
CS 55:
Security and Privacy

Public Key Infrastructure (PKI)

2
https://xkcd.com/1553/

3

Agenda

1. Man-in-The-Middle attacks

2. Public Key Certificates

3. Certificate authorities

4. Root and intermediate authorities

4

Asymmetric encryption can defeat passive
eavesdroppers

Alice BobSend ciphertext to Alice

Data in ciphertext can be a symmetric key for use
with AES in following messages (session key)

Data can only be decrypted using Alice’s private key

Alice
public key

Alice
private key

Bob gets Alice’s
public key, uses it
to encrypt message

Alice decrypts
message with her
private key, recovers
Bob’s message

Ciphertext

5

Asymmetric encryption still has a Man-in-
The-Middle (MiTM) problem

Alice Bob

Alice
public key

Alice
private key

Secret data,
encrypted with
Mallory’s public key

Mallory
public key

MallorySecret data,
encrypted with
Alice’s public key

Mallory intercepts Alice’s
public key and replaces it
with her own public key

Bob has no way to verify it
really is Alice’s key, assumes
Mallory’s key is Alice’s

Bob encrypts message
with public key he
received (Mallory’s)

Mallory decrypts message with
her private key, reads message,
possibly changes it, re-encrypts
message with Alice’s public key

Alice believes
message was
from Bob

Previously we’ve
said Bob gets Alice’s
public key but didn’t
say how!

Authentication problem

6

The fundamental problem: there is no
authentication with asymmetric encryption

Bob receives a public key

Bob has no way to tell whether
the public key he received
belongs to Alice or Mallory
masquerading as Alice

Solution:
• Find a third party that Bob

trusts to verify Alice’s identity
• Third party creates a

certificate with Alice’s public
key

• Ensure the certificate cannot
be forged or altered

Alice

Bob

Mallory

Whose
public
key?

7

Agenda

1. Man-in-The-Middle attacks

2. Public Key Certificates

3. Certificate authorities

4. Root and intermediate authorities

8

We need a trusted third party to verify
public keys belong to a particular principle

Alice

Alice generates public
and private keys

Simplified

Alice public key

Alice private key

9

Certificate Authorities match public keys
with principles by issuing a certificate

Alice Bob

Alice
public key

Alice sends her public
key to trusted third party

Trusted third party verifies Alice’s identify
and public key
• Creates a digital certificate with Alice’s

name, public key, serial number and
expiration date

• CA signs certificate with its private key
• Certificate has standard format X.509

Simplified

Alice public key

Alice private key Note: you can create your own certificates

10

Certificate Authorities match public keys
with principles by issuing a certificate

Alice Bob

Alice
public key

Alice sends her public
key to trusted third party

CA sends certificate back to Alice

Simplified

Alice public key

Alice private key

11

Certificates can be used to verify a
message’s integrity and sender

Alice Bob

Alice sends to Bob:
• Plaintext
• Signature on hash of plaintext

(encrypted with Alice’s private key)
• Certificate which contains Alice’s

public key

Simplified

Alice public key

Alice private key

Message

Signature

12

Certificates can be used to verify a
message’s integrity and sender

Alice Bob

Bob
• Verifies certificate is valid

• Not expired or revoked
• Verifies CA’s signature on

certificate using CA’s public
key (know certificate is from
CA and is unaltered)

• Verifies message signature using
Alice’s public key on certificate

Simplified

Alice public key

Alice private key

Bob knows message was
from Alice because Bob
trusts the CA to verify Alice
before signing her
certificate

But how did Bob get the
CA’s certificate?
A list of valid root CA’s built
into browsers and other
software
What about revocation?

Message

Signature

13

Sometimes certificates are revoked, clients
should confirm certificates are still valid
Common reasons why a certificate would be revoked

• Certificate is no longer used
• Details of certificate changed
• Certificate owner’s private key compromised
• CA compromised

Methods to check if certificate valid
1. Certificate Revocation List (CRL) – client downloads CRL from CA,

searches long list for this certificate
2. Online Certificate Status Protocol (OCSP) – client asks CA to confirm

still valid, responses: good, revoked, or unknown
3. OCSP stapling – shift burden from client to web server, at regular

intervals (hours to days), web server contacts CA to check
revocation status, CA sends back timestamped response, web
server sends OSCP response “stapled” with certificate

