
CS 55:
Security and Privacy

Firewalls

Adapted from Computer and Internet Security by Du unless otherwise noted



2
https://xkcd.com/838



3

Agenda

1. What are firewalls?

2. Building a simple firewall using Netfilter

3. Using iptables firewall

4. Stateful firewall



4

Firewalls are designed to stop 
unauthorized network traffic

Main functions:
● Filtering packets
● Redirecting traffic
● Protecting against network attacks
Requirements
● Traffic between trust zones should flow through firewall
● Only authorized traffic passes
● Firewall itself must be hardened against attack

Firewall 
separates 
trusted and 
untrusted 
network 
components

Firewall

Protected 
network

Untrusted 
network

Often sold as a hardware 
appliance, but it is just a 
computer

Inside Outside



5

Firewalls are designed to stop 
unauthorized network traffic

Firewall policy
● User control: Controls access based on the role 

of the user.  Applied to users inside the firewall perimeter
● Service control: Controls access by the type of service offered by 

the host.  Applied on the basis of network address, protocol of 
connection and port numbers

● Direction control: Determines the direction in which requests may 
be initiated and are allowed to flow through the firewall.  It tells 
whether the traffic is “inbound” (from the outside to firewall) or 
“outbound” (from the inside to the firewall)

Firewall 
separates 
trusted and 
untrusted 
network 
components

Firewall

Protected 
network

Untrusted 
network

Inside Outside



6

Firewalls can take one of three actions on a 
packet: accept, deny, or reject

Accept

Accept
Traffic allowed 
through firewall

Deny
Traffic stopped at 
firewallDeny

Reject
Traffic stopped at 
firewall and 
sender notified

Reject

Filtering can be 
done on ingress 
or egress



7

There are three main types of firewalls

1. Packet filters

2. Stateful inspection

3. Application proxy



8

1) Packet filter firewalls make decisions 
based on a packet-by-packet basis

Firewall

Protected 
network

Untrusted 
network

● Decisions made based on a single packet
● Controls traffic based on the information in packet 

headers up to layer 4, without looking into the 
payload that contains application data

● Does not consider if the packet is a part of existing 
stream of traffic

● Does not maintain info on connection state

Packet

Packet filter firewalls also 
called Stateless Firewalls

Primary advantages: 
speed and cost

Inside Outside



9

2) Stateful firewalls make decisions based 
on a stream of packets

Firewall

Protected 
network

Untrusted 
network

● Decisions based on a stream of packets
● Tracks the state of traffic by monitoring all the 

connection interactions until is closed
● Connection state table is maintained to understand 

the context of packets
● Example: connection are only allowed through the 

ports that hold open connections

Packet stream

Inspects up to transport 
layer (layer 4)

Able to prevent many 
kinds of spoofing attacks

Usually more 
expensive than 
packet filer 
firewalls

Inside Outside



10

3) Application proxy firewalls control 
access to/from a service

Firewall

● Firewall controls I/O to/from application or service
● Acts as intermediary (no direct contact to app/service)
● Client connection terminates at firewall, separate 

connection initiated to application/service
● Data on connection analyzed up to application layer to 

determine if packet allow or denied/rejected
● Can prevent sensitive information leaks

RequestInside OutsideRequest evaluatedForward

Reply Forward Limitations:
• Must implement proxy  

rules for each app
• Slower than other 

firewalls
Nextgen firewalls also do intrusion detection/prevention, 
malware prevention, URL filtering, QoS

Reply evaluated



11

Agenda

1. What are firewalls?

2. Building a simple firewall using Netfilter

3. Using iptables firewall

4. Stateful firewall



12

Linux provides two things useful for
building a simple packet filter firewall
Packet filter firewall implementation in Linux

● Packet filtering must be done inside the kernel, user 
space will not be able to control packet flow

● Need changes in the kernel, two way to do this:

o Netfilter: Provides hooks at critical points on the 
packet traversal path inside Linux Kernel

o Loadable Kernel Modules: Allow privileged users to 
dynamically add/remove modules to the kernel, so 
there is no need to recompile the entire kernel



13

Netfilter hooks can call our code when a 
packet arrives at the hook

Packet arrives from NIC 

See if packet is for this 
computer

Packet is for this 
computer

Packet is not for this computer
• If acting as router, send packet along
• Not useful for firewall on this computer

Packet goes 
through network 
stack

Can act right before 
application gets packet
Very useful for firewalls!

