
CS 55:
Security and Privacy

Symmetric encryption

2
Source: https://xkcd.com/538/

3

How to make a key to open a lock without
a photo or physical access to the key

https://www.popularmechanics.com/technology/security/a33865529/copy-keys-with-sound/

Pin tumbler locks have pins
set to various depths

An inserted key displaces
the pins

The right key aligns the pins
with the shear line, allowing
key to turn

The shape of the key is
called the bitting sequence

Normally around 5
positions, each position has
around 6 possible depths

If you know the bitting sequence, you can make
a key as good as the original

4

How to make a key to open a lock without
a photo or physical access to the key

https://www.youtube.com/watch?v=DGdsIrAjp3k&t=1s&start=25

5

How to make a key to open a lock without
a photo or physical access to the key

Countermeasures?
https://www.youtube.com/watch?v=DGdsIrAjp3k&t=1s&start=25

6

Another approach uses a smartphone’s
microphone to listen to key insertion

S. Ramesh, H. Ramprasad, and J. Han. "Listen to your key: Towards acoustics-based physical key inference." Proceedings of the International Workshop on Mobile
Computing Systems and Applications (Hot Mobile). 2020.

Bitting sequence
recovered from
listening to the
sounds made by
a key inserted
into a lock

7

Use defense in depth!

Employ multiple countermeasures

8

Agenda

1. Substitution and transposition ciphers

2. Modern symmetric ciphers

3. AES Modes

4. Using crypto APIs

9

Do not create your own
cryptography system!

Use vetted crypto instead

10

With a substitution cipher, each character
is replaced with another character
Monoalphabetic substitution cypher

a b c d e f g h i j k l m n o p q r s t u v w x y z

j h q a u c d f w n s e v m i o y z p r g l k x b t

Plaintext

Cipher
Each character in plaintext has a
corresponding character in the cipher

Replace the plaintext character with
its matching ciphertext character

11

With a substitution cipher, each character
is replaced with another character
Monoalphabetic substitution cypher

a b c d e f g h i j k l m n o p q r s t u v w x y z

j h q a u c d f w n s e v m i o y z p r g l k x b t

hello

f

Plaintext

Cipher

12

With a substitution cipher, each character
is replaced with another character
Monoalphabetic substitution cypher

a b c d e f g h i j k l m n o p q r s t u v w x y z

j h q a u c d f w n s e v m i o y z p r g l k x b t

hello

fu

Plaintext

Cipher

13

With a substitution cipher, each character
is replaced with another character
Monoalphabetic substitution cypher

a b c d e f g h i j k l m n o p q r s t u v w x y z

j h q a u c d f w n s e v m i o y z p r g l k x b t

hello

fue

Plaintext

Cipher

14

With a substitution cipher, each character
is replaced with another character
Monoalphabetic substitution cypher

a b c d e f g h i j k l m n o p q r s t u v w x y z

j h q a u c d f w n s e v m i o y z p r g l k x b t

hello

fuee

Plaintext

Cipher

15

With a substitution cipher, each character
is replaced with another character
Monoalphabetic substitution cypher

a b c d e f g h i j k l m n o p q r s t u v w x y z

j h q a u c d f w n s e v m i o y z p r g l k x b t

hello

fueei

Plaintext

Cipher

16

With a substitution cipher, each character
is replaced with another character
Monoalphabetic substitution cypher

a b c d e f g h i j k l m n o p q r s t u v w x y z

j h q a u c d f w n s e v m i o y z p r g l k x b t

hello

fueei

Plaintext

Cipher

Decrypt ciphertext by
going in the reverse
direction

17

With a substitution cipher, each character
is replaced with another character
Monoalphabetic substitution cypher

a b c d e f g h i j k l m n o p q r s t u v w x y z

j h q a u c d f w n s e v m i o y z p r g l k x b t

hello

fueei

Plaintext

Cipher

Key point: both sender
and receiver must know
the mapping

A plaintext character is
always replaced with the
same ciphertext character

26! Possibilities – seems
strong, right?

