
CS 61:
Database Systems

Data persistence, file organization, indexing

Adapted from Silberschatz, Korth, and Sundarshan unless otherwise noted

2

Big picture: find a needle in a big data
haystack quickly

Find data on Morris
Park Bake Shop in
large database
quickly…

But Morris Park Bake
Shop is just one entry
in large data set

3

Agenda

1. Data persistence

2. Database file organization

3. Indexing

4

There are many different types of data
storage used by databases

CPU Cache

Main memory

Flash memory

Magnetic disk

Tape

Sp
ee

d
Cost/byte

Volatile

Non-
volatile

5

CPU cache is fast, but small and volatile

CPU Cache

Main memory

Flash memory

Magnetic disk

Tape

Volatile

Non-
volatile

CPU cache
• Fast but expensive
• Holds small amount

of data (normally
megabytes of
recently used data)

• Volatile (loose if
power fails)

6

Main memory is larger, but still small and
volatile

CPU Cache

Main memory

Flash memory

Magnetic disk

Tape

Volatile

Non-
volatile

Main memory
• Larger than CPU

cache (gigabytes)
• Volatile (loose if

power fails)
• Some databases can

be entirely
contained in
memory

• Use CS10 data
structures to
access data
quickly if stored
in memory

7

Flash (SSDs) are larger and non-volatile, but
much slower than main memory

CPU Cache

Main memory

Flash memory

Magnetic disk

Tape

Volatile

Non-
volatile

Flash memory
• Solid State Drives

(SSDs)
• Often larger than

main memory (up
to terabytes)

• Non-volatile (do
not loose if power
fails)

• Faster data access
than magnetic disks

• Read data in
blocks (pages) of
about 4 KB

8

Magnetic disk have been the mainstay of
data storage for decades

CPU Cache

Main memory

Flash memory

Magnetic disk

Tape

Volatile

Non-
volatile

Magnetic disk
• Mainstay of data

storage
• Large (up to dozens

of terabytes)
• Made up of

(perhaps many)
spinning platters

• Slower than SSDs
• Seek track/

sector
• Rotational

latency
• Read data in blocks

(page) of roughly
8 KB

9

Tape is large, but slow; mainly used for
back ups

CPU Cache

Main memory

Flash memory

Magnetic disk

Tape

Volatile

Non-
volatile

Tape
• Very large capacity

(terabytes)
• Normally used for

off-line backups
• Do you need back

up if replicate
database?

• YES!!!!
• A rouge process

that writes
garbage writes
it to all replicas!

10

Most online data is stored on a magnetic
Hard Drive (HD) or Solid-State Disk (SSD)
Data storage on magnetic disk

Hard drive read/write
• A hard disk often has multiple spinning

platters, each with a read/write head
• Each platter has several concentric tracks
• Each track is divided into multiple sectors
• The read/write head can address data on

at a track/sector location
• To read or write, move arm to correct

track, and wait for sector to spin
underneath head

• Disk itself cannot address smaller
amounts of data than one sector
(normally 512 bytes)

Operating system addresses blocks of data
• A block spans several sectors
• OS cannot address smaller than block
• Normally around 4 KB today (8 sectors)
• Files written across multiple blocks

RAID – Redundant Array of Independent
Disks stores data across multiple disks
• Striping to increase throughput (RAID 0)
• Mirroring to reduce failures (RAID 1)

Time to read/write:
• Seek time to track
• Rotational delay for sector
• Transfer speed
• Controller overhead

1 disk block
4KB in size

11

Disks are often grouped into Storage Area
Networks (SANs)

Storage Area Network (SAN)
• Provides block-addressable high-performance non-volatile storage
• Often connected to other SANs
• SAN software replicates data across SAN devices to eliminate

single point of failure (e.g., fire in data center)
• Not JBOD, often use striping and mirroring within one SAN

12

Agenda

1. Data persistence

2. Database file organization

3. Indexing

13

Databases persist data onto disk in files
that normally span multiple blocks

• Each relation generally stored in one file
• Each file is a sequence of table rows made up of attributes mapped onto

disk blocks roughly 4KB in size
• One row assumed to be smaller than block size (book gives solution if not)

