide.com/free/t_IPDatagramEncapsulation.htm

Transmitter
Wants to
send data to
receiver

Data starts at
top and is
encapsulated
by each layer
down the
stack

Each layer
adds it own
headers

Receiver
Data starts at
the physical
layer and
moves
upward

Each layer
strips off
headers from
prior layer

6

Small network example shows how
components work together

https://www.igcseict.info/theory/4/netsetup/index.html

Layer 2 uses MAC
addresses to identify
computers on a LAN

Switch operates at layer 2

Layer 3 uses IP addresses
to identify computers
across LANs

Router operates at layer 3

One device often
plays the role of
switch and router

7

At the Transport Layer, TCP is connection-
oriented, UDP is not

Adapted from http://www.steves-internet-guide.com/tcp-vs-udp/

TCP establishes a
connection
between machines
with a 3-way
handshake

Transmission Control Protocol (TCP)

• Messages are broken into packets
• Each packet given sequence number
• Packets reassembled in seq order
• Missing packets are resent

User Datagram Protocol (UDP)

UDP does not
establish a connection

• Messages are broken into packets
• Packet received or not, no resend
• Faster than TCP, smaller headers
• Use for streaming

8

IP addresses contain the network and
device ID
Classless Interdomain Routing (CIDR, 1993+)

Split wherever we’d like
• Specify how many bits make up the network ID, the rest of

the address specifies a device on that network
• 128.230.115.0/24 means left 24 bits are network ID (8 bits

are used to identify a device on that network, ranging
from 0 to 255)

• Split does not have to occur on 8-bit boundaries
• 128.230.0.0/9 means left most 9 bits are the network ID

Network ID Host ID

IP address is 32 bits (4 bytes)

9

Some IP addresses are reserved for private
use

Private IP address
10.0.0.0/8
172.16.0.0/12
192.168.0.0/16

Lookback address
127.0.0.0/8
Commonly used 127.0.0.1 (localhost)

ISP issues a single IP address
Use private network for devices in home

Non-routable on Internet (multiple homes
may use the same address inside)

10

Network Address Translation (NAT) handles
translation between inside and outside

ISP issues one address for
home or office

192.168.60.5

192.168.60.6

192.168.60.7

129.170.171.44

192.168.0.1

Internet

75.69.94.78

Inside all devices on
192.168.60.0/24 network

Devices make
requests to
computers on
Internet

Router sends with
src=75.69.94.78, but
remembers which
internal device asked

Response send to
dest=129.170.171.44

Router assigns
internal IP address
to devices inside
home,
DHCP

All devices
will get IP
address
starting
with
192.168.60
in this case

Response sent back
to 75.69.94.78

Router sends response to
device that made request

11

The ping command is useful to see if a
computer is reachable (and on homework)

192.168.60.5

192.168.60.6

192.168.60.7

129.170.171.44

192.168.0.1

Internet

75.69.94.78

Remote host receives
ICMP request, replies
with ICMP response

Issue command
$ ping 129.170.171.44

ICMP request packet
routed to destination

Response routed
back to computer
that issued ping

You will use this in
the next lab

12

Domain Name System (DNS) converts
between IP addresses and names

Name IP
www.google.com 172.217.3.110
www.dartmouth.edu 129.170.171.44

Humans are not good at remembering numeric IP addresses

Give a computers a name humans can remember

DNS matches name with IP address

13

Demo: Wireshark shows the protocol stack
in action

Application
layer (7)

Transport
layer (4)

Network
(IP) layer
(3)

Link
layer (2)

14

Agenda

1. Network basics

2. Sending and receiving packets

3. Sniffing packets

4. Spoofing packets

15

Typically, the OS handles packet
construction

Kernel

Application Data

NICNetwork

Packet
generation

Application has data that it
wants to send

Passes data to OS which
generates a packet

Packet sent out over
network via NIC

How does the application hand data to OS?
OS provides socket API system calls
Recall sockets from CS10 and 50

Socket API

Each NIC has unique MAC address
Sees all traffic on network
Drops packets not addresses to itself (unless promiscuous or monitor mode)