18

With a substitution cipher, encryption and
decryption are done using the same key

Develop key:
python3 monoalphabetic.py
• Outputs: jhqaucdfwnsevmioyzprglkxbt

Encrypt:
tr ‘a-z’ ‘jhqaucdfwnsevmioyzprglkxbt’ < plain.txt > cipher.txt
• Translates characters in plain.txt using key
• Saves output in cipher.txt

Decrypt:
tr ‘jhqaucdfwnsevmioyzprglkxbt’ ‘a-z’ < cipher.txt > plain1.txt
• Translates characters in cipher.txt replacing with a-z
• Saves output in plain1.txt Works assuming both sender and

receiver both know the cipher

19

We can break substitution ciphers with
frequency analysis
Key ideas:
• Know or guess which language (e.g., English, German, …) used in plaintext
• Look up how frequently different letters used in that language

• e used in English most frequently
• q and z not used frequently

• Letter that appears 100 times in plaintext will appear 100 times in ciphertext
• Letters are changed but letter frequencies are not (mapped 1:1)!
• Guess that frequent letters in ciphertext are frequent letters in English

0

2

4

6

8

10

12

14

a b c d e f g h i j k l m n o p q r s t u v w x y z

Letter frequencies

http://www.richkni.co.uk/php/crypta/freq.php

20

Common letters in plaintext appear more
frequently in ciphertext than others

python3 counts.py cipher.txt

gives counts of characters in
cipher.txt file

Good chance u=e
tr u E < cipher.txt
Look for THE candidates
Look for AND candidates
…

0

2

4

6

8

10

12

14

e t a o i n s h r d l c u m w f g y p b v k j x q z

Fr
eq

ue
nc

y

English letter frequencies

Letter frequencies in English
language1

Assumes the key was: jhqaucdfwnsevmioyzprglkxbt as in the example on slide 19
[1] http://www.richkni.co.uk/php/crypta/freq.php

0

5

10

15

20

25

30

35

40

u p r m w i j a v z q e o d f b g c h l x k n s t y

Fr
eq

ue
nc

y

Ciphertext letter frequencies

21

Polyalphabetic ciphers are a better
solution, but still not ideal
Key ideas:

• Instead of one key, create N keys (say 1000)
• Encode character at position i with ith dictionary (wrap around if i > N)
• Now same character repeated results in different characters

Much more resistant to frequency analysis, but could be a problem if
• Use same set of N keys repeatedly
• Attacker sees large amount of ciphertext

See example in polyalphabet.py German Enigma
machine from
WWII used
polyalphabet
principle

Key point: both sender
and receiver must
know the set of N keys

22

A transposition cipher rearranges the order
of the letters without substitution

Adapted from https://nrich.maths.org/7940

Message:
“nowrunalonganddontgetintomischiefiamgoingoutxxxx”

Write message as matrix (here 4 rows with 12 letters each)
nowrunalonga
nddontgetint
omischiefiam
goingoutxxxx

Encrypt by reading down columns
nnog odmo wdii rosn uncg ntho agiu leet otfx
niix gnax atmx

There *many* variations
around this transposition idea

Padding

Decrypt by writing ciphertext
characters column by column

Transposition cypher

Key point: Characters change
positions but are not substituted
with other characters

23

Book recommendation

If you are interested in learning more
about secret codes used throughout
history

The Code Book: The Science of
Secrecy from Ancient Egypt to
Quantum Computing
By Simon Singh
https://www.amazon.com/Code-Book-Science-
Secrecy-Cryptography/dp/0385495323

Covers many other ciphers!

https://www.amazon.com/Code-Book-Science-Secrecy-Cryptography/dp/0385495323

24

Agenda

1. Substitution and transposition ciphers

2. Modern symmetric ciphers

3. AES Modes

4. Using crypto APIs

Data Encryption Standard (DES)
• Developed by US government in 1970s from original IBM proposal
• Uses 56-bit keys (NSA reduced keys size by half….)
• Block cipher – works on blocks of 64 bits vs. stream

ciphers which work bit-by-bit
• RSA Security sponsored series of DES challenges
• Broken in 1997 by using idle cycles of machines

on the Internet
• In 1998 Electronic Freedom Foundation (EFF) built special-

purpose Deep Crack which could crack DES messages in 56 hours

Solution: Triple DES
• Apply DES three times with different keys each time
• Key size now 3 * 56 = 168 bits, but slow to compute