Two approaches
• Fixed length rows
• Variable length rows

14

Fixed length rows are easy to implement,
but can waste disk space

ID
Int

Name
Varchar(100)

Boro
Varchar(20)

AvgGrade
Double

30075445 Morris Park Bake Shop Bronx 10.6

30075445 Wendy’s Brooklyn 19.8

30191841 DJ Reynolds Pub and Restaurant Manhattan 10.8

Simplified fixed length Restaurant records

4 byte
integers

100 bytes for varchar

Other bytes not used if
Restaurant name < 100
characters long

20 bytes for varchar

Other bytes not used if Boro
name < 20 characters long

8 bytes double

Row size = 132 bytes, find record i at file start + i*size bytes
Most likely some bytes wasted (Restaurant name is probably not 100 characters long)
Two other problems:
1. Unless block size is exactly 132 bytes, records will cross disk block boundaries

• Use block size/row size bytes of each block, discard the remainder
2. Hard to delete records

• Could move all records up (costly!)
• Mark record as deleted and keep pointers to next free space

15

Deleting rows can be tricky, could copy
records to fill hold, but inefficient!

ID
Int

Name
Varchar(100)

Boro
Varchar(20)

AvgGrade
Double

30075445 Morris Park Bake Shop Bronx 10.6

Deleted

30191841 DJ Reynolds Pub and Restaurant Manhattan 10.8

40356018 Riviera Caterers Brooklyn 11.1

Simplified fixed length Restaurant records

Could fill gap but might involve many copies if record near start of file and many entries
This would be slow!!!

Row size = 132 bytes, find record i at file start + i*size bytes
Most likely some bytes wasted (Restaurant name is probably not 100 characters long)
Two other problems:
1. Unless block size is exactly 132 bytes, records will cross disk block boundaries

• Use block size/row size bytes of each block, discard the remainder
2. Hard to delete records

• Could move all records up (costly!)
• Mark record as deleted and keep pointers to next free space

16

A better way to handle deletes is to keep a
list of free spaces

ID
Int

Name
Varchar(100)

Boro
Varchar(20)

AvgGrade
Double

30075445 Morris Park Bake Shop Bronx 10.6

Deleted

30191841 DJ Reynolds Pub and Restaurant Manhattan 10.8

Deleted

Simplified fixed length Restaurant records

Normally more inserts than deletes
Keep list of free spaces, insert record into space on free list on next insert

Row size = 132 bytes, find record i at file start + i*size bytes
Most likely some bytes wasted (Restaurant name is probably not 100 characters long)
Two other problems:
1. Unless block size is exactly 132 bytes, records will cross disk block boundaries

• Use block size/row size bytes of each block, discard the remainder
2. Hard to delete records

• Could move all records up (costly!)
• Mark record as deleted and keep pointers to next free space

17

Inserting new row, add onto end if no
entries in free list

ID
Int

Name
Varchar(100)

Boro
Varchar(20)

AvgGrade
Double

30075445 Morris Park Bake Shop Bronx 10.6

30075445 Wendy’s Brooklyn 19.8

30191841 DJ Reynolds Pub and Restaurant Manhattan 10.8

40356018 Riviera Caterers Brooklyn 11.1

Simplified fixed length Restaurant records

Insert new record into free space or add to end of file

Row size = 132 bytes, find record i at file start + i*size bytes
Most likely some bytes wasted (Restaurant name is probably not 100 characters long)
Two other problems:
1. Unless block size is exactly 132 bytes, records will cross disk block boundaries

• Store block size/row size records in each block, do not use the remainder
2. Hard to delete records

• Could move all records up (costly!)
• Mark record as deleted and keep pointers to next free space

18

Database keeps track of file layouts in data
dictionary (system catalog)
Data dictionary

Data dictionary tracks relations and attributes
Relation metadata table has entry for each table
Attribute metadata uses RelationName in PK and has entry for each attribute

• Lists domain type for each attribute (e.g., INT, VARCHAR, DOUBLE)
• Position in record layout on disk
• Length of attribute