Network 
Address 
Translation 
(NAT) can be 
done here

Hooks can be used for 
ingress and egress
Can also do NAT or other 
packet modifications

OS looks to see if code registered for callback, 
if so, call code when packet reaches hook 



14

Code connected to a hook can render one 
of five decisions on a packet
1. NF_ACCEPT: Let the packet continue

2. NF_DROP: Discard the packet

3. NF_QUEUE: Pass the packet to the user space via 
nf_queue facility

4. NF_STOLEN: typically used to store fragmented packets 
so related packets can be analyzed together

5. NF_REPEAT: Request the netfilter to call this module 
again



15

Our code must run in the kernel; use 
Loadable Kernel Modules (LKMs)

● Loadable Kernel Modules allow us to change the kernel 
without the need to recompile the entire kernel

● Developers can use LKMs to register callback functions to 
these hooks

● When a packet arrives at a hook
o Netfilter checks if any kernel module has registered a 

callback function at this hook
o Registered modules will be called
o Modules are free to analyze or manipulate the packet 

and return the verdict on the packet



16

LKMs have init and exit functions that fire 
when the modules is installed or removed

static int kmodule_init(void) {
printk(KERN_INFO "Initializing this module\n");
return 0;

}

static void kmodule_exit(void) {
printk(KERN_INFO "Module cleanup\n");

}

module_init(kmodule_init);       
module_exit(kmodule_exit);      

MODULE_LICENSE("GPL");

kMod.c Invoked when kernel module is 
loaded (sudo insmod kMod.ko)

Invoked when kernel module is 
removed (sudo rmmod kMod)

obj-m += kMod.o
all:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules

clean:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean

Makefile

//insert our kernel module
$ make
$ sudo insmod kMod.ko

//list installed kernel modules
$ lsmod | grep kMod
kMod 16384 0

//remove our kernel module
$ sudo rmmod kMod

//check dmesg
$ dmesg | tail
[ 2969.190306] Initializing this module
[ 3005.730520] Module cleanup

Note: printk, not printf!

Set init and 
exit modules

M indicates external 
kernel module

-C specifies directory of 
library files for kernel



17

We can use netfilter and LKMs to block 
outgoing telnet traffic

Goal: block outgoing telnet traffic 
• TCP 
• Uses port 23



Packets traverse stages
Kernel looks for hooks registered at each stage
Make callback if registered
Callback returns NF_ACCEPT, NF_DROP (or other) 18

We can use hooks with our LKMs to block 
outbound telnet traffic, but which one?
Goal: block outgoing telnet traffic (TCP on port 23)

Which hook should we use?

Would block 
telnet traffic 
from other 
computers 
too! (if acting 
as a router)

All good choice, but would 
only block traffic outbound 
from this computer

Could use NF_IP_LOCAL_IN 
but that would block 
inbound traffic, but we 
want to block outbound



19

Implement a telnet filter with LKM

static struct nf_hook_ops telnetFilterHook;

int setUpFilter(void) {
printk(KERN_INFO "Registering a Telnet filter.\n");
telnetFilterHook.hook = telnetFilter; 
telnetFilterHook.hooknum = NF_INET_POST_ROUTING;
telnetFilterHook.pf = PF_INET;
telnetFilterHook.priority = NF_IP_PRI_FIRST;

// Register the hook.
nf_register_hook(&telnetFilterHook);
return 0;

}

void removeFilter(void) {
printk(KERN_INFO "Telnet filter is being removed.\n");
nf_unregister_hook(&telnetFilterHook);