Better solution: Advanced Encryption Standard (AES) in 2000 25

A brief history of modern encryption: DES
and AES

Cryptography –
creating codes

Cryptanalysis –
breaking codes

26

XOR has some nice properties and is often
used in cryptography
XOR

0 1

0 0 1

1 1 0

Truth table

Returns 1 only if inputs are
different, otherwise returns 0

27

XOR has some nice properties and is often
used in cryptography
XOR

Properties
1. A ⊕ 0 = A
2. A ⊕ A = 0
3. (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C)
4. (B ⊕ A) ⊕ A = B ⊕ 0 = B

Alice Bob
Alice
Key: 10101010
Message: 11000011
Cipher: 01101001

Alice XOR’s Message
with Key to create
Cipher

Alice sends Cipher to Bob
Bob knows Key (shared secret)
Bob XOR’s Cipher and Key to recover Message
(property 4 above)

Bob
Cipher--> 01101001
Key: 10101010
Message: 11000011

Problems?
• Frequency analysis
• Known ciphertext attack

Eve sees cipher, but does not know
Key, does not recover message

28

S-P Networks: Intuition for how almost all
modern symmetric key cryptography works
Substitution-Permutation Network (S-P network)

Adapted from: Mao, Wenbo. "Modern cryptography: theory and practice." (2004).

Simplified

Key expanded into several “round keys” by key
schedule algorithm
Fixed sized block of plaintext XOR’ed with key

29

S-P Networks: Intuition for how almost all
modern symmetric key cryptography works
Substitution-Permutation Network (S-P network)

Adapted from: Mao, Wenbo. "Modern cryptography: theory and practice." (2004). ciphertext

Simplified

Substitution (S-box)
• Look up table – given inputs bits, output

different bits
• 1-to-1 mapping for invertibility (decryption)
• Often done in hardware for speed
• Provides confusion

Can think of S-box like a substitution cipher

30

S-P Networks: Intuition for how almost all
modern symmetric key cryptography works
Substitution-Permutation Network (S-P network)

Adapted from: Mao, Wenbo. "Modern cryptography: theory and practice." (2004). ciphertext

Simplified

Permutation (P-box)
• Permutes bits (moves bits to new location)
• Distributes output its to as many following

S-boxes as possible
Changing one bit of input should change roughly
half of the output bits (avalanche effect)
Therefore, each output bit depends on every input
bit
Can think of P-box like a transposition cipher
Provides diffusion

31

S-P Networks: Intuition for how almost all
modern symmetric key cryptography works
Substitution-Permutation Network (S-P network)

Adapted from: Mao, Wenbo. "Modern cryptography: theory and practice." (2004). ciphertext

Simplified

Output is XOR’ed with next
round key
Process repeats for several
rounds

32

S-P Networks: Intuition for how almost all
modern symmetric key cryptography works
Substitution-Permutation Network (S-P network)

Adapted from: Mao, Wenbo. "Modern cryptography: theory and practice." (2004). ciphertext

Simplified

A single S-box or P-box does not provide much
cryptographic strength
A S-P network with several rounds provides both
confusion and diffusion

• If one input bit changes, several output bits
will change

• Bits are distributed among several S-boxes
If ith input bit flipped, probability jth output bit flips
is 50%
Similarly, if one output bit is flipped, 50%
probability ith input bit flips also
Changing one bit of key diffuses over all output bits

33

Advanced Encryption Standard (AES) builds
on the concept of an S-P network

Advanced Encryption
Standard (AES)
• Sometimes called

Rijndael (pronounced
like “rhine doll”) after
inventor names

• Established by NIST in
2001 (but still secure)