Relation metadata

RelationName

NumberAttributes

StorageOrganization

DiskLocation

Attribute metadata

RelationName

AttributeName

DomainType

Position

Length

One entry per table One entry per attribute

19

Variable length records are more
complicated to implement but save space

0 3 4 7 8 11 12 15 16 23 24 42 43 47

0000 30075445 24, 19 43, 5 10.6 Morris Park Bake Shop Bronx

Variable length records

NULL ID NamePtr BoroPtr AvgScore Name data Boro data

To track NULLs, records have a byte array where each bit represents one attribute
• Set bit to 1 to indicate the value is NULL
• e.g., Boro is in 3rd position, set 3rd bit to 1 if Boro is NULL
• I did not show this field in the fixed length record, but often used there too

20

Some domain types are always of fixed
length such as INT and DOUBLE
Variable length records

Look up attribute types in data dictionary, get order and length for each attribute

NULL ID NamePtr BoroPtr AvgScore Name data Boro data

Relation
Name

Attribute
Name

Domain
Type Position

Max
Length

T1 ID INT 1 4

T1 Name VARCHAR 2 100
T1 Boro VARCHAR 3 20
T1 AvgScore DOUBLE 4 8

Fixed length 4 bytes Fixed length 8 bytes

Attribute metadata

RelationName

AttributeName

DomainType

Position

MaxLength

0 3 4 7 8 11 12 15 16 23 24 42 43 47

0000 30075445 24, 19 43, 5 10.6 Morris Park Bake Shop Bronx

21

Use start and length pointers to track
variable length attributes such as VARCHAR
Variable length records

Look up attribute types in data dictionary, get order and length for each attribute

Variable length have start and length integers
Start and end are fixed length, 2 bytes each

Name starts at byte 24 and is 19 characters long
Boro starts at byte 43 and is 5 characters long

NULL ID NamePtr BoroPtr AvgScore Name data Boro data
0 3 4 7 8 11 12 15 16 23 24 42 43 47

0000 30075445 24, 19 43, 5 10.6 Morris Park Bake Shop Bronx

Relation
Name

Attribute
Name

Domain
Type Position

Max
Length

T1 ID INT 1 4

T1 Name VARCHAR 2 100
T1 Boro VARCHAR 3 20
T1 AvgScore DOUBLE 4 8

Attribute metadata

RelationName

AttributeName

DomainType

Position

MaxLength

22

You can see this data by querying the
INFROMATION_SCHEMA table
Variable length records

MySQL tracks some other attributes in
addition to our somewhat simplified model

23

Multiple records are typically stored in one
disk block

If disk block is 4KB and each row is
roughly 500 bytes, then there are
around 8 records (4,000/500) per
disk block

24

Data stored in blocks on disk so that
records do not span multiple blocks

Free
space R4 R3 R2 R1

Disk block organization

Number of
records
stored in
this block

Block
Header

End of free
space

Storing records in a disk block
• Header gives number of records stored in block
• Records added from back to front
• Free space in between header and records
• New records added to end of free space

Remember reading from disk is slow,
do not require reading two blocks to
get one record, so do not span blocks!

25

Data stored in blocks on disk so that
records do not span multiple blocks
Disk block organization

Number of
records
stored in
this block

Block
Header

End of free
space

Pointers to record
location and size in bytes

Variable (or fixed) size
records add here from
back to front

Free
space R4 R3 R2 R1

Assuming each block can hold
multiple records, see textbook
if record sizes > block size

Storing records in a disk block
• Header gives number of records stored in block
• Records added from back to front
• Free space in between header and records
• New records added to end of free space

26

Agenda

1. Data persistence

2. Database file organization

3. Indexing

27

Without indices, database must do a full
table scan to find rows meeting criteria

Must look over entire table for restaurants in Manhattan
Slow if table is large!
Would prefer fast way to find by boro

Notice results are sorted by RestaurantID, why?
MySQL automatically creates clustered index for PK (concatenate for composite key PKs)
Clustered index means rows are sorted on disk by index key, secondary indices are not
MySQL uses index to return rows