4. Certificate pinning – certificate compiled into app, get certificate
from server, see if it matches hardcoded certificate

Adapted from https://www.youtube.com/watch?v=WXNKQ_otO_g

14

PKI is often used with web sites

Web server

Company purchases
certificate from CA

15

PKI is often used with web sites

Web server

Certificate installed
on server

CA verifies company’s identity
• CA asks company to post file on web server as proof they

control the web server
• CA confirms file appears on web service
• CA knows the company controls the server

Certificate contains
• Server public key
• Name of server, serial number and expiration date

CA signs certificate with its private key

Company purchases
certificate from CA

16

PKI is often used with web sites

Web server

Certificate installed
on server

Web browser

Company purchases
certificate from CA

Client types web address into URL
Browser initiates secure TLS connection with server
Server sends browser its certificate
Browser has list of root CAs installed, verifies CA’s
signature on certificate, gets server’s public key
from certificate
Browser knows it is talking to the right server
We are trusting the browser has only valid root CAs

17

An adversary could try to compromise the
process, but it would be difficult to succeed

Web server

Web browser

Could try to
compromise
the CA

If get CA’s
private key,
can issue
fraudulent
certificates

Could bribe an
employee to
issue a fake
certificate

Mallory

18

An adversary could try to compromise the
process, but it would be difficult to succeed

Web server

Web browser

Mallory
Could try to compromise browser and get adversary’s
certificate installed in list of trusted root CAs

19

An adversary could try to compromise the
process, but it would be difficult to succeed

Web server

Web browser

Mallory

Mallory could forward
legitimate certificate
Browser uses web
site’s public key to
encrypt data
Mallory does not have
private key and cannot
see data

Web site
certificate

20

An adversary could try to compromise the
process, but it would be difficult to succeed

Web server

Web browser

Mallory

Could forward M’s own
legitimate certificate
(signed by CA)
Names would not
match (Mallory vs.
web site URL)

Mallory’s
certificate

21

An adversary could try to compromise the
process, but it would be difficult to succeed

Web server

Web browser

Mallory

Could forward fake
certificate to browser
(certificate with M’s
public key)
Will not be signed by a
known CA, browser
issues warning

Fake
certificate

22

We can get a certificate from a real web
site using OpenSSL
$ openssl s_client -showcerts -connect www.dartmouth.edu:443 </dev/null
copy from ----- BEGIN CERTIFICATE ----- to ----- END CERTIFICATE ---- to dartmouth.pem
convert pem format to something more readable
$ openssl x509 -in dartmouth.pem -text –noout
Certificate:

Data:
Version: 3 (0x2)
Serial Number:

0d:d5:d1:e4:e3:90:0c:42:39:07:43:52:d0:7d:98:95
Signature Algorithm: sha256WithRSAEncryption

Issuer: C=US, O=DigiCert Inc, OU=www.digicert.com, CN=DigiCert SHA2 High Assurance Server CA
Validity

Not Before: May 26 00:00:00 2020 GMT
Not After : Jun 16 12:00:00 2022 GMT

Subject: C=US, ST=New Hampshire, L=Hanover, O=Trustees of Dartmouth College, CN=*.dartmouth.edu
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
Public-Key: (2048 bit)
Modulus:

00:aa:44:f7:b4:e8:7c:3a:18:d8:00:c7:58:fb:57:
<snip>

Exponent: 65537 (0x10001)
<snip>

Each certificate has
unique serial number

Certificate issued by
digicert.com

Issued to Trustees of
Dartmouth College

Public key:
n
e

CA’s signature not shown

Common name (CN)
Good for all
.dartmouth.edu sites

23

Agenda

1. Man-in-The-Middle attacks

2. Public Key Certificates

3. Certificate authorities

4. Root and intermediate authorities

24

Getting a certificate starts with a Certificate
Signing Request made by company

CA Company
Setup
Generate RSA keys

3) Verify company
Sign request
Create certificate

1) Generate RSA keys
2) Generate Certificate Signing
Request (CSR)

Deploy certificate on web server

Ask CA to sign CSR

Send certificate

25

We can set up our own CA with a “self-
signed” certificate
#set up directories on CA
$ mkdir demoCA
$ cd demoCA/
$ mkdir certs crl newcerts
$ touch index.txt serial
$ echo 1000 > serial
$ cd ..