• Uses 128-bit (16-byte)
input blocks, outputs
128-bit ciphertext blocks

• Key can be 128, 192, or
256 bits (equals 10,12 or
14 rounds)

Adapted from: https://www.educative.io/edpresso/what-is-the-aes-algorithm

Message often
longer than
block size

Break message
into multiple
128-bit blocks

Plaintext AES Ciphertext

128/192/256
bit key

Key is padded
with ‘#’ (0x23)
characters until
multiple of 128
bits (16 bytes)

34

Advanced Encryption Standard (AES) uses
the concept of an S-P network
128/192/256

bit key

Key expanded into 10, 12, or 14 round
keys using key schedule algorithm

Adapted from: Mao, Wenbo. "Modern cryptography: theory and practice." (2004).

Simplified

35

Advanced Encryption Standard (AES) uses
the concept of an S-P network

Plaintext

128/192/256
bit key

Key expanded into 10, 12, or 14 round
keys using key schedule algorithm

Key0

Adapted from: Mao, Wenbo. "Modern cryptography: theory and practice." (2004).

SubBytes(State)

ShiftRows(State)

MixColumns(State)

AddRoundKey(State,Key)

Round

SubBytes(State)
• Substitute bytes from input

based on pre-defined rules
• S-box

Simplified

36

Advanced Encryption Standard (AES) uses
the concept of an S-P network

Plaintext

128/192/256
bit key

Key expanded into 10, 12, or 14 round
keys using key schedule algorithm

Key0

Adapted from: Mao, Wenbo. "Modern cryptography: theory and practice." (2004). Images from: https://www.educative.io/edpresso/what-is-the-aes-algorithm

SubBytes(State))

ShiftRows(State)

MixColumns(State)

AddRoundKey(State,Key)

Round

ShiftRows(State)
• Permute message by

shifting row
• Row 0 not changed; other

rows shift by increasing
amount

• P-box

Simplified

37

Advanced Encryption Standard (AES) uses
the concept of an S-P network

Plaintext

128/192/256
bit key

Key expanded into 10, 12, or 14 round
keys using key schedule algorithm

Key0

Adapted from: Mao, Wenbo. "Modern cryptography: theory and practice." (2004). Images from: https://www.educative.io/edpresso/what-is-the-aes-algorithm

SubBytes(State))

ShiftRows(State)

MixColumns(State)

AddRoundKey(State,Key)

Round

MixColumns(State)
• Multiple columns by

constant matrix

Simplified

38

Advanced Encryption Standard (AES) uses
the concept of an S-P network

Plaintext

128/192/256
bit key

Key expanded into 10, 12, or 14 round
keys using key schedule algorithm

Key0

Adapted from: Mao, Wenbo. "Modern cryptography: theory and practice." (2004). Images from: https://www.educative.io/edpresso/what-is-the-aes-algorithm

SubBytes(State))

ShiftRows(State)

MixColumns(State)

AddRoundKey(State,Key)

Round

AddRoundKey(State, Key)
• XOR message with round key

Simplified

39

Advanced Encryption Standard (AES) uses
the concept of an S-P network

Plaintext

128/192/256
bit key

Key expanded into 10, 12, or 14 round
keys using key schedule algorithm

Key0

Adapted from: Mao, Wenbo. "Modern cryptography: theory and practice." (2004).

SubBytes(State))

ShiftRows(State)

MixColumns(State)

AddRoundKey(State,Key)

Round

Simplified

Key1

SubBytes(State))

ShiftRows(State)

MixColumns(State)

AddRoundKey(State,Key)

Round

Repeat for 10, 12 or 14
rounds

Last
round
omits
mixing
colsReverse to

decrypt

40

Agenda

1. Substitution and transposition ciphers

2. Modern symmetric ciphers

3. AES Modes

4. Using crypto APIs

41

Electronic Code Book (ECB) outputs same
ciphertext for same block of plaintext
Electronic Code Book (ECB)

Fixed size block of text fed into AES block cipher
AES uses 128-bit = 16-byte blocks (wait until there are at least 128 bits to encrypt)
AES generates ciphertext for block
Ciphertext blocks concatenated together if plaintext is longer than one block (pad if shorter)
Reverse process to decrypt
Problems?

