CS 61:

Database Systems

Data persistence, file organization, indexing

Adapted from Silberschatz, Korth, and Sundarshan unless otherwise noted

Big picture: find a needle in a big data

haystack quickly

Find data on Morris

TieReks ANEDIE Park Bake Shop in
i %%éﬁ%g? e large database
quickly...

é -\‘:/ L = '1 - 'z * But Morris Park Bake

. b Shop is just one entry
B x5 ‘\ N

AN in large data set

» 1. Data persistence
2. Database file organization

3. Indexing

There are many different types of data
storage used by databases

21Aq/1s0)

Speed

N

CPU cache is fast, but small and volatile

CPU cache

* Fast but expensive

* Holds small amount
of data (normally
megabytes of

Main memory

recently used data) Volatile
* Volatile (loose if
power fails) Non-
volatile

Flash memory

Magnetic disk

Tape

Main memory is larger, but still small and

volatile

Main memory | ¢ 1 CPU Cache
* Larger than CPU

cache (gigabytes)
* Volatile (loose if

power fails) Qs
* Some databases can O Main memory " EupVAEI

be entirely

contained in Non-

memory : volatile
* Use CS10 data Flash memory

structures to
access data
quickly if stored
in memory

Magnetic disk

Tape

Flash (SSDs) are larger and non-volatile, but

Ll Sasisy

much slower than main memory

Flash memory

CPU Cache
Solid State Drives

(SSDs)

Often larger than
main memory (up
to terabytes)
Non-volatile (do
not loose if power
fails)

Faster data access
than magnetic disks
Read data in
blocks (pages) of
about 4 KB

Main memory Volatile

Magnetic disk

Tape

Magnetic disk have been the mainstay of

data storage for decade

Magnetic disk

Mainstay of data
storage
Large (up to dozens
of terabytes)
Made up of
(perhaps many)
spinning platters
Slower than SSDs
* Seek track/
sector
e Rotational
latency
Read data in blocks
(page) of roughly
8 KB

Ll Sasisy
\%:

.m
. |
1
/Al

CPU Cache

Main memory

Flash memory

gl Magnetic disk

Tape

Volatile

Non-
volatile

Tape is large, but slow; mainly used for

back ups

Tape Il |8 CPU Cache

Very large capacity
(terabytes)
Normally used for
off-line backups

Main memory

Do you need back Volatile
up if replicate

database? __________________________a;n-
YES!!! volatile
A rouge process Flash memory

that writes

garbage writes
it to all replicas!

Magnetic disk

Most online data is stored on a magnetic

Hard Drive (HD) or Solid-State Disk (SSD)

Data storage on magnetic disk

Time to read/write: Hard drive read/write

« Seek time to track * A hard disk often has multiple spinning

. Rotational delay for sector platters, each with a read/write head

* Transfer speed 1 disk block ¢ Each platter has several concentric tracks
« Controller overhead 4KB in size * Each track is divided into multiple sectors

— Sector o The read/write head can address data on
at a track/sector location

* To read or write, move arm to correct
track, and wait for sector to spin
underneath head

* Disk itself cannot address smaller
amounts of data than one sector
(normally 512 bytes)

Platters

Operating system addresses blocks of data
RAID - Redundant Array of Independent * Ablock spans several sectors
Disks stores data across multiple disks * OS cannot address smaller than block
* Striping to increase throughput (RAID 0) * Normally around 4 KB today (8 sectors)
* Mirroring to reduce failures (RA|D 1) * Files written across multiple blocks 10

Disks are often grouped into Storage Area
Networks (SANs)

Storage Area Network (SAN)

* Provides block-addressable high-performance non-volatile storage

e Often connected to other SANs

* SAN software replicates data across SAN devices to eliminate
single point of failure (e.g., fire in data center)

* Not JBOD, often use striping and mirroring within one SAN

11

1. Data persistence
» 2. Database file organization

3. Indexing

12

Databases persist data onto disk in files

that normally span multiple blocks

] Restaurants v Two approaches

RestaurantID INT(11) . .
RestaurantName VARCHAR(100) F IXe d I en gt h rows

Boro VARCHAR(20) * Variable length rows
Building VARCHAR(20)
Street VARCHAR(100)
ZipCode INT(11)

Phone BIGINT(20)
Latitude DOUBLE
Longitude DOUBLE " O =

.» CuisinelD INT(11)

InspectionCount INT(11)
InspectionAvgScore DOUBLE

Track

Platters

>

e Each relation generally stored in one file

* Each file is a sequence of table rows made up of attributes mapped onto
disk blocks roughly 4KB in size

 One row assumed to be smaller than block size (book gives solution if nlgt)