16

Applications must provide protocol and
destination information

Kernel

Application Data

NICNetwork

You must decide which
transport protocol to use:
• UDP – faster, but

delivery not guaranteed
• TCP – slower but

delivery guaranteed

You must also provide
destination information
• IP address
• Port

OS adds router’s MAC and
checksum

TCP/UDP header
Destination port

Destination IP

Router’s MAC
Checksum
Added by OS

Transport layer

Network layer

Link layer

17

Sending a packet is not difficult with
Python

import socket

dest_addr = "127.0.0.1"
port = 9090
data = b'Hello world!'

if __name__ == '__main__':
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.sendto(data,(dest_addr,port))

send_udp.py

We will use IPv4

Use UDP protocol

Send ‘Hello world’
To destination IP
address (localhost)

On port 9090

18

Sending a packet is not difficult with
Python

import socket

dest_addr = "127.0.0.1"
port = 9090
data = b'Hello world!'

if __name__ == '__main__':
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.sendto(data,(dest_addr,port))

send_udp.py

$ nc -luv 9090
Listening on [0.0.0.0] (family 0, port 9090)
Hello world!^C

Listen in another terminal
on port 9090 using netcat

Python hides a lot of
complexity!

Note: we do not set a source port
Will see soon the OS picks one for us

19

Sending a packet in C is a little more
involved but gives you more control

void main() {
struct sockaddr_in dest_info;
char * dest_addr = "127.0.0.1";
int port = 9090;
char *data = "Hello World (in C!)\n";

//Create network socket
int sock = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);

//Provide needed data
memset((char *) &dest_info,0,sizeof(dest_info));
dest_info.sin_family = AF_INET;
dest_info.sin_addr.s_addr = inet_addr(dest_addr);
dest_info.sin_port = htons(port);

//send packet
sendto(sock, data, strlen(data), 0, (struct sockaddr *) &dest_info,

sizeof(dest_info));
close(sock);

}

send_udp.c

Create socket for
UDP

Use IPv4 and send
to dest_addr

Send

Python built on
top of C libraries

Ring buffer

20

Receiving a packet is the reverse of sending
a packet

Kernel

Application Data

NICNetwork

Layer 3 overview

Packet received, looks for match with own
IP address
• Drop if no match
• Otherwise look at protocol and pass to

appropriate Transport layer (UDP or TCP)

Socket API

Link layer (layer 2) driver takes frame from
ring buffer
Strips off link-layer header

Transport layer looks at port, fills buffer, and
sends to socket listening on that port

Data passed to application via socket
Socket is bound to port
Application blocks until packet arrives
Kernel wakes up application
Application can read buffer

Data

Transport layer

Network layer

Link layer

NIC looks at incoming frames
If addressed to this MAC address, DMA to kernel ring buffer
Interrupts CPU, informs CPU frame has arrived

CPU must
address frames
in buffer quickly
Buffer has
limited memory

21

Packets can be easily received in Python

import socket

ip_addr = "0.0.0.0"
port = 9090

if __name__ == '__main__':
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind((ip_addr,port))

while (True):
data, (ip, port) = sock.recvfrom(1024)
print("Sender: {} and Port: {}".format(ip,port))
print("Received message: {}".format(data))

receive_udp.py

Set up socket for UDP as before

Bind socket to listen on ip_addr and port

Computer might have multiple NICs
Zeros means accept packets from any of them

Block until packet arrives
recvfrom gets data then
print packet

$ nc –u 127.0.0.1 9090
hello world

Use netcat in another terminal to send
UDP packets to IP address on port 9090

Type in messages to send, sends after
return key pressed

22

OS picks a source port for the sender

import socket

ip_addr = "0.0.0.0"
port = 9090

if __name__ == '__main__':
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind((ip_addr,port))

while (True):
data, (ip, port) = sock.recvfrom(1024)
print("Sender: {} and Port: {}".format(ip,port))
print("Received message: {}".format(data))

receive_udp.py We did not pick a source port on the sender (but did
pick destination port!)
OS chooses one randomly for you
When this is run, see source port other than 9090
This way OS can sort out replies if multiple instances of
application are running at the same time

$ nc –u 127.0.0.1 9090
hello world (in C!)

