
CS 55: Security and Privacy

Identification and Authentication

Anything your computer can do for you it can potentially do for someone else - Alan Cox Big idea: allow legitimate users in, keep others out

Discussion

What is the difference between:

- Identification
- Authentication
- Authorization?

Agenda

1. Lessons from my military days

2. Identification, Authentication and Authorization

3. Multi-factor authentication

What do to if you are ever a hostage

Image: https://www.buildings.com/article-details/articleid/14893/title/hostage-prevention-101/viewall/true

Image: https://www.ready.marines.mil/Stay-Informed/Emergency-Actions/Noncombatant-Evacuation-Operations-NEO/

- 1. Lessons from my military days
- 2. Identification, Authentication and Authorization
 - 3. Multi-factor authentication

Access proceeds from Identification to Authentication to Authorization

- Users claims their identity; they asset
- who they are
- Example: provide a user ID or biometric

Identity is public (anyone can claim to be a person)

Access proceeds from Identification to Authentication to Authorization

Users claims their identity; they asset who they are

Example: provide a user ID or biometric

Identity is public (anyone can claim to be a person) Verifying users by confirming they are who they say they are

Could be done by confirming password matches user ID

Authentication is private

Access proceeds from Identification to Authentication to Authorization

Identification

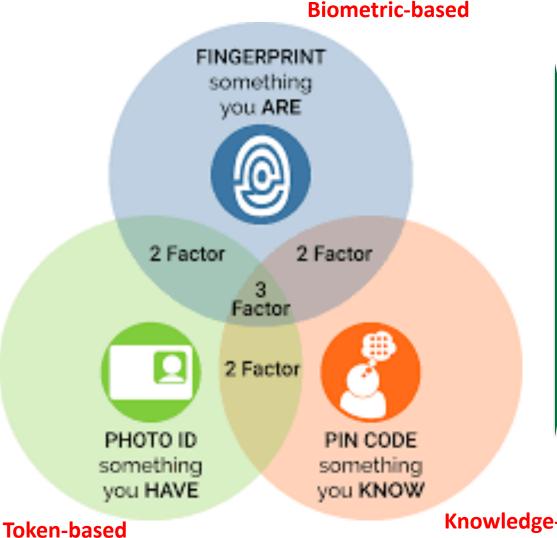
Authentication

Authorization

Users claims their identity; they asset who they are

Example: provide a user ID or biometric

Identity is public (anyone can claim to be a person) Verifying users by confirming they are who they say they are


Could be done by confirming password matches user ID

Authentication is private

Validating the roles, permissions, and privileges assigned to a user

Performed after authentication to grant or deny access rights to users for resources

Authentication is often based on something you KNOW, HAVE, or ARE

Multi-factor authentication uses two or more of these

Examples you use?

https://www.borer.co.uk/borer-technology/multi-factor-identity-authentication/

Discussion: what are the shortcommings of using passwords for authentication

Password shortcomings

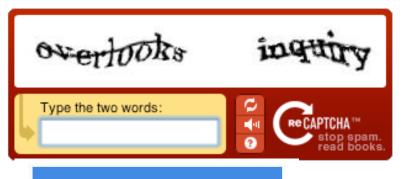
What are some issues with using passwords for authentication?

- Easily guessed or hard to remember
- Must remember password for multiple systems (leads to reuse)
- Users write them down (sticky note easily observed)
- Recall is harder than recognition
- Password recovery issues (easy if you know people, harder online)
- Disclosure: once someone else knows password, they can use it or change the password to a new one!
- Cannot forget password on demand (rubber hose attack)
- Can lead to loss (Bitcoin wallet forget password on bitcoin gone)

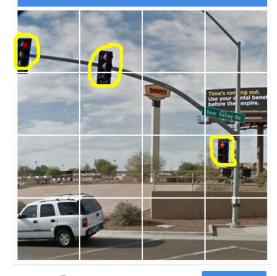
Should passwords be changed frequently?