Fixed length rows are easy to implement,

but can waste disk space

Simplified fixed length Restaurant records

Name Boro AvgGrade
Varchar(100) Varchar(20) Double

30075445 Morris Park Bake Shop Bronx 10.6
30075445 Wendy’s Brooklyn 19.8
30191841 DJ Reynolds Pub and Restaurant Manhattan 10.8
4 byte 100 bytes for varchar 20 bytes for varchar 8 bytes double
Integers Other bytes not used if Other bytes not used if Boro
Restaurant name < 100 name < 20 characters long

characters long

Row size = 132 bytes, find record i at file start + i*size bytes
Most likely some bytes wasted (Restaurant name is probably not 100 characters long)
Two other problems:
1. Unless block size is exactly 132 bytes, records will cross disk block boundaries

* Use block size/row size bytes of each block, discard the remainder
2. Hard to delete records

* Could move all records up (costly!)

14
 Mark record as deleted and keep pointers to next free space

Deleting rows can be tricky, could copy

records to fill hold, but inefficient!

Simplified fixed length Restaurant records

Name Boro AvgGrade
Varchar(100) Varchar(20) Double

30075445 Morris Park Bake Shop Bronx 10.6
Deleted

30191841 DJ Reynolds Pub and Restaurant Manhattan 10.8
40356018 Riviera Caterers Brooklyn 11.1

Could fill gap but might involve many copies if record near start of file and many entries
This would be slow!!!

Row size = 132 bytes, find record i at file start + i*size bytes
Most likely some bytes wasted (Restaurant name is probably not 100 characters long)
Two other problems:
1. Unless block size is exactly 132 bytes, records will cross disk block boundaries
* Use block size/row size bytes of each block, discard the remainder
2. Hard to delete records
* Could move all records up (costly!)

15
 Mark record as deleted and keep pointers to next free space

A better way to handle deletes is to keep a

list of free spaces

Simplified fixed length Restaurant records
Name Boro AvgGrade
Varchar(100) Varchar(20) Double

30075445 Morris Park Bake Shop Bronx 10.6
Deleted
30191841 DJ Reynolds Pub and Restaurant Manhattan 10.8
Deleted

Normally more inserts than deletes
Keep list of free spaces, insert record into space on free list on next insert

Row size = 132 bytes, find record i at file start + i*size bytes
Most likely some bytes wasted (Restaurant name is probably not 100 characters long)
Two other problems:
1. Unless block size is exactly 132 bytes, records will cross disk block boundaries
* Use block size/row size bytes of each block, discard the remainder
2. Hard to delete records
* Could move all records up (costly!)

16
 Mark record as deleted and keep pointers to next free space

Inserting new row, add onto end if no

entries in free list

Simplified fixed length Restaurant records

Name Boro AvgGrade
Varchar(100) Varchar(20) Double

30075445 Morris Park Bake Shop Bronx 10.6
30075445 Wendy’s Brooklyn 19.8
30191841 DJ Reynolds Pub and Restaurant Manhattan 10.8
40356018 Riviera Caterers Brooklyn 11.1

Insert new record into free space or add to end of file

Row size = 132 bytes, find record i at file start + i*size bytes
Most likely some bytes wasted (Restaurant name is probably not 100 characters long)
Two other problems:
1. Unless block size is exactly 132 bytes, records will cross disk block boundaries
» Store block size/row size records in each block, do not use the remainder
2. Hard to delete records
* Could move all records up (costly!)

17
 Mark record as deleted and keep pointers to next free space

Database keeps track of file layouts in data

dictionary (system catalog)

Data dictionary

o One entry per table o One entry per attribute
RelationName <+<— RelationName
NumberAttributes AttributeName
StorageOrganization DomainType
DiskLocation Position
Length

Data dictionary tracks relations and attributes

Relation metadata table has entry for each table

Attribute metadata uses RelationName in PK and has entry for each attribute
* Lists domain type for each attribute (e.g., INT, VARCHAR, DOUBLE)
* Position in record layout on disk
* Length of attribute

18

Variable length records are more

complicated to implement but save space

Variable length records

NULL NamePtr BoroPtr Angcore Name data Boro data
0000 30075445 24,19 43,5 10.6 Morris Park Bake Shop Bronx

To track NULLs, records have a byte array where each bit represents one attribute
e Set bit to 1 to indicate the value is NULL

* e.g., Boroisin 3" position, set 3 bit to 1 if Boro is NULL
* |did not show this field in the fixed length record, but often used there too

19

Some domain types are always of fixed

length such as INT and DOUBLE

Variable length records

/ Fixed length 4 bytes / Fixed length 8 bytes
NULL NamePtr BoroPtr AvgScore Name data Boro data
0 3la 7l oanlizsiie 2w s les a7
0000 30075445 24,19 43,5 10.6 Morris Park Bake Shop Bronx