#create public/private keys and certificate for CA
$ openssl req -x509 -newkey rsa:4096 -sha256 -days 3650 -keyout modelCA_key.pem
-out modelCA_cert.pem
Generating a 4096 bit RSA private key
<snip>

Generate public/private
key pair using 4096-bit
RSA

Store public and private
keys in
modelCA_key.pem

Valid for 10 years!

Use SHA-256 for hasing
Certificate stored in
modelCA_cert.pem If certificate is self-signed, why

would anyone trust it?
They wouldn’t!

Companies sometimes do this for their internal
networks (do not need to pay CA for each certificate)
Devices must be configured to trust the internal CA
(we will do this in a few slides)

26

1) Create key pair for company
generate key pair for company
$ openssl genrsa -aes128 -out company_key.pem 2048

look at results
$ openssl rsa -noout -text -in company_key.pem
Enter pass phrase for company_key.pem:
Private-Key: (2048 bit)
modulus:

00:e2:b5:fc:36:9e:da:d7:5c:70:b3:df:92:a1:6a:
<snip>

publicExponent: 65537 (0x10001)
privateExponent:

00:82:60:77:f8:0d:68:fa:fb:0d:51:54:1c:a6:39:
<snip>

prime1:
00:f6:4d:4e:f4:e9:76:02:d5:3c:14:00:e0:21:e2:
<snip>

prime2:
00:eb:a3:33:75:94:27:cc:80:52:8e:b1:08:03:4a:
<snip>

company_key.pem contains
both public and private keys

n

Public e
Private d, p, q

27

2) Company generates Certificate Signing
Request (CSR)
$ openssl req -new -key company_key.pem -out company.csr -sha256
Enter pass phrase for company_key.pem: cs55
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:NH
Locality Name (eg, city) []:Hanover
Organization Name (eg, company) [Internet Widgits Pty Ltd]:CS55 Ltd
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:cs55.dartmouth.edu
Email Address []:admin@cs55.dartmouth.edu

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

28

Results of company generated certificate
signing request
$ openssl req -in company.csr -text –noout
Certificate Request:

Data:
Version: 0 (0x0)
Subject: C=US, ST=NH, L=Hanover, O=CS55 Ltd,

CN=cs55.dartmouth.edu/emailAddress=admin@cs55.dartmouth.edu
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
Public-Key: (2048 bit)
Modulus:

00:e2:b5:fc:36:9e:da:d7:5c:70:b3:df:92:a1:6a:
<snip>

Exponent: 65537 (0x10001)
Attributes:

a0:00
Signature Algorithm: sha256WithRSAEncryption

e0:5f:b8:a0:2f:6d:61:8b:55:ad:b0:cb:9e:43:4e:52:c5:b2:
<snip>

Info we entered about
company

Public key

Signature using
company’s private key
(allows the CA to verify
public key belongs to
company)

29

Company asks CA to sign request, our own
CA signs request
edit openssl.cnf to allow signing, set policy = policy_anything (from policy_match)
$ sudo nano /usr/lib/ssl/openssl.cnf

sign company’s request
$ openssl ca -in company.csr -out company_cert.pem -md sha256 -cert modelCA_cert.pem -keyfile
modelCA_key.pem
Using configuration from /usr/lib/ssl/openssl.cnf
Enter pass phrase for modelCA_key.pem:
Check that the request matches the signature
Signature ok
Certificate Details:

Serial Number: 4096 (0x1000)
Validity

Not Before: Nov 23 22:38:01 2020 GMT
Not After : Nov 23 22:38:01 2021 GMT

Subject:
countryName = US
stateOrProvinceName = NH
localityName = Hanover
organizationName = CS55 Ltd
commonName = cs55.dartmouth.edu
emailAddress = admin@cs55.dartmouth.edu

<snip>
with 1 new entries
Data Base Updated

Signed certificate

Company’s signature request

CSR from a real CA only signed
after identify verified!

30

Company deploys certificate on web server
edit /etc/hosts to add cs55.dartmouth.edu at 127.0.0.1
$ sudo nano /etc/hosts

#copy company_key.pem and company_cert.pem into one file
$ cp company_key.pem company_all.pem
$ cat company_cert.pem >> company_all.pem

#start a simple web server running using cert, listening on port 4433
$ openssl s_server -cert company_all.pem -accept 4433 -www

Not secure! Why not!!!