Passwords can be guessed given enough time, counter measures are possible

Password guessing approaches:


- Dictionary/rainbow table attacks
- Inferring likely passwords for a particular user (OSINT)
- Credential stuffing (attacks password re-use)
- Brute force

Counter measures


- DO NOT STORE PASSWORD IN PLAIN TEXT, store password hash
- Use hash function that is slow to compute (not bad for users)
- Add salt (defeat rainbow tables) and pepper (defeat dictionary)
- Provide exponential back off/lock out for online guessing (but this could be turned into a DOS attack!)
- Use CAPTCHA along with each guess

CAPTCHAs can help default automate attacks against online systems

<u>Completely Automated Public Turing test to tell Computers and Humans Apart</u>

SKIP

humans can easily read text with distractors, but machines could not

Original design relied on fact that

- Amazon Mechanical Turk
- ML advances reducing effectiveness

re-CAPTCHA design asks users to identify objects in image

- Harder for machines (for now)
- Helps Google with image recognition ML

Uses?

Here is another version of a CAPTCHA...

Qualifying question

Just to prove you are a human, please answer the following math challenge.

Q: Calculate: $\frac{\partial}{\partial x} \left[6 \cdot \sin\left(x - \frac{\pi}{2}\right) + 3 \cdot \cos\left(2 \cdot x - \frac{\pi}{2}\right) \right] \Big|_{x=\pi}$ A: *mandatory*

Note: If you do not know the answer to this question, reload the page and you'll (probably) get another, easier, question.

Haveibeenpwned.com can check if a password has been in a breach

- → C	a haveibeen	pwned.com								☆	M
Apps 🔶	Google Scholar	🔿 Canvas 🛛 🧔	ACM Digital Library	y IEEE Xplore Digita	I 🚺 Banner	S https://s	seedsecuri	SEED Co	mputer &	O GitHub - kevir	1-W
	';-	Home	e Notify me	Domain search	Who's been	ı pwned	Password	s API	About	Donate 🛱 P	
		(1	hav	<u>a</u> it		n r			42		
		(';	hav	veit	beer	n k	W	ne	d?		
				Veik an account that)	
)	

Passwords from

- 481 breaches
- 10,199,352,448
 user accounts
- 572,611,621 passwords

Check if email¹ or password² has been pwned

Has API you can use in your sites for:

- User registration check if password burned
- Password change check if new password burned
- Login check if password is newly burned

Troy Hunt offers some useful advice regarding authentication and passwords

Authentication should be more than a binary state

- If the user has tried to login 3 times, show a captcha, lock after 5 attempts
- If logging in with a new browser from a new country, perhaps don't give unfettered access to everything

Longer passwords are (usually) stronger

 Don't limit passwords to say 8-10 characters, why limit at 10? NIST says at least 64 characters (it all hashes down to a fixed length anyway)

Special characters

- All printable characters (including space) should be allowed in a password
- Should not impose other composition rules (e.g., requiring a mix of different character types or prohibiting consecutively repeated characters) for memorized secrets (goes against conventional wisdom, but "Password!" would be ok)

Do not use password hints (e.g., my name, usual, password, email)

Use password managers

- They pick strong, random passwords
- Do not re-use passwords

Troy Hunt offers some useful advice regarding authentication and passwords

Do not mandate password changes

- People just increment a number at the end of their password
- Change when you have a suspicion of compromise

Notify users of abnormal behavior

• Example: Dropbox emails you when a new computer accesses your files

Block previously breeched passwords

• Can use haveibeenpwnd.com API to check

Use multi-factor authentication

OWASP has additional advice for developers

Use Bcrypt unless you have a good reason not to

- Bcrypt has been vetted (do not roll your own crypto!)
- Takes a long time to compute hash (ok for one user, bad for adversary trying millions of possibilities)

Set a reasonable work factor for your system

- Work factor = number of iterations of hashing algorithm
- Too low: doesn't slow down adversaries enough
- Too high: takes too long for users
- Somewhere around 10 to 12 generally recommended
- Use a salt (modern algorithms do this for you automatically)
 - Each user assigned a different random string
 - Append to password before hashing to defeat rainbow tables
 - (salt stored in plaintext in database)

Consider using a pepper to provide an additional layer of security

Secret value appended to password+salt to defeat dictionary attacks

Password entry systems can leak information unnecessarily

Welcome to XYU Computing Services Enter username: foople *** Unknown username - Retry

Enter username:

Password entry systems can leak information unnecessarily

Welcome to XYU Computing Services Enter username: foople Enter password: ****** *** Incorrect password *** Attempt 1 of 3

Enter username:

Password entry systems can leak information unnecessarily

Welcome to XYU Computing Services Enter username: foople Enter password: ****** *** Authentication failed *** Attempt 1 of 3

Enter username: foople
Enter password: *******
*** Authentication succeeded

\$__

Discussion

Will passwords ever go away? What would be needed for them to go away?