Block
cipher

encryption

Plaintext block1

Ciphertext1

Block
cipher

encryption

Plaintext block2

Ciphertext2

Block
cipher

encryption

Plaintext blockn

Ciphertextn

…

Key

Simplified

Key Key

Du, Wenliang. Computer & Internet Security: A Hands-on Approach. 2019.

42

The same plaintext results in the same
ciphertext, this could cause problems
Secret document you
don’t want your
competition to see

Most of this chart is the
same (white space)

Many blocks will have
the same input and
produce the same
ciphertext

Du, Wenliang. Computer & Internet Security: A Hands-on Approach. 2019.

head –c 54 SecretNote.bmp > header #save first 54 bytes of header info (.bmp specific data)
openssl enc –aes-128-ecb -e –in SecretNote.bmp –out SecretNote_enc #encrypt with ECB (give pwd)
tail –c +55 SecretNote_enc > body #save encrypted body of picture
cat header body > SecretNote_test #put unencrypted header and encrypted body together
eog SecretNote_test #look at result

43

The same plaintext results in the same
ciphertext, this could cause problems
Secret document you
don’t want your
competition to see

Most of this chart is the
same (white space)

Many blocks will have
the same input and
produce the same
ciphertext

head –c 54 SecretNote.bmp > header #save first 54 bytes of header info (.bmp specific data)
openssl enc –aes-128-ecb -e –in SecretNote.bmp –out SecretNote_enc #encrypt with ECB (give pwd)
tail –c +55 SecretNote_enc > body #save encrypted body of picture
cat header body > SecretNote_test #put unencrypted header and encrypted body together
eog SecretNote_test #look at result

44

The same plaintext results in the same
ciphertext, this could cause problems
Secret document you
don’t want your
competition to see
Competitor can still glean
that sales are increasing
rapidly, even though chart
is encrypted

One plus, however, is that
if a block is lost, other
blocks can still be
decrypted

Generally avoid this mode

45

Cipher Block Chaining (CBC) uses
Initialization Vector (IV) to avoid problems

• CBC most used mode
• Initialization Vector (IV)

used for first block (not
secret)

• Each block XOR’ed with
previous ciphertext block

• Each block depends on all
the previous blocks

• Change IV every time you
send a message to ensure
same document gives
different results

• Decryption is reversed;
can do in parallel (but
encryption cannot be in
parallel)

Cipher Block Chaining (CBC)

Block cipher
encryption

Plaintext block1

Ciphertext1

Key

⊕IV

Block cipher
encryption

Plaintext block2

Ciphertext2

Key

⊕
Block cipher
encryption

Plaintext blockn

Ciphertextn

⊕

Key

Block cipher
encryption

Ciphertext block1

Plaintext block1

Key

⊕IV

Block cipher
encryption

Ciphertext block2

Plaintext block2

⊕
Key

Block cipher
encryption

Ciphertext blockn

Plaintext blockn

⊕
Key

Encrypt

Decrypt

46

CBC: changing the IV by one bit makes a big
difference in ciphertext

cat short.txt
This is a secret!

openssl enc -aes-128-cbc -e -in short.txt -out cipher1.txt -K 001122334455 -iv 1234567890
openssl enc -aes-128-cbc -e -in short.txt -out cipher2.txt -K 001122334455 -iv 1234567891

xxd –p cipher1.txt
b572be26c0f4be246ffbc5e62b7af84f9b7c5f7498ac890488d1118a9a00606b

xxd –p cipher2.txt
65cbd9a76773bbab0a7b8ca43345093ab72aba77bcdfb53c89d8d134218fed8d

Same message encrypted with same Key
Changing the IV by only one bit changes the output entirely
DO NOT reuse the same IV when sending the same message (make unique)!
DO NOT make IV predictable (e.g., one greater than last message as we did here!)