23

A receiver written in C is not too different
from one written in Python
const int MAX_SIZE = 1500;
const int port = 9090;

void main() {
struct sockaddr_in server;
struct sockaddr_in client;
int clientlen;
char buf[MAX_SIZE];

// Create the socket
int sock = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
memset((char *) &server, 0, sizeof(server));
server.sin_family = AF_INET;
server.sin_addr.s_addr = htonl(INADDR_ANY);
server.sin_port = htons(port);

if (bind(sock, (struct sockaddr *) &server, sizeof(server)) < 0) {
printf ("Binding error!");
return;

}

// Getting captured packets
while (1) {

bzero(buf,MAX_SIZE);
recvfrom(sock, buf, MAX_SIZE-1, 0, (struct sockaddr *) &client, &clientlen);
printf("%s\n",buf);

}

close(sock);
}

receive_udp.c

Bind to every interface (like
Python with “0.0.0.0”)

Bind to IP address (any
interface here) and port

Client info filled when packets arrive

24

Agenda

1. Network basics

2. Sending and receiving packets

3. Sniffing packets

4. Spoofing packets

25

Promiscuous (monitor) mode sniffs all
frames

Kernel

Application Data

NICNetwork

Link-level driver

Ring buffer

NIC looks at incoming frames
If address to this MAC address, DMA to kernel ring buffer
Interrupts CPU, informs CPU frame has arrived

Protocol stack

Promiscuous mode (monitor mode)
will pass at all frames from NIC

Raw socket delivers a
copy of frame including
link-layer header
directly to the socket

Note: some NIC’s
will not go into
promiscuous mode
(but most will)

Monitor mode only
sniffs one channel

Socket API

26

Sniffing all frames can take a lot of CPU
time!

int main() {
int PACKET_LEN = 512;
char buffer[PACKET_LEN];
struct sockaddr saddr;
struct packet_mreq mr;

// Create the raw socket
int sock = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_ALL));

// Turn on the promiscuous mode.
mr.mr_type = PACKET_MR_PROMISC;
setsockopt(sock, SOL_PACKET, PACKET_ADD_MEMBERSHIP, &mr, sizeof(mr));

// Getting captured packets
while (1) {

int data_size=recvfrom(sock, buffer, PACKET_LEN, 0,
&saddr, (socklen_t*)sizeof(saddr));

if(data_size) printf("Got one packet\n");
}

close(sock);
return 0;

}

sniff_raw.c

Sniff all protocols (set to ETH_P_IP for only IP
layer 3)

Turn on promiscuous mode to see all frames

Sniff raw frames

Set socket option enables
promiscuous mode

Now see all layer 2 frames

Be careful, this may be very busy if
you are on a high-traffic network!

Filter

Buffer

27

Most of the time we will want to filter out
unwanted frames to reduce processing

Kernel

Application Data

NICNetwork

Layer 2 overview

Link-level driver

Ring buffer

NIC looks at incoming frames
If addressed to this MAC

DMA to kernel ring buffer
Wake up CPU

Protocol stack

BPF

Berkeley Packet Filter (BPF)
• Creates filter at link-level
• Only passes frames

matching criteria to
protocol stack

• Does not DMA to
memory

• Compile filter and set
with setsockopt

Filter unwanted
frames (saves time)

BPF is somewhat complicated
Add to raw socket with
SO_ATTACH_FILTER
Not portable between OSes
PCAP API is much easier!

28

PCAP makes it easy to filter frames at a low
level

PCAP (packet capture)
• Originally written for tcpdump (powerful sniffer)
• Supported by multiple platforms
• Linux: libpcap
• Windows: WinPcap and Npcap

• Written in C
• Other languages generally provide a wrapper around C version
• Basis used by other sniffers
• Tcpdump (of course)
• Wireshark
• Scapy
• Nmap
• Snort

29

Use PCAP and compile BPF filter to filter
out unwanted frames
void got_packet(u_char *args, const struct pcap_pkthdr *header, const u_char *packet) {

printf("Got a packet\n");
}

int main() {
pcap_t *handle;
char errbuf[PCAP_ERRBUF_SIZE];
struct bpf_program fp;
char filter_exp[] = "udp or icmp";
bpf_u_int32 net;
const int MAX_SIZE = 8192;

// Step 1: Open live pcap session on NIC with name enp0s3
handle = pcap_open_live("enp0s3", MAX_SIZE, 1, 1000, errbuf);
if (handle == NULL) { printf("Error on open\n"); printf("errbuf %s\n",errbuf); return (1); }

// Step 2: Compile filter_exp into BPF psuedo-code
pcap_compile(handle, &fp, filter_exp, 0, net);
if (pcap_setfilter(handle, &fp) != 0) { printf("set filter error"); return(1); }