Passwords are the root cause of over **80%** of data breaches

Users have more than **90 online accounts**

Up to 51% of passwords are reused

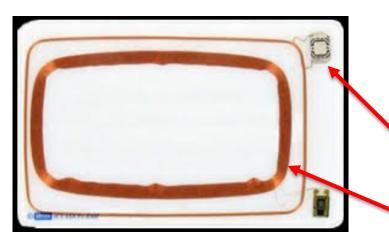
1/3 of online purchases abandoned due to forgotten passwords

\$70: average help desk labor cost for a single password reset

- 1. Lessons from my military days
- 2. Identification, Authentication and Authorization
- 3. Multi-factor authentication

Multi-factor authentication often uses tokens you HAVE

Static tokens


Ideally

Static tokens do not change value over time

- Difficult to duplicate
- Often issued by an authority (vets who gets a token)
- Easily recognized as valid
- Easily revoked

Example: proximity cards are often used for physical access control

Prox cards

- Short range
- Cards are passive
 - No power in card itself
 - Card powered by reader
- Cards often only have an ID (not more computational power)
- Reader reads card ID
 - Checks if access is allowed
 - Opens door if authorized access

Small chip provides ID

Antenna gathers power from reader

Prox cards can be captured by a mobile battery powered reader

Hunt Pad Attacks! Taking the long-range reader on the offensive!

Prox cards can be captured by a mobile battery powered reader

Hunt Pad Attacks! Taking the long-range reader on the offensive!

Countermeasures?

Credentials can also be harvested with an ESPKey

Credentials can also be harvested with an ESPKey

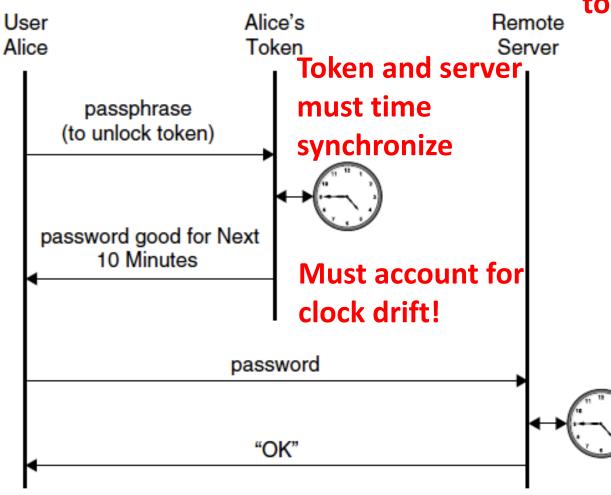
Countermeasures?

Smart cards are sometimes used for access to computers

Smart cards

- Card has integrated circuit and digital certificate
- Must have physical access to computer and have smart card
- Normally used with PIN (something you know) or biometric (something you are)
- US Government uses this technology (PIV – Personal Identity Verification; DOD calls it CAC – Common Access Card)
- Credit cards are another example

Dynamic tokens can change value over time


Dynamic tokens

Dynamic tokens have some computational capabilities Change internal state over time

Dynamic tokens are often combined with something you KNOW

Simplified one-time password with clock

Might also restrict access to specific time of day

Involves something you

• HAVE

token that changes password at fixed interval

• KNOW

password to access token

Dartmouth's Duo works somewhat similarly using PKI

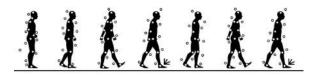
Token failures can still result

Possible token failures

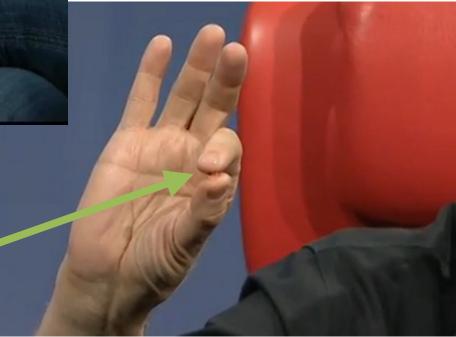
- Lost
- Stolen
- Duplicated
- Broken
- Revoked but used anyway
- Hacked