Firefox doesn’t trust this
CA (and it should not!)

If we had used a trusted
CA, it would have worked

31

Tell Firefox to trust this CA and all works as
expected!

From Firefox: Edit->Preferences->Privacy & Security->View Certificates
Import modelCA_cert.pem with option ”Trust this CA to identify web sites”
Try browsing to site again

Works!

32

Agenda

1. Man-in-The-Middle attacks

2. Public Key Certificates

3. Certificate authorities

4. Root and intermediate authorities

33

There are many CAs in the world, and they
are organized in a hierarchical structure

Root CA’s public keys are self-signed

How can we trust it?
• Known CAs are preloaded on OS,

browsers, other software
• As long as we trust the software,

we are trusting the public keys
that came with it!

Root CAs vouch for intermediate CAs (root CA can go offline
once intermediate CAs created)
Why?

• Reduces load on Roots (creating and validating)
• If there is a compromise of an intermediate CA, only

its certificates are compromised, not all
CA’s sometimes meshed (but doesn’t scale well)
Web of trust (I trust, you trust someone else, so I trust them)

Browser checks whether server’s certificate signed by root
(browser knows root CAs ahead of time)
If signed by intermediate, check if intermediate signed by root
Check in chain until find a root

$ openssl s_client -showcerts -connect www.paypal.com:443
Certificate chain
0 s:/businessCategory=Private

Organization/jurisdictionC=US/jurisdictionST=Delaware/serialNumber=3014267/C=US/ST=California/
L=San Jose/O=PayPal, Inc./OU=CDN Support/CN=www.paypal.com

i:/C=US/O=DigiCert Inc/OU=www.digicert.com/CN=DigiCert SHA2 Extended Validation Server CA
-----BEGIN CERTIFICATE-----
MIIHdDCCBlygAwIBAgIQB0Haxhm5e7comqWUzibAzTANBgkqhkiG9w0BAQsFADB1
<snip>
1 s:/C=US/O=DigiCert Inc/OU=www.digicert.com/CN=DigiCert SHA2 Extended Validation Server CA

i:/C=US/O=DigiCert Inc/OU=www.digicert.com/CN=DigiCert High Assurance EV Root CA
-----BEGIN CERTIFICATE-----
MIIEtjCCA56gAwIBAgIQDHmpRLCMEZUgkmFf4msdgzANBgkqhkiG9w0BAQsFADBs
<snip>

34

Root CAs vouch for subordinates in a
“chain of trust”

PayPal certificate
signed by DigiCert
subordinate

Subordinate
signed by root

Sectigo

52.1

19.4
17.4

6.7

2.9

0

10

20

30

40

50

60

CA Market Share

35

Global market for CAs is dominated by a
few major players (but many small players)

https://w3techs.com/technologies/overview/ssl_certificate

GoDaddy GlobalSign All othersDigiCertIdenTrust

36

There are three main types of certificates
CAs issue: DV, OV, EV

Domain Validated (DV) Certificates
• Most popular type of certificate
• The CA verifies the domain records to check if the domain

belongs to applicant
• Domain Control Validation (DCV) is performed on domain name

in the certificate request
• DCV uses information in the WHOIS database
• DCV is conducted via
o Email
o HTTP
o DNS

Note: there is also a Root
certificate that Root CAs get,
but companies normally don’t!

Root CAs then issue
intermediate CA certificates

37

There are three main types of certificates
CAs issue: DV, OV, EV

Organizational Validated (OV) Certificates
• Not very popular type of certificate
• CAs verify the following before issuing OV certificates:
o Domain control validation
o Applicant’s identity and address
o Applicant’s link to organization
o Organization’s address
o Organization’s WHOIS record
o Callback on organization’s verified telephone number

38

There are three main types of certificates
CAs issue: DV, OV, EV

Extended Validated (EV) Certificates
• Not very popular type of certificate
• Name appears in green in browser
• CAs verify the following before issuing OV certificates:
o Domain control validation
o Applicant’s identity and address
o Applicant’s link to organization
o Organization’s address
o Organization’s WHOIS record
o Callback on organization’s verified telephone number

39

Browsers display certificate types
differently

40