// Step 3: Capture packets
pcap_loop(handle, -1, got_packet, NULL);

pcap_close(handle); //Close the handle
return 0;

Open PCAP session
• Sniff on interface enp0s3 (use ifconfig to find)
• 3rd parameter sets promiscuous mode to true

Compile BPF filter to pass
UDP or ICMP packets

Start sniffing
Set callback function to got_packet

Prints got packet when UDP or ICMP packet arrives
Last parameter has packet details Parsing packets

in C is tedious

from scapy.all import *

def process_packet(pkt):
global count
print('-'*40)
print("Packet number",count)
pkt.show()
print('-'*40)
count += 1

if __name__ == '__main__’:
count = 0
pkt = sniff(iface='enp0s3', filter='icmp or udp', count=10, prn=process_packet)

30

Scapy makes it easy to use PCAP from
Python to sniff packets with a filter

Install scapy on VM
$ sudo pip3 install scapy

sniff_scapy.py

First install scapy on VM

Sniff on this interface
Filter out packets
other than these

Only capture
10 packets

Callback function
when packet arrives

Run
$ sudo python3 sniff_scapy.py

Uses promiscuous mode, so
need sudo privilege

Called whenever packet
arrives

Print packet summary (much easier to
process packets than with C)

Scapy built on top of PCAP

31

Agenda

1. Network basics

2. Sending and receiving packets

3. Sniffing packets

4. Spoofing packets

Demo
• Start secondary VM with address 10.0.2.5

(confirm with ifconfig)
• Start Wireshark on secondary VM
• Run this code from primary VM

(sudo python3 udp_spoof.py)
• Wireshark shows packet came from 1.2.3.4!

32

Demo: packet spoofing is easy with Scapy

#!/usr/bin/python3
from scapy.all import *

print("SENDING SPOOFED UDP PACKET.........")
ip = IP(src="1.2.3.4", dst="10.0.2.5") # IP Layer
udp = UDP(sport=8888, dport=9090) # UDP Layer
data = "Hello UDP!\n" # Payload
pkt = ip/udp/data # Construct the complete packet
pkt.show()
send(pkt,verbose=0)

Create IP layer 3 with
spoofed src and dest

Set UDP (layer 4) source and
destination ports to destination

Stack layers to create UDP
over IP layer with dataSend packet

udp_spoof.py

Scapy fills in default values and
calculates checksums for us!
Nice!

False flag: it looks like this packet
came from another computer!

We could do this in C also, but
tedious to set packet values

33

Sometimes we want to sniff, then spoof a
reply
from scapy.all import *
def spoof_pkt(pkt):

if ICMP in pkt and pkt[ICMP].type == 8:
#listen for ICMP request packets (type 8)
print("Original Packet.........")
print("Source IP : ", pkt[IP].src)
print("Destination IP :", pkt[IP].dst)

#spoof a reply, even if the request wasn't for us
#must reverse source and destination on reply!
ip = IP(src=pkt[IP].dst, dst=pkt[IP].src, ihl=pkt[IP].ihl)
icmp = ICMP(type=0, id=pkt[ICMP].id, seq=pkt[ICMP].seq)
data = pkt[Raw].load
newpkt = ip/icmp/data

print("Spoofed Packet.........")
print("Source IP : ", newpkt[IP].src)
print("Destination IP :", newpkt[IP].dst)

send(newpkt,verbose=0)

pkt = sniff(filter='icmp and src host 10.0.2.15',prn=spoof_pkt) #icmp and src host 10.0.2.15

Demo
• Start Wireshark on secondary VM
• Run this code from primary VM

(sudo python3 sniff_spoof_icmp.py)
• From secondary VM ping 10.0.2.6 (doesn’t exist)
• Wireshark shows packet came from 10.0.2.6

Steps
• Receive packet
• Extract details
• Spoof a new packet using

extracted details

sniff_spoof_icmp.py

We have created a phantom
computer on the network that
responds to pings from 10.0.2.15!