Biometrics use physiological or behavioral characteristics about you

Physiological

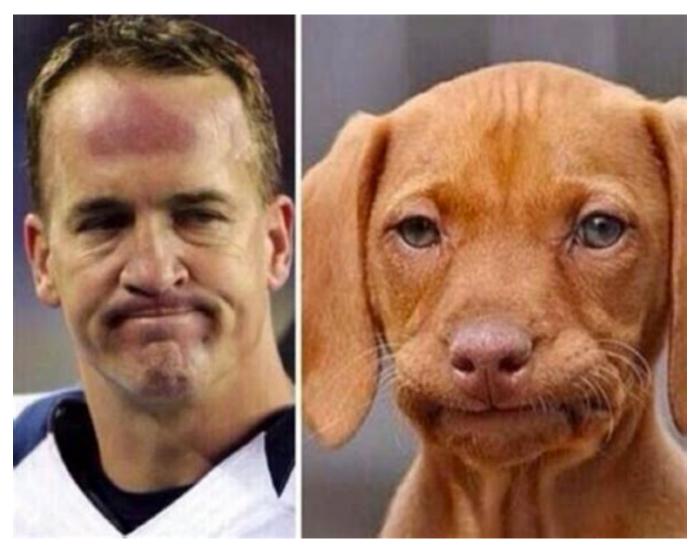


Behavioral



Some blur the line between tokens and biometrics

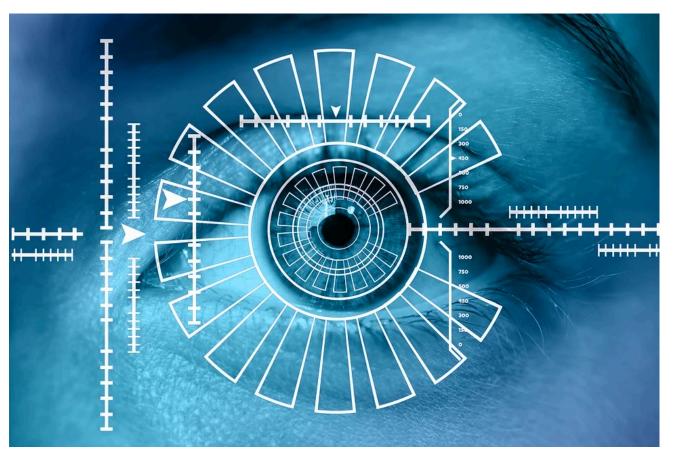
Electronic, removable tattoos


Ingestible electronic identifier powered by stomach acid

Biometrics authentication result in one of four cases

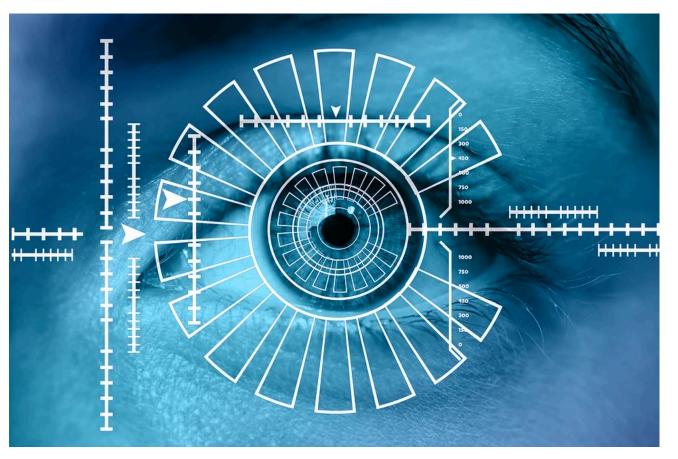
	The subject IS the person they claimed to be	The subject IS NOT the person they claimed to be
Test result is Positive: MATCH	a) TRUE POSITIVE	False b) FALSE Accept POSITIVE Rate (FAR)
Test result is Negative: NO MATCH	False c) FALSE Reject NEGATIVE Rate (FRR)	d) TRUE NEGATIVE
Dichotomous test: there is either a match or		