}

module_init(setUpFilter);
module_exit(removeFilter);

telnetFilter.c

Set init and exit 
modules

Identify callback function 
(shown on next slide)

Identify hook to use 
(use NF_INET_LOCAL_IN 
to block inbound traffic)

Will fill this struct with needed data

Register callback

Remove callback



20

Implement a telnet filter with LKM

unsigned int telnetFilter(void *priv, struct sk_buff *skb,
const struct nf_hook_state *state)

{
struct iphdr *iph;
struct tcphdr *tcph;

iph = ip_hdr(skb);
tcph = (void *)iph+iph->ihl*4;

if (iph->protocol == IPPROTO_TCP && tcph->dest == htons(23)) {
printk(KERN_INFO "Dropping telnet packet to %d.%d.%d.%d\n",

((unsigned char *)&iph->daddr)[0],
((unsigned char *)&iph->daddr)[1],
((unsigned char *)&iph->daddr)[2],
((unsigned char *)&iph->daddr)[3]);

return NF_DROP;
} else {

return NF_ACCEPT;
}

}

telnetFilter.c

Entire packet is here

Drop if TCP and port 23, otherwise accept

Get IP and TCP headers

Netfilter handles destroying packet (we 
don’t have to do it ourselves)

Hook from previous slide



21

DEMO
Primary computer (10.0.2.15) Secondary computer (10.0.2.4)

$ telnet 10.0.2.15
Log in with seed and dees (works)
$ exit

# make and install firewall rule
$ cd ~/src/firewall/packet_filter/
$ make
<builds>
$ sudo insmod telnetFilter.ko

$ telnet 10.0.2.15
Blocked

$ dmesg | tail
Initializing this module
Module cleanup
Registering a Telnet filter.
Dropping telnet packet to 10.0.2.15

# remove firewall rule
$ sudo rmmod telnetFilter

$ telnet 10.0.2.15
Log in with seed and dees (works)
$ exit

Note: hook set to 
NF_INET_LOCAL_IN 
(blocking inbound traffic)



22

Agenda

1. What are firewalls?

2. Building a simple firewall using Netfilter

3. Using iptables firewall

4. Stateful firewall



23

Linux has a built-in firewall called iptables
built on top of Netfilter
Netfilter

User space: iptables

Kernel space: xtables xtables has access to 
netfilter’s 5 hooks

Users enter commands into 
iptables, iptables inserts 
kernel code via xtables

No need to write 
and compile 
kernel modules



24

Iptables organizes functionality into tables 
and chains based on needed functionality

If you want to 
implement a packet 
filter, put your rules in 
the filter table

If you want to change a 
packet, put your rules in 
the mangle table

If you want to do NAT….

Chains correspond 
to netfilter hooks

There are a total of 5 hooks
But only 3 are meaningful for filtering applications
All 5 are available for changing (mangling) packets

INPUT = NF_IP_LOCAL_IN
FORWARD = NF_IP_FORWARD
OUTPUT = NF_IP_LOCAL_OUT

To do port forwarding 
(send packets to a different 
port) add hook to INPUT



25

Filtering applications only need 3 hooks, 
other applications may need more

filter
INPUT

filter
FORWARD

filter
OUTPUT

As packets move through each chain 
iptables checks to see if there is a rule

Execute rule if exits

Rules normally result in ACCEPT, 
REJECT, DROP, or LOG

Iptables Multiple tables 
per netfilter hook

Check if for local 
machine

Packet for local 
machine

Packet is for another machine, 
forward if acting as router



26

Iptables is powerful, but the commands to 
create rules initially look difficult

$ iptables [-t filter] –A CHAIN <rule> -j  <action>

Command Specify table
• filter (default)
• nat
• mangle

Which chain
and which action apply
• INPUT
• FORWARD
• OUTPUT
• PRE/POST ROUTING

Flags
• -A = append rule
• -C = check if rule exists
• -D = delete rule
• -P = change policy
• Others