34

Scapy vs. C

Scapy C
Pros
• Easier to write
• Sets reasonable default fields
• Calculates values (checksums)
• Focus on fields interested
• Every layer is an object, can

easily stack together
• Increased productivity

Pros
• Runs much faster! (50-100X!)
• More control over crafting

packets

35

Scapy vs. C

Scapy C
Pros
• Easier to write
• Sets reasonable default fields
• Calculates values (checksums)
• Focus on fields interested
• Every layer is an object, can

easily stack together
• Increased productivity

Pros
• Runs much faster! (50-100X!)
• More control over crafting

packets

Cons
• Runs slowly

Cons
• Tricky to write, must get the

byte offsets right
• Tedious

36

Scapy and C can work together in a hybrid
approach

For some uses speed is critical
Scapy is slow
Example:

Send 1000 UDP packets
• Scapy: 9.4 seconds
• C : 0.25 seconds
• C is 37X faster than Scapy in this case!

Sometimes racing to reply before the “real” computer – Scapy too slow

Idea:
• Use Scapy to create packets, and save to file
• Read packets in C (might to adjust some fields)
• Send using C

Hybrid approach

37

38

Endianness

Endianness: a term that refers to
the order in which a given multi-
byte data item is stored in memory
– Little Endian: store the most

significant byte of data at the
highest address

– Big Endian: store the most
significant byte of data at the
lowest address

Little endian
always seems
backwards to me

Store 0xDEADBEEF

DE AD BE

Increasing addresses

EF

Big endian

EF BE AD DE

Little endian

39

Endianness in network communication

Computers with different byte orders will misunderstand each other
• Solution: agree upon a common order for communication
• This is called “network order”, which is the same as Big Endian

order
• But Intel computers (“hosts”) use Little Endian

• Must convert data between “host order” and “network order”

40

Prior to 1993 IP addresses were assigned in
address range blocks

Class A: 0.0.0.0 – 127.255.255.255

Class B: 128.0.0.0 – 191.255.255.2555

Class C: 192.0.0.0 – 223.255.255.255

Class D: 224.0.0.0 – 239.255.255.255

Class E: 240.0.0.0 – 255.255.255.255

Classful addressing scheme (1981 -1993) Used to help routing,
32 bits total

Left bit always 0, if see you a
zero in the left bit, you know it
belongs to a Class A network

Network ID is 27 = 127 possible
address for first octet

If you had Class A network
(first 8 bits set) you have 224 =
16.7M possible addresses that
can be given to devices

Issued to very large
organizations

41

Prior to 1993 IP addresses were assigned in
address range blocks

Class A: 0.0.0.0 – 127.255.255.255

Class B: 128.0.0.0 – 191.255.255.2555

Class C: 192.0.0.0 – 223.255.255.255

Class D: 224.0.0.0 – 239.255.255.255

Class E: 240.0.0.0 – 255.255.255.255

Classful addressing scheme (1981 -1993)

Network ID is left 16 bits
• Left bit = 1
• Left second bit = 0

If you see left bits are 10, you
know this is a Class B network

If you had Class B network
(first 16 bits set) you have 216 =
65.5K possible addresses that
can be given to devices

Issued to large organizations

Used to help routing
32 bits total

42

Prior to 1993 IP addresses were assigned in
address range blocks

Class A: 0.0.0.0 – 127.255.255.255

Class B: 128.0.0.0 – 191.255.255.2555

Class C: 192.0.0.0 – 223.255.255.255

Class D: 224.0.0.0 – 239.255.255.255

Class E: 240.0.0.0 – 255.255.255.255

Classful addressing scheme (1981 -1993)

Network ID is left 24 bits
• Left bit = 1
• Left second bit = 1
• Third left bit = 0

If you see left bits are 110, you
know this is a Class C network

If you had Class C network
(first 24 bits set) you have 28 =
256 possible addresses that can
be given to devices

Issued to medium sized
organizations

Used to help routing
32 bits total

43

Prior to 1993 IP addresses were assigned in
address range blocks

Class A: 0.0.0.0 – 127.255.255.255

Class B: 128.0.0.0 – 191.255.255.2555

Class C: 192.0.0.0 – 223.255.255.255

Class D: 224.0.0.0 – 239.255.255.255

Class E: 240.0.0.0 – 255.255.255.255

Classful addressing scheme (1981 -1993)

Class D for multicast (special
purpose)

Class E reserved

Used to help routing
32 bits total

Problem:
We were using up IP addresses
too quickly (lots of unused
addresses if you own a Class A
network)

Happened to us, we had a class C
and had to give up some
addresses

44

45