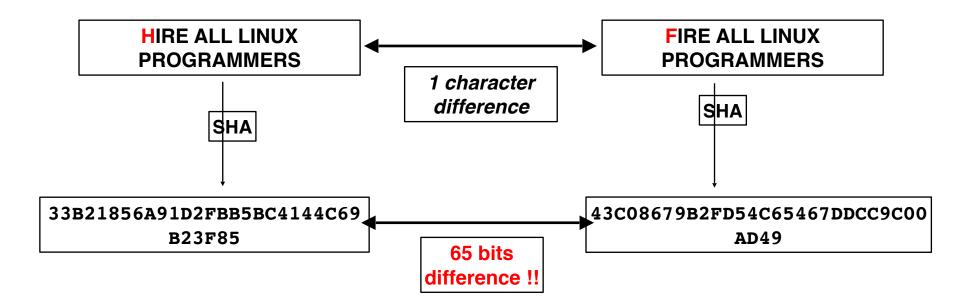
there is not a match


Sometimes it is tough to accurately authenticate a user

Aside from false readings, there can be problems with biometrics

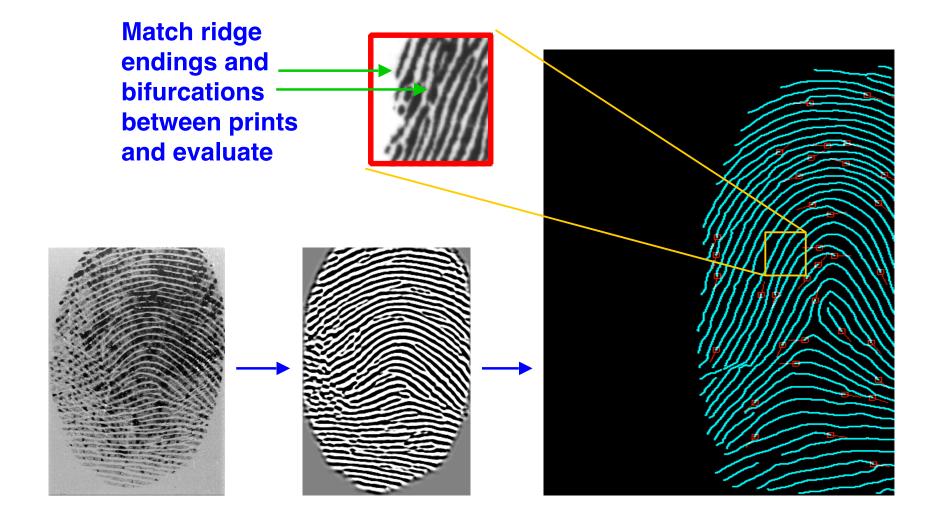
Biometric problems

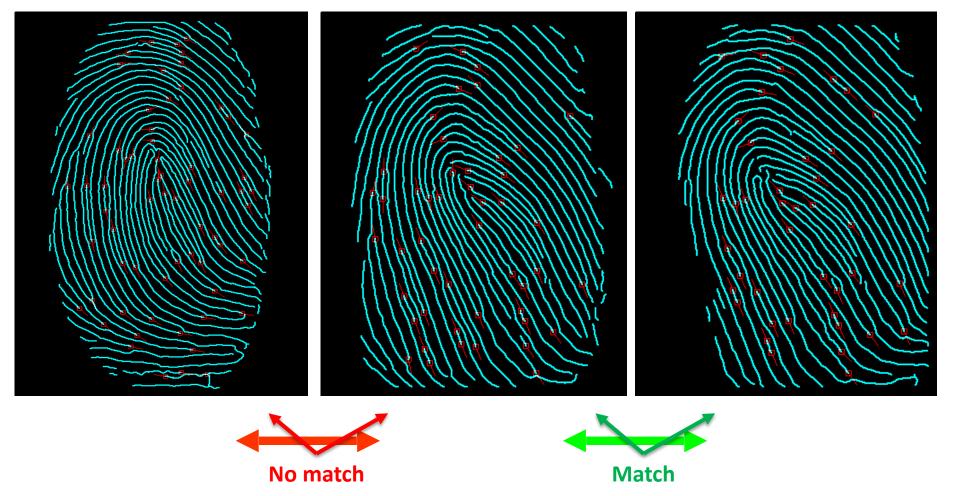

- Intrusive
- Can be expensive
- Single point of failure
- Sampling error
- Speed
- Forgery


Aside from false readings, there can be problems with biometrics

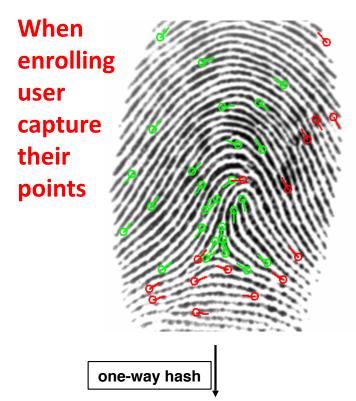
Biometric problems

- Intrusive
- Can be expensive
- Single point of failure
- Sampling error
- Speed
- Forgery
- Not easily cancellable


Can we hash a biometric such as a fingerprint?