Look up attribute types in data dictionary, get order and length for each attribute

Relation Attribute Domain Max
RelationName Name Name Type Position Length
AttributeName T, ID INT 1 4
DomainType T, Name VARCHAR 2 100
Position T, Boro VARCHAR 3 20
MaxLength T, AvgScore DOUBLE 4 8

20

Use start and length pointers to track

variable length attributes such as VARCHAR

Variable length records Variable length have start and length integers
Start and end are fixed length, 2 bytes each
I S 4
NULL NamePtr BoroPtr Angcore Name data Boro data
0000 30075445 24,19 43,5 10.6 Morris Park Bake Shop Bronx

Look up attribute types in data dictionary, get order and length for each attribute

Relation Attribute Domain Max
RelationName Name Name Type Position Length
AttributeName T, ID INT 1 4
DomainType T, Name VARCHAR 2 100
Position T, Boro VARCHAR 3 20
MaxLength T, AvgScore DOUBLE 4 8

Name starts at byte 24 and is 19 characters long
Boro starts at byte 43 and is 5 characters long 21

You can see this data by querying the

INFROMATION_SCHEMA table

Variable length records . .
MySQL tracks some other attributes in

addition to our somewhat simplified model

J

6 ® SELECT x FROM INFORMATION_SCHEMA.COLUMNS
7 WHERE TABLE_SCHEMA = 'nyc_inspections' AND TABLE_NAME = 'Restaurants’';

100% S 1:2

Result Grid [/ 4% FilterRows: Q Export: E[g W |
T.. TABLE_.SCHEMA TABLE_NAME COLUMN_NAME ORDINAL_POSITION COLUMN_DEFAULT IS_NULLABLE DATA_TYPE CHARACTER_M
def nyc_inspections Restaurants RestaurantID 1 NO int [HULL

def nyc_inspections Restaurants RestaurantName 2 YES varchar 100

def nyc_inspections Restaurants Boro 3 YES varchar 20

def nyc_inspections Restaurants Building 4 YES varchar 20

def nyc_inspections Restaurants Street 5 YES varchar 100

def nyc_inspections Restaurants ZipCode 6 YES int [HuLL |

def nyc_inspections Restaurants Phone 7 YES bigint [HULL

def nyc_inspections Restaurants Latitude 8 YES double [HULL

def nyc_inspections Restaurants Longitude 9 YES double [HULL

def nyc_inspections Restaurants CuisinelD 10 NO int [HULL |

def nyc_inspections Restaurants InspectionCount 11 YES int [HULL

def nyc_inspections Restaurants InspectionAvgS... 12 YES double [HULL

22

Multiple records are typically stored in one

disk block

RestaurantID RestaurantName Boro Building Street ZipCode Phone

30075445 MORRIS PARK BAKE SHOP Bronx 1007 MORRIS PARK AVE 10462 7188924968
30112340 WENDY'S Brooklyn 469 FLATBUSH AVENUE 11225 7182875005
30191841 DJ REYNOLDS PUB AND RESTAURANT Manhattan 351 WEST 57 STREET 10019 2122452912
40356018 RIVIERA CATERERS Brooklyn 2780 STILLWELL AVENUE 11224 7183723031
40356151 BRUNOS ON THE BOULEVARD Queens 8825 ASTORIA BOULEVARD 11369 7183350505
40356483 WILKEN'S FINE FOOD Brooklyn 7114 AVENUE U 11234 7184443838
40356731 TASTE THE TROPICS ICE CREAM Brooklyn 1839 NOSTRAND AVENUE 11226 7188560821
40357217 WILD ASIA Bronx 2300 SOUTHERN BOULEVA... 10460 7182207846

If disk block is 4KB and each row is
roughly 500 bytes, then there are — Sector Track
around 8 records (4,000/500) per
disk block

Platters

23

Data stored in blocks on disk so that

records do not span multiple blocks

Disk block organization Remember reading from disk is slow,
Block ' do not require reading two blocks to
Header get one record, so do not span blocks!