Matching rule (most 
complicated part)

What to do with 
packets that 
match this rule

Iptables

https://help.ubuntu.com/community/IptablesHowTo?action=show&redirect=Iptables



27

Iptables is powerful, but the commands to 
create rules initially look difficult

Matching rule (most 
complicated part)

Iptables

Specifying rule:
-i incoming interface
-o outgoing interface
-------------------------------------------------------
-s source IP (/mask)
-d destination IP (/mask)
-------------------------------------------------------
-p protocol 

-p tcp –dport 22
-------------------------------------------------------
-m match extension

-m owner –uid-owner bob 

Layer 2

Layer 3

Layer 4 Get help: iptables -p tcp -h

$ iptables [-t filter] –A CHAIN <rule> -j  <action>

https://help.ubuntu.com/community/IptablesHowTo?action=show&redirect=Iptables



28

Iptables is powerful, but the commands to 
create rules initially look difficult
Iptables

Specifying target action:
ACCEPT
REJECT
DROP
LOG
Target extension (e.g., NAT, TOS, TTL)

What to do with 
packets that 
match this rule

Example:
-j ACCEPT

$ iptables [-t filter] –A CHAIN <rule> -j  <action>

https://help.ubuntu.com/community/IptablesHowTo?action=show&redirect=Iptables



29

Example: block a specific IP address from 
communicating with a network
Block IP address

$ sudo iptables –A INPUT –s 192.168.30.6 –d 192.1.0/16 -j DROP

Filter table used by 
default (if no –t)

Apply to INPUT 
chain

Chain choices:
PREROUTING
INPUT
FORWARD
OUTPUT
POSTROUTING

Look at packets 
coming from here

Going here (any 
address that starts 
with 192.1)

Drop packets like 
they’re hot

$ iptables [-t filter] –A CHAIN <rule> -j  <action>

https://help.ubuntu.com/community/IptablesHowTo?action=show&redirect=Iptables



30

Example: Open SSH (port 22) and HTTP 
(port 80) 
Open port 22 and 80

$ sudo iptables –A INPUT –p tcp --dport 22 –j ACCEPT
$ sudo iptables –A INPUT –p tcp --dport 80 –j ACCEPT

Apply to transport 
layer TCP packets

Look at ports 22 and 80 
(notice double dash)

Accept matching 
packets

All other traffic is not necessarily rejected, packets continue on path
• Rules evaluated in order
• Once a packet matches a rule and is accepted, it proceeds on
• Packets matching this rule will be accepted and proceed on, even 

if later rules would drop them

$ iptables [-t filter] –A CHAIN <rule> -j  <action>

https://help.ubuntu.com/community/IptablesHowTo?action=show&redirect=Iptables



31

Example: block user bob from sending any 
outbound packets
Allow all outgoing TCP traffic

$ sudo iptables –A OUTPUT –m owner –uid-owner bob –j DROP

Apply to outbound traffic
Rules based on user only 
Works for outbound traffic

Set owner to bob

Drop any of bob’s 
outbound 
packets

Other users 
unaffected

$ iptables [-t filter] –A CHAIN <rule> -j  <action>

https://help.ubuntu.com/community/IptablesHowTo?action=show&redirect=Iptables

Can we drop packets inbound for bob?
No!  User is not part of packet; 
firewall doesn’t know who owns it



32

We can set the default behavior to ACCEPT 
or DROP packets with -P
Allow all outgoing TCP traffic

$ sudo iptables –P INPUT  DROP
$ sudo iptables –P OUTPUT  DROP
$ sudo iptables –P FORWARD  DROP