28

Each table has at least one index; normally
based on primary key

There can be only one (and only one) clustered index per table
All tables have at least one index
If a primary key is not declared, MySQL uses the first UNIQUE index
If no UNIQUE index, MySQL creates a synthetic column with RowID

Must look over entire table for restaurants in Manhattan
Slow if table is large!
Would prefer fast way to find by boro

29

Add new rows to table, update index with
location of each new row

If new rows are inserted into table:
• Add at space indicated by free space list or end of file
• Update all indices to show where new row is located (indices cause increased overhead)
• Database will move records to keep clustered index sorted by index when not busy

Must look over entire table for restaurants in Manhattan
Slow if table is large!
Would prefer fast way to find by boro

30

Add deleted rows to free list and update
index for each row removed

If rows are deleted:
• Add to row to free space list
• Update all indices by removing entry (indices cause increased overhead)
• Database will move records to keep clustered index sorted by index when not busy

Must look over entire table for restaurants in Manhattan
Slow if table is large!
Would prefer fast way to find by boro

31

B+ trees normally used for indices, work
like 2-3-4 trees from CS10

3019141 40359480 40362264

On insert add search keys to node until node is full
Non-leaf nodes (except root) have between ⌈m/2⌉ and m children (4 here)
Each node has pointer to where row is located on disk (not shown)
When a node is full, split and promote

Creating B+ tree index

32

B+ trees normally used for indices, work
like 2-3-4 trees from CS10

3019141 40359480 40362264

On insert add search keys to node until node is full
Non-leaf nodes (except root) have between ⌈m/2⌉ and m children (4 here)
Each node has pointer to where row is located on disk (not shown)
When a node is full, split and promote

Creating B+ tree index

Full, split and promote

33

B+ tree works like 2-3-4 trees from CS10
(2-3-4 is special case of B+ tree)

3019131 40359480 40362264

Insert new node by traversing from rootCreating B+ tree index

40359480All internal nodes
also kept as leaf

34

B+ tree works like 2-3-4 trees from CS10
(2-3-4 is special case of B+ tree)

3019131 40359480 40362264

Insert new node by traversing from rootCreating B+ tree index

40359480 40362274All internal nodes
also kept as leaf

35

B+ tree works like 2-3-4 trees from CS10
(2-3-4 is special case of B+ tree)

Insert new node by traversing from rootCreating B+ tree index

40359480All internal nodes
also kept as leaf

3019131 40359480 40362264 40362274

36

B+ tree works like 2-3-4 trees from CS10
(2-3-4 is special case of B+ tree)

Insert new node by traversing from rootCreating B+ tree index

40359480
Unlike 2-3-4 trees,
B+ tree leaves
keep pointer to
next leaf

3019131 40359480 40362264 40362274

37

The height of a B+ tree is normally small,
only a few levels

Log ⌈m/2⌉ n <= height <= log m nCreating B+ tree index Where:
m = children/node
n = nodes in B+ tree

40359480

In practice:
• m is normally 100 or more
• Height is usually around 3

or 4, even for large tables

3019131 40359480 40362264 40362274

38

Clustered indices make range queries fast,
non-clustered mean more reads

B+ tree B+ tree

Leaves

Disk
blocks

Range query: SELECT * FROM T1 WHERE col >= lb AND col <= ub
Fast on clustered indices
• Traverse to find lower bound at leaf
• Read many rows in one disk block read
• Traverse right until find upper bound
Require more disk reads on non-clustered (secondary) indices

Clustered index Non-clustered index

Leaves

Disk
blocks

39

Create indices on tables using the CREATE
INDEX command

CREATE INDEX idx_boro ON Restaurants(Boro);

• If index is secondary index (non-clustered), index must be dense
because rows are sorted by clustered index

• Now have pointers to rows with all unique values (for each Boro here)

• Result is that we can find all restaurants in each Boro (say Queens)
without scanning the entire table

• Cardinality of the index is the number of unique items (6 here)

• MySQL creates a separate BTREE for each index on table

• Index downsides:
• More storage space (not practical to put index on each attribute)
• Must keep indices up to date on insert, update, delete operations
• Database reorders clustered indices when not busy

40