IIIIII ﬂﬁﬂl
/-

Number of
records
stored in
this block >P3c€

|

End of free

Storing records in a disk block

* Header gives number of records stored in block
* Records added from back to front

* Free space in between header and records

* New records added to end of free space “

Data stored in blocks on disk so that

records do not span multiple blocks

Disk block organization

Block
Header

=

Variable (or fixed) size
Pointers to record records add here from

location and size in bytes back to front

Number of

records | Assuming each block can hold
stored in End of free multiple records, see textbook
this block SPace if record sizes > block size

Storing records in a disk block

* Header gives number of records stored in block
* Records added from back to front

* Free space in between header and records

* New records added to end of free space »

1. Data persistence

2. Database file organization

» 3. Indexing

26

Without indices, database must do a full

table scan to find rows meeting criteria

1 e use nyc_inspections; Must look over entire table for restaurants in Manhattan
2 o SELECT * FROM Restaurants Slow if table is |argel

3 WHERE Boro = 'Manhattan';

4

5
100% S 1:6

Would prefer fast way to find by boro

o

Result Grid || 4¥ FilterRows: Q Edit: |ﬁ, B 5= Export/Import:) Fetch rows: = |
RestaurantID RestaurantName Boro Building Street ZipCode Phone
30191841 DJ REYNOLDS PUB AND RESTAURANT Manhattan 351 WEST 57 STREET 10019 2122452912
40359480 1 EAST 66TH STREET KITCHEN Manhattan 1 EAST 66 STREET 10065 2128793900
40362264 P & S DELI GROCERY Manhattan 730 COLUMBUS AVENUE 10025 2129323030
40362274 ANGELIKA FILM CENTER Manhattan 18 WEST HOUSTON STR... 10012 2129952570
40362715 THE COUNTRY CAFE Manhattan 60 WALL STREET 10005 3474279132
40363298 CAFE METRO Manhattan 625 8 AVENUE 10018 2127149342
40363426 LEXLER DELI Manhattan 405 LEXINGTON AVENUE 10174 2126870820
40363630 LORENZO & MARIA'S KITCHEN Manhattan 1418 THIRD AVENUE 10028 2127941080
40363685 BERKELEY Manhattan 437 MADISON AVENUE 10022 2128328121
40363945 DOMINO'S Manhattan 148 WEST 72 STREET 10023 2125010200
40364149 AUNTIE ANNE'S PRETZELS Manhattan 0 34 STREET [HULL 2122396882
40364179 SPOONBREAD TOO Manhattan 364 WEST 110 STREET 10025 2128656744

Notice results are sorted by RestaurantiD, why?

MySQL automatically creates clustered index for PK (concatenate for composite key PKs)
Clustered index means rows are sorted on disk by index key, secondary indices are not
MySQL uses index to return rows

Each table has at least one index; normally

based on primary key

1 e use nyc_inspections; Must look over entire table for restaurants in Manhattan
2 o SELECT * FROM Restaurants Slow if table is |argel

3 WHERE Boro = 'Manhattan';

4

5
100% S 1:6

Would prefer fast way to find by boro

o

Result Grid || 4¥ FilterRows: Q Edit: |ﬁ, B 5= Export/Import:) Fetch rows: = |
RestaurantID RestaurantName Boro Building Street ZipCode Phone
30191841 DJ REYNOLDS PUB AND RESTAURANT Manhattan 351 WEST 57 STREET 10019 2122452912
40359480 1 EAST 66TH STREET KITCHEN Manhattan 1 EAST 66 STREET 10065 2128793900
40362264 P & S DELI GROCERY Manhattan 730 COLUMBUS AVENUE 10025 2129323030
40362274 ANGELIKA FILM CENTER Manhattan 18 WEST HOUSTON STR... 10012 2129952570
40362715 THE COUNTRY CAFE Manhattan 60 WALL STREET 10005 3474279132
40363298 CAFE METRO Manhattan 625 8 AVENUE 10018 2127149342
40363426 LEXLER DELI Manhattan 405 LEXINGTON AVENUE 10174 2126870820
40363630 LORENZO & MARIA'S KITCHEN Manhattan 1418 THIRD AVENUE 10028 2127941080
40363685 BERKELEY Manhattan 437 MADISON AVENUE 10022 2128328121
40363945 DOMINO'S Manhattan 148 WEST 72 STREET 10023 2125010200
40364149 AUNTIE ANNE'S PRETZELS Manhattan 0 34 STREET [HULL 2122396882
40364179 SPOONBREAD TOO Manhattan 364 WEST 110 STREET 10025 2128656744

There can be only one (and only one) clustered index per table

All tables have at least one index

If a primary key is not declared, MySQL uses the first UNIQUE index
If no UNIQUE index, MySQL creates a synthetic column with RowID