Cipher Block Chaining (CBC)

Du, Wenliang. Computer & Internet Security: A Hands-on Approach. 2019.

#create 9-byte long plaintext file
$ echo -n "123456789" > plain9.txt
#encrypt plaintext file using AES with CBC (AES uses 128-bit = 16-byte block size)
$ openssl enc -aes-128-cbc -e -in plain9.txt -out cipher9.bin -K 0123456 -iv 0987654321
#check length of ciphertext file
$ ls -ld cipher9.bin
-rw-rw-r-- 1 seed seed 16 Aug 26 10:12 cipher9.bin #result is 16 bytes (7 bytes padding)

#decrypt
$ openssl enc -aes-128-cbc -d -in cipher9.bin -out plain9a.txt -K 0123456 -iv 0987654321
$ ls -ld plain9a.txt
-rw-rw-r-- 1 seed seed 9 Aug 26 10:14 plain9a.txt #plaintext is 9 bytes (padding removed)
$ cat plain9a.txt
123456789 #confirm plaintext recovered properly 47

Padding is needed to match fixed block size
Padding
• Message size is unlikely to be an integer multiple of block size
• Need to add padding to get last block to be block size
• Must clearly mark where padding begins for decryption
• Pad with the number of bytes (if 7 bytes short of block, pad with 07)

48

Padding is needed to match fixed block size
Padding
• Message size is unlikely to be an integer multiple of block size
• Need to add padding to get last block to be block size
• Must clearly mark where padding begins for decryption
• Pad with the number of bytes (if 7 bytes short of block, pad with 07)

#remember plaintext file
$cat plain9.txt
123456789

#add nopad option to keep padding in decrypted output
$ openssl enc -aes-128-cbc -d -in cipher9.txt -out plain9b.txt -K 0123456 -iv 0987654321 -nopad
$ ls -ld plain9b.txt
-rw-rw-r-- 1 seed seed 16 Aug 26 10:24 plain9b.txt #output now 16 bytes long (includes padding)

#compare original recovered plaintext with plaintext that includes padding
$ xxd -g l plain9a.txt
00000000: 313233343536373839 123456789. #no padding (9 bytes)

$ xxd -g l plain9b.txt
00000000: 31323334353637383907070707070707 123456789....... #padding is 7 bytes of 07

What if message length is a
multiple of block size?
Add a whole block of padding!

49

Output Feedback (OFB) can be used as a
stream cipher and can be parallelized

• Can be a stream cipher
• Plaintext XOR’ed

with prev block
• XOR is bit-wise op

• OFB does not need
padding

• Ciphertext has the same
number of bytes as
plaintext (no padding)

• Encryption can be
parallelized if have all
plaintext

• First block based on
IV and Key

• Next blocks can be
precomputed

• Just XOR as plaintext
becomes available

Output Feedback (OFB)

Block cipher
encryption

IV

Ciphertext1

Key

⊕

Encrypt

Decrypt

Plain
text1

Block cipher
encryption

Key

Ciphertext2

⊕Plain
text2

Block cipher
encryption

Key

⊕Plain
textn

Ciphertextn

Block cipher
encryption

IV

Plaintext1

Key

⊕Cipher
text1

Block cipher
encryption

Key

Plaintext2

⊕Cipher
text2

Block cipher
encryption

Key

⊕Cipher
textn

Plaintextn

50

Do not reuse the same IV with the same
key on different messages!
Mistake: reuse IV
• The IV is not a secret so some people assume it is not important
• Sometimes people use all zeros
• Sometimes people reuse the same IV for all messages

Block cipher
encryption

IV

Key

⊕Plain
text1

Block cipher
encryption

Key

⊕Plain
text2

Block cipher
encryption

⊕Plain
textn

Output Feedback (OFB)