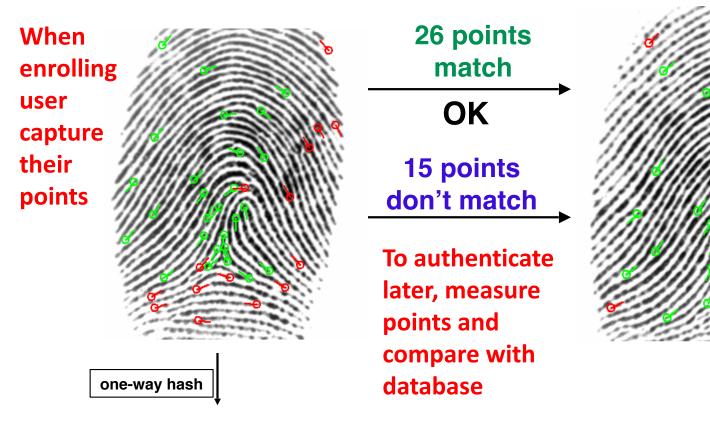

We hash passwords so that if they are stolen the adversary does not get the plain text

What about hashing a biometric?


Fingerprints are primarily matched by "minutiae"

Small changes in minutiae identify individuals

Goal: authenticate fingerprint if enough points match

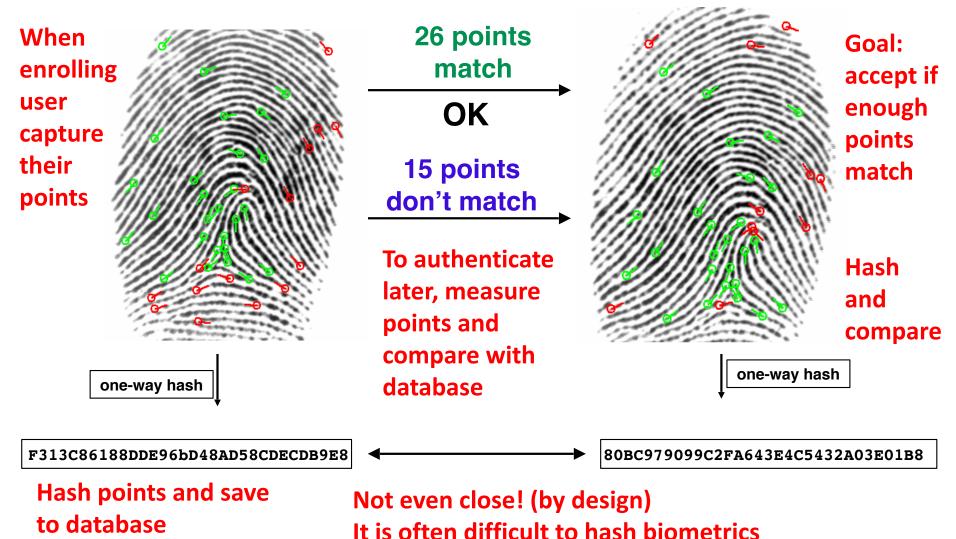

F313C86188DDE96bD48AD58CDECDB9E8

Hash points and save to database

one-way hash

80BC979099C2FA643E4C5432A03E01B8

Goal: authenticate fingerprint if enough points match



Goal: accept if enough points match

F313C86188DDE96bD48AD58CDECDB9E8

Hash points and save to database

It is often difficult to hash biometrics

Adapted from Prof Palmer CS55 lecture notes

Once a user is authenticated security controls can limit what they can do

Technical controls

Used to limit the impact or prevent a security incident, may log events

- Controls implemented using systems
- Operating system controls
- Firewalls, IPS/IDS

Administrative controls

Controls that determine how people act

- Security policies
- Standard operating procedures

Physical controls

Limit access to physical areas

- Locks
- Fences
- Mantraps