28

Add new rows to table, update index with

location of each new row

1 e use nyc_inspections; Must look over entire table for restaurants in Manhattan
2 o SELECT * FROM Restaurants Slow if table is |argel

i WHERE Boro = “Hanhattan’s ywould prefer fast way to find by boro

5
100% S 1:6

o

Result Grid || 4¥ FilterRows: Q Edit: |ﬁ, B 5= Export/Import:) Fetch rows: = |
RestaurantID RestaurantName Boro Building Street ZipCode Phone
30191841 DJ REYNOLDS PUB AND RESTAURANT Manhattan 351 WEST 57 STREET 10019 2122452912
40359480 1 EAST 66TH STREET KITCHEN Manhattan 1 EAST 66 STREET 10065 2128793900
40362264 P & S DELI GROCERY Manhattan 730 COLUMBUS AVENUE 10025 2129323030
40362274 ANGELIKA FILM CENTER Manhattan 18 WEST HOUSTON STR... 10012 2129952570
40362715 THE COUNTRY CAFE Manhattan 60 WALL STREET 10005 3474279132
40363298 CAFE METRO Manhattan 625 8 AVENUE 10018 2127149342
40363426 LEXLER DELI Manhattan 405 LEXINGTON AVENUE 10174 2126870820
40363630 LORENZO & MARIA'S KITCHEN Manhattan 1418 THIRD AVENUE 10028 2127941080
40363685 BERKELEY Manhattan 437 MADISON AVENUE 10022 2128328121
40363945 DOMINO'S Manhattan 148 WEST 72 STREET 10023 2125010200
40364149 AUNTIE ANNE'S PRETZELS Manhattan 0 34 STREET [HULL 2122396882
40364179 SPOONBREAD TOO Manhattan 364 WEST 110 STREET 10025 2128656744

If new rows are inserted into table:

* Add at space indicated by free space list or end of file

* Update all indices to show where new row is located (indices cause increased overhead)
* Database will move records to keep clustered index sorted by index when not busy »

Add deleted rows to free list and update

index for each row removed

1 e use nyc_inspections; Must look over entire table for restaurants in Manhattan
2 o SELECT * FROM Restaurants Slow if table is |argel

i WHERE Boro = “Hanhattan’s ywould prefer fast way to find by boro

5
100% S 1:6

o

Result Grid || 4¥ FilterRows: Q Edit: |ﬁ, B 5= Export/Import:) Fetch rows: = |
RestaurantID RestaurantName Boro Building Street ZipCode Phone
30191841 DJ REYNOLDS PUB AND RESTAURANT Manhattan 351 WEST 57 STREET 10019 2122452912
40359480 1 EAST 66TH STREET KITCHEN Manhattan 1 EAST 66 STREET 10065 2128793900
40362264 P & S DELI GROCERY Manhattan 730 COLUMBUS AVENUE 10025 2129323030
40362274 ANGELIKA FILM CENTER Manhattan 18 WEST HOUSTON STR... 10012 2129952570
40362715 THE COUNTRY CAFE Manhattan 60 WALL STREET 10005 3474279132
40363298 CAFE METRO Manhattan 625 8 AVENUE 10018 2127149342
40363426 LEXLER DELI Manhattan 405 LEXINGTON AVENUE 10174 2126870820
40363630 LORENZO & MARIA'S KITCHEN Manhattan 1418 THIRD AVENUE 10028 2127941080
40363685 BERKELEY Manhattan 437 MADISON AVENUE 10022 2128328121
40363945 DOMINO'S Manhattan 148 WEST 72 STREET 10023 2125010200
40364149 AUNTIE ANNE'S PRETZELS Manhattan 0 34 STREET [HULL 2122396882
40364179 SPOONBREAD TOO Manhattan 364 WEST 110 STREET 10025 2128656744

If rows are deleted:

 Add to row to free space list

* Update all indices by removing entry (indices cause increased overhead)

* Database will move records to keep clustered index sorted by index when not busy *

B+ trees normally used for indices, work

like 2-3-4 trees from CS10

Creating B+ tree index

On insert add search keys to node until node is full

Non-leaf nodes (except root) have between [m/2] and m children (4 here)
Each node has pointer to where row is located on disk (not shown)

When a node is full, split and promote

3019141 | 40359480 | 40362264

Restaura Boro Building Street ZipCode Phone Latitude
30191841 AND RESTAU... Manhattan 351 WEST 57 STREET 10019 2122452912 40.7673257
4035948 6TH STREET KITCHEN Manhattan 1 EAST 66 STREET 10065 2128793900 40.7685469
40362264 P & S DELI GROCERY Manhattan 730 COLUMBUS AVENUE 10025 2129323030 40.7926206
40362274 ANGELIKA FILM CENTER Manhattan 18 WEST HOUSTON STR... 10012 2129952570 40.7257436
40362715 THE COUNTRY CAFE Manhattan 60 WALL STREET 10005 3474279132 40.7059068
40363298 CAFE METRO Manhattan 625 8 AVENUE 10018 2127149342 40.7561854
40363426 LEXLER DELI Manhattan 405 LEXINGTON AVENUE 10174 2126870820 40.7518163
40363630 LORENZO & MARIA'S KITCHEN Manhattan 1418 THIRD AVENUE 10028 2127941080 40.77528111
40363685 BERKELEY Manhattan 437 MADISON AVENUE 10022 2128328121 40.7575117
40363945 DOMINO'S Manhattan 148 WEST 72 STREET 10023 2125010200 40.7780735
40364149 AUNTIE ANNE'S PRETZELS Manhattan 0 34 STREET 2122396882 [
40364179 SPOONBREAD TOO Manhattan 364 WEST 110 STREET 10025 2128656744 40.8013712
40364347 METROPOLITAN CLUB Manhattan 1 EAST 60 STREET 10022 2128387400 40.7647955
40364362 21 CLUB Manhattan 21 WEST 52 STREET 10019 2125827200 40.7604078