Output steam

• Eve tricks Alice into encrypting
known plaintext P1

• Eve now has plaintext P1 and
matching ciphertext C1

• Output stream OS = P1⊕ C1

• If reuse same IV
• For observed ciphertext

C2 from new message P2

• P2 = OS ⊕ C2
• All future messages decrypted

even though Eve does not
know Key

Key

#save two plaintext messages
$ echo -n "This is a known message" > P1
$ echo -n "This is TOP secret" > P2
#encrypt both with OFB using same Key and IV
$ openssl enc -aes-128-ofb -e -in P1 -out C1 -K 0123456789 -iv 000000000
$ openssl enc -aes-128-ofb -e -in P2 -out C2 -K 0123456789 -iv 000000000
#convert each to hex
$ xxd -p P1
546869732069732061206b6e6f776e206d657373616765
$ xxd -p C1
1809b94f5add4ad8ac26dd4c159167ed06d67777bc6e82
$ xxd -p C2
1809b94f5add4ad89949e60209836abf0ec7
#OS = P1 XOR C1
$ python3 xor.py 546869732069732061206b6e6f776e206d657373616765
1809b94f5add4ad8ac26dd4c159167ed06d67777bc6e82
4c61d03c7ab439f8cd06b6227ae609cd6bb30404dd09e7
#P2 = OS XOR C2
$ python3 xor.py 4c61d03c7ab439f8cd06b6227ae609cd6bb30404dd09e7
1809b94f5add4ad89949e60209836abf0ec7
5468697320697320544f5020736563726574
#Convert hex back to ascii
$ echo -n "5468697320697320544f5020736563726574" | xxd -r -p
This is TOP secret 51

Always use a new random IV for each
message!

• Eve tricks Alice into encrypting
known plaintext P1

• Eve now has plaintext P1 and
matching ciphertext C1

• Output stream OS = P1⊕ C1

• If reuse same IV
• For observed ciphertext

C2 from new message P2

• P2 = OS ⊕ C2
• All future messages decrypted

even though Eve does not
know Key

Nonce + Countern

52

Counter mode uses a nonce and a changing
counter for each block

• Nonce and initial
counter chosen

• Counter changes value for
each block (normally +1)

• Nonce serves same
purpose as IV, to ensure
each ciphertext is
different, even if same
plaintext

• Blocks do not depend on
prior block

• Can be parallelized on
both encryption and
decryption

Counter Mode (CTR)

Block cipher
encryption

Nonce + Counter1

Ciphertext1

Key

⊕

Encrypt

Decrypt

Plain
text1

Block cipher
encryption

Ciphertext2

⊕Plain
text2

Block cipher
encryption

⊕Plain
textn

Ciphertextn

Block cipher
encryption

Plaintext1

Key

⊕Cipher
text1

Block cipher
encryption

Plaintext2

⊕Cipher
text2

Block cipher
encryption

⊕Cipher
textn

Plaintextn

Nonce + Counter2

Key Key

Nonce + Counter1
Nonce + Counter2 Nonce + Countern

Key Key

53

Agenda

1. Substitution and transposition ciphers

2. Modern symmetric ciphers

3. AES Modes

4. Using crypto APIs

54

You can use Python’s crypto libraries in
your code

Install crypto library from: https://pycryptodome.readthedocs.io/
from Crypto.Cipher import AES
from Crypto.Util import Padding
block_size = 16 #AES uses 16-byte blocks

def encrypt(key, iv, message):
#create new cipher using CBC
cipher = AES.new(key, AES.MODE_CBC,iv)
#pad data to be a multiple of 16-byte block size
padded = Padding.pad(message,block_size)
#create ciphertext
ciphertext = cipher.encrypt(padded)
return ciphertext

def decrypt(key, iv, ciphertext):
#create new cipher using CBC
cipher = AES.new(key, AES.MODE_CBC,iv)
plaintext = cipher.decrypt(ciphertext)
return plaintext

This code uses CBC, but is
easily converted to other
modes

Change AES.MODE_CBC to
AES.MODE_OFB for OFB (then
do not need padding)

Both sender and receiver must
know Key and IV (we will
address that soon)

aes.py

https://pycryptodome.readthedocs.io/

55