Default now is to drop all 
traffic unless allowed by 
other rules

Note: no –j on action

$ iptables [-t filter] –A CHAIN <rule> -j  <action>

https://help.ubuntu.com/community/IptablesHowTo?action=show&redirect=Iptables



33

Example: allow all outgoing TCP traffic
Allow all outgoing TCP traffic

$ sudo iptables –A OUTPUT –p tcp –j ACCEPT

Apply to outbound traffic
Look TCP protocol

Accept matching 
packets

$ iptables [-t filter] –A CHAIN <rule> -j  <action>

https://help.ubuntu.com/community/IptablesHowTo?action=show&redirect=Iptables



34

Example: add five to time-to-live (ttl)
Allow all outgoing TCP traffic

$ sudo iptables –t mangle  –A PREOUTING –j TTL –ttl-inc 5

We are going to change 
packet, so use mangle 
table instead of filter table

Use PREROUTING so all 
packets are changed 
before moving on

Action is to add  
increase time to 
live by 5

$ iptables [-t filter] –A CHAIN <rule> -j  <action>

https://help.ubuntu.com/community/IptablesHowTo?action=show&redirect=Iptables



35

We can flush all rules with -F
Allow all outgoing TCP traffic

$ sudo iptables -F

Removes rules (keeps default settings)
Can be done on per table basis

$ iptables [-t filter] –A CHAIN <rule> -j  <action>

https://help.ubuntu.com/community/IptablesHowTo?action=show&redirect=Iptables



36

We can list and remove rules
# list all the rules for a table 
$ sudo iptables –t filter –L
$ sudo iptables –t filter –L --line-numbers

# flash (remove) all rules for a table
$ sudo iptables –t nat –F

# remove a single rule
$ sudo iptables –t filter –L –line-numbers

Chain INPUT (policy ACCEPT)
num  target     prot opt source               destination         
1    ACCEPT     tcp -- anywhere             anywhere             tcp dpt:http

Chain FORWARD (policy ACCEPT)
num  target     prot opt source               destination         

Chain OUTPUT (policy ACCEPT)
# remove rule 1 from input chain on filter table
$ iptables –D INPUT 1

Can put commands into a 
shell script for convenience

Iptables is extremely 
powerful, we’ve just barely 
scratched the surface today



37

To reset to default, run this shell script

#!/bin/sh

# Set up all the default policies to ACCEPT packets 
iptables -P INPUT ACCEPT 
iptables -P OUTPUT ACCEPT 
iptables -P FORWARD ACCEPT 

#Flush all existing configurations. 
iptables -F 

clean_up.sh

https://github.com/kevin-w-du/BookCode/blob/master/Firewall/iptables/cleanup.sh



38

Agenda

1. What are firewalls?

2. Building a simple firewall using Netfilter

3. Using iptables firewall

4. Stateful firewall



39

Looking at the context of a packet can 
provide better control than just filtering

Our previous example allowed all communication over port 22 and 80
An adversary can send TCP packets out port 80, but to clients other 
than one that has established a connection
Add stateful inspect to prevent communication to clients that have 
not completed 3-way handshake
States are:

NEW: Connection starting 3-way TCP handshake
ESTABLISHED: Connection established
RELATED: Establishes relationship between connections
INVALID: Used for packets that do not follow protocol

//open port 22 (ssh) and 80 (http)
$ sudo iptables –A INPUT –p tcp --dport 22 –j ACCEPT
$ sudo iptables –A INPUT –p tcp --dport 80 –j ACCEPT



40

Looking at the context of a packet can 
provide better control than just filtering

Conntrack package for 
iptables allow state 
tracking

//open port 22 (ssh) and 80 (http)
$ sudo iptables –A INPUT –p tcp --dport 22 –j ACCEPT
$ sudo iptables –A INPUT –p tcp --dport 80 –j ACCEPT
$ sudo iptables –A INPUT –p tcp –m conntrack

--ctstate ESTABLISHED, RELATED – j ACCEPT
Our previous example allowed all communication over port 22 and 80
An adversary can send TCP packets out port 80, but to clients other 
than one that has established a connection
Add stateful inspect to prevent communication to clients that have 
not completed 3-way handshake
States are:

NEW: Connection starting 3-way TCP handshake
ESTABLISHED: Connection established
RELATED: Establishes relationship between connections
INVALID: Used for packets that do not follow protocol



41