Restaurants 2 Apply R

B+ trees normally used for indices, work

like 2-3-4 trees from CS10

Creating B+ tree index

On insert add search keys to node until node is full

Non-leaf nodes (except root) have between [m/2] and m children (4 here)

Each node has pointer to where row is located on disk (not shown)

When a node is full, split and promote

3019141 | 40359480 40362264 Full, split and promote

RestaurantID
30191841
40359480
40362264
40362274
40362715
40363298
40363426
40363630
40363685
40363945
40364149
40364179
40364347
40364362

Restaurants 2

RestaurantName

DJ REYNOLDS PUB A

1 EAST 66T

ANGELIKA FILM CENTER
THE COUNTRY CAFE

CAFE METRO
LEXLER DELI

LORENZO & MARIA'S KITCHEN

BERKELEY
DOMINO'S

AUNTIE ANNE'S PRETZELS

SPOONBREAD TOO

METROPOLITAN CLUB

21 CLUB

ro
Manhattan
Manhattan
Manhattan
Manhattan
Manhattan
Manhattan
Manhattan
Manhattan
Manhattan
Manhattan
Manhattan
Manhattan
Manhattan
Manhattan

Building
351

1
730
18
60
625
405
1418
437
148

364

21

Street

WEST 57 STREET
EAST 66 STREET
COLUMBUS AVENUE
WEST HOUSTON STR...
WALL STREET

8 AVENUE
LEXINGTON AVENUE
THIRD AVENUE
MADISON AVENUE
WEST 72 STREET
34 STREET

WEST 110 STREET
EAST 60 STREET
WEST 52 STREET

ZipCode
10019
10065
10025
10012
10005
10018
10174
10028
10022
10023
[HULL |

10025
10022
10019

Phone

2122452912
2128793900
2129323030
2129952570
3474279132
2127149342
2126870820
2127941080
2128328121
2125010200
2122396882
2128656744
2128387400
2125827200

Latitude
40.7673257
40.7685469
40.7926206
40.7257436
40.7059068
40.7561854
40.7518163
40.77528111
40.7575117
40.7780735
[HULL |
40.8013712
40.7647955
40.7604078

Apply R

B+ tree works like 2-3-4 trees from CS10

(2-3-4 is special case of B+ tree)

Creating B+ tree index Insert new node by traversing from root

All internal nodes FHELLYED)
also kept as Ieaf/

N
015131 0350480 DN 1036556,

RestaurantID RestaurantName Boro Building Street ZipCode Phone Latitude
30191841 DJ REYNOLDS PUB AND RESTAU... Manhattan 351 WEST 57 STREET 10019 2122452912 40.7673257
40359480 1 EAST 66TH STREET KITCHEN Manhattan 1 EAST 66 STREET 10065 2128793900 40.7685469
40362264 P & S DELI GROCERY Manhattan 730 COLUMBUS AVENUE 10025 2129323030 40.7926206
40362274 ANGELIKA FILM CENTER Manhattan 18 WEST HOUSTON STR... 10012 2129952570 40.7257436
40362715 THE COUNTRY CAFE Manhattan 60 WALL STREET 10005 3474279132 40.7059068
40363298 CAFE METRO Manhattan 625 8 AVENUE 10018 2127149342 40.7561854
40363426 LEXLER DELI Manhattan 405 LEXINGTON AVENUE 10174 2126870820 40.7518163
40363630 LORENZO & MARIA'S KITCHEN Manhattan 1418 THIRD AVENUE 10028 2127941080 40.77528111
40363685 BERKELEY Manhattan 437 MADISON AVENUE 10022 2128328121 40.7575117
40363945 DOMINO'S Manhattan 148 WEST 72 STREET 10023 2125010200 40.7780735
40364149 AUNTIE ANNE'S PRETZELS Manhattan 0 34 STREET 2122396882 [
40364179 SPOONBREAD TOO Manhattan 364 WEST 110 STREET 10025 2128656744 40.8013712
40364347 METROPOLITAN CLUB Manhattan 1 EAST 60 STREET 10022 2128387400 40.7647955
40364362 21 CLUB Manhattan 21 WEST 52 STREET 10019 2125827200 40.7604078

Restaurants 2 Apply R

B+ tree works like 2-3-4 trees from CS10

(2-3-4 is special case of B+ tree)

Creating B+ tree index Insert new node by traversing from root

All internal nodes WTELL:VED] 40362274

also kept as Ieaf/

N\
40359480 8 40362264 |

RestaurantID RestaurantName Boro Building Street ZipCode Phone Latitude
30191841 DJ REY S PUB AND RESTAU... Manhattan 351 WEST 57 STREET 10019 2122452912 40.7673257
40359480 66TH STREET KITCHEN Manhattan 1 EAST 66 STREET 10065 2128793900 40.7685469
40362264 & S DELI GROCERY Manhattan 730 COLUMBUS AVENUE 10025 2129323030 40.7926206
40362274 ANGELIKA FILM CENTER Manhattan 18 WEST HOUSTON STR... 10012 2129952570 40.7257436
40362715 THE COUNTRY CAFE Manhattan 60 WALL STREET 10005 3474279132 40.7059068
40363298 CAFE METRO Manhattan 625 8 AVENUE 10018 2127149342 40.7561854
40363426 LEXLER DELI Manhattan 405 LEXINGTON AVENUE 10174 2126870820 40.7518163
40363630 LORENZO & MARIA'S KITCHEN Manhattan 1418 THIRD AVENUE 10028 2127941080 40.77528111
40363685 BERKELEY Manhattan 437 MADISON AVENUE 10022 2128328121 40.7575117
40363945 DOMINO'S Manhattan 148 WEST 72 STREET 10023 2125010200 40.7780735
40364149 AUNTIE ANNE'S PRETZELS Manhattan 0 34 STREET 2122396882
40364179 SPOONBREAD TOO Manhattan 364 WEST 110 STREET 10025 2128656744 40.8013712
40364347 METROPOLITAN CLUB Manhattan 1 EAST 60 STREET 10022 2128387400 40.7647955
40364362 21 CLUB Manhattan 21 WEST 52 STREET 10019 2125827200 40.7604078

Restaurants 2 | Apply R

B+ tree works like 2-3-4 trees from CS10

(2-3-4 is special case of B+ tree)

Creating B+ tree index Insert new node by traversing from root

All internal nodes FHELLYED)
also kept as Ieaf/

N\
13019131 | 40359480 20362264 | 40362274

RestaurantID RestaurantName Building Street ZipCode Phone Latitude
30191841 DJ REYNOLDS PUB AND ... Manhattan 351 WEST 57 STREET 10019 2122452912 40.7673257
1 EAST 66TH ITCHEN Manhattan 1 EAST 66 STREET 10065 2128793900 40.7685469

40359480

40362264 GROCERY Manhattan 730 COLUMBUS AVENUE 10025 2129323030 40.7926206
40362274 ANGELIKA FILM CENTER Manhattan 18 WEST HOUSTON STR... 10012 2129952570 40.7257436
40362715 THE COUNTRY CAFE Manhattan 60 WALL STREET 10005 3474279132 40.7059068
40363298 CAFE METRO Manhattan 625 8 AVENUE 10018 2127149342 40.7561854
40363426 LEXLER DELI Manhattan 405 LEXINGTON AVENUE 10174 2126870820 40.7518163
40363630 LORENZO & MARIA'S KITCHEN Manhattan 1418 THIRD AVENUE 10028 2127941080 40.77528111
40363685 BERKELEY Manhattan 437 MADISON AVENUE 10022 2128328121 40.7575117
40363945 DOMINO'S Manhattan 148 WEST 72 STREET 10023 2125010200 40.7780735
40364149 AUNTIE ANNE'S PRETZELS Manhattan 0 34 STREET 2122396882 [
40364179 SPOONBREAD TOO Manhattan 364 WEST 110 STREET 10025 2128656744 40.8013712
40364347 METROPOLITAN CLUB Manhattan 1 EAST 60 STREET 10022 2128387400 40.7647955
40364362 21 CLUB Manhattan 21 WEST 52 STREET 10019 2125827200 40.7604078

Restaurants 2 Apply R

B+ tree works like 2-3-4 trees from CS10

(2-3-4 is special case of B+ tree)

Creating B+ tree index Insert new node by traversing from root

Unlike 2-3-4 trees,

B+ tree leaves 40359480

keep pointer to

B 5010131 | 40355450 g 00362264 | 40362274

RestaurantID RestaurantName Boro Building Street ZipCode Phone Latitude
30191841 DJ REYNOLDS PUB AND RESTAU... Manhattan 351 WEST 57 STREET 10019 2122452912 40.7673257
40359480 1 EAST 66TH STREET KITCHEN Manhattan 1 EAST 66 STREET 10065 2128793900 40.7685469
40362264 P & S DELI GROCERY Manhattan 730 COLUMBUS AVENUE 10025 2129323030 40.7926206
40362274 ANGELIKA FILM CENTER Manhattan 18 WEST HOUSTON STR... 10012 2129952570 40.7257436
40362715 THE COUNTRY CAFE Manhattan 60 WALL STREET 10005 3474279132 40.7059068
40363298 CAFE METRO Manhattan 625 8 AVENUE 10018 2127149342 40.7561854
40363426 LEXLER DELI Manhattan 405 LEXINGTON AVENUE 10174 2126870820 40.7518163
40363630 LORENZO & MARIA'S KITCHEN Manhattan 1418 THIRD AVENUE 10028 2127941080 40.77528111
40363685 BERKELEY Manhattan 437 MADISON AVENUE 10022 2128328121 40.7575117
40363945 DOMINO'S Manhattan 148 WEST 72 STREET 10023 2125010200 40.7780735
40364149 AUNTIE ANNE'S PRETZELS Manhattan 0 34 STREET 2122396882
40364179 SPOONBREAD TOO Manhattan 364 WEST 110 STREET 10025 2128656744 40.8013712
40364347 METROPOLITAN CLUB Manhattan 1 EAST 60 STREET 10022 2128387400 40.7647955
40364362 21 CLUB Manhattan 21 WEST 52 STREET 10019 2125827200 40.7604078

Restaurants 2 | Apply R

The height of a B+ tree is normally small,

only a few levels

Creating B+ tree index Where:

m = children/node
n = nodes in B+ tree

In practice:

LOg [m/21 n <= height<=log ,, n
* mis normally 100 or more
e Height is usually around 3

40359480
or 4, even for large tables \
3019131 | 40359480 ¥ 40362264 | 40362274

RestaurantID RestaurantName Boro Building Street ZipCode Phone Latitude
30191841 DJ REYNOLDS PUB AND RESTAU... Manhattan 351 WEST 57 STREET 10019 2122452912 40.7673257
40359480 1 EAST 66TH STREET KITCHEN Manhattan 1 EAST 66 STREET 10065 2128793900 40.7685469
40362264 P & S DELI GROCERY Manhattan 730 COLUMBUS AVENUE 10025 2129323030 40.7926206
40362274 ANGELIKA FILM CENTER Manhattan 18 WEST HOUSTON STR... 10012 2129952570 40.7257436
40362715 THE COUNTRY CAFE Manhattan 60 WALL STREET 10005 3474279132 40.7059068
40363298 CAFE METRO Manhattan 625 8 AVENUE 10018 2127149342 40.7561854
40363426 LEXLER DELI Manhattan 405 LEXINGTON AVENUE 10174 2126870820 40.7518163
40363630 LORENZO & MARIA'S KITCHEN Manhattan 1418 THIRD AVENUE 10028 2127941080 40.77528111
40363685 BERKELEY Manhattan 437 MADISON AVENUE 10022 2128328121 40.7575117
40363945 DOMINO'S Manhattan 148 WEST 72 STREET 10023 2125010200 40.7780735
40364149 AUNTIE ANNE'S PRETZELS Manhattan 0 34 STREET 2122396882 [
40364179 SPOONBREAD TOO Manhattan 364 WEST 110 STREET 10025 2128656744 40.8013712
40364347 METROPOLITAN CLUB Manhattan 1 EAST 60 STREET 10022 2128387400 40.7647955
40364362 21 CLUB Manhattan 21 WEST 52 STREET 10019 2125827200 40.7604078

Restaurants 2

Apply R

Clustered indices make range queries fast,

non-clustered mean more reads

Clustered index Non-clustered index

‘ <> 4-\: Leaves ’_ih <> <} Leaves
AN ANNN R

Disk Disk
blocks blocks

Range query: SELECT * FROM T, WHERE col >=|[b AND col <= ub
Fast on clustered indices

* Traverse to find lower bound at leaf

* Read many rows in one disk block read

* Traverse right until find upper bound

Require more disk reads on non-clustered (secondary) indices .

Create indices on tables using the CREATE

INDEX command

CREATE INDEX idx_boro ON Restaurants(Boro);

* Ifindex is secondary index (non-clustered), index must be dense
because rows are sorted by clustered index

 Now have pointers to rows with all unique values (for each Boro here)

e Result is that we can find all restaurants in each Boro (say Queens)
without scanning the entire table

e Cardinality of the index is the number of unique items (6 here)
 MySQL creates a separate BTREE for each index on table

* |ndex downsides:
 More storage space (not practical to put index on each attribute)
 Must keep indices up to date on insert, update, delete operations
 Database reorders clustered indices when not busy

39

40

