
CS 61:
Database Systems

Query optimization

Adapted from Silberschatz, Korth, and Sundarshan unless otherwise noted

2

Agenda

1. Query processing

2. Tips for fast queries

3. Explain (yourself)

3

Three typical non-database bottlenecks to
performance: CPU, Ram, network I/O

CPU: as fast as possible RAM: as much as possible
• Cache queries and data

in memory
• Less query processing

and paging to disk
Network:
• You don’t want this

4

Three typical non-database bottlenecks to
performance: CPU, Ram, network I/O

Network:
• Fast network
• Fast disk (SAN)

CPU: as fast as possible RAM: as much as possible
• Cache queries and data

in memory
• Less query processing

and paging to disk

Parse
• Check syntax
• Check table and

columns exist

Compile
• Convert query

to machine
code

Optimize
• Choose optimal

execution plan
5

The query optimizer chooses the best
execution plan for a given query

Adapted from: http://javabypatel.blogspot.com/2015/09/how-prepared-statement-in-java-prevents-sql-injection.html

Parse/Compile/
Optimize Cache Replace

placeholders Execute

High-level overview of SQL execution process

Cache
• Store optimized

query plan in
cache

• If command
submitted
again, skip prior
steps (already
done)

Replace placeholders
• Prepared statement

are not complete
statements

• Have placeholders
for some values

• But, format of
command is set now

• Placeholders filled
with literal values

• Place holder data
doesn’t change
command format

Execute
• Query is executed
• Data is fetched from

disk and returned to
user

Parse
• Check syntax
• Check table and

columns exist

Compile
• Convert query

to machine
code

Optimize
• Choose optimal

execution plan
6

The query optimizer chooses the best
execution plan for a given query

Adapted from: http://javabypatel.blogspot.com/2015/09/how-prepared-statement-in-java-prevents-sql-injection.html

Parse/Compile/
Optimize Cache Replace

placeholders Execute

High-level overview of SQL execution process

Cache
• Store optimized

query plan in
cache

• If command
submitted
again, skip prior
steps (already
done)

Replace placeholders
• Prepared statement

are not complete
statements

• Have placeholders
for some values

• But, format of
command is set now

• Placeholders filled
with literal values

• Place holder data
doesn’t change
command format

Execute
• Query is executed
• Data is fetched from

disk and returned to
user

7

The database keep statistics to help the
optimizer make smart decisions

Tables
• Number of rows/disk

blocks used
• Number of columns

in each row
• Min/Max value in

each column
• Which columns have

indexes

Indexes
• Number and name

of columns in the
index key

• Number of distinct
key values in the
index key

• Histogram of key
values in an index

• Number of disk
blocks used by the
index

Database

Environment
• Logical and

physical disk
block size

• Location and
size of data files

• CPU speed
• Disk

throughput
speed

• RAM available

Adapted from Coronel and Morris

8

Optimizer approaches: rule-based and
cost-based

Rule-based optimizer:
• Uses preset rules and cost points

to determine the best approach
to execute a query

• Rules assign a fixed cost to each
SQL operation

Cost-based optimizer:
• Uses algorithms based on statistics

about objects being accessed to
determine the best approach to
execute a query

• Adds up the total SQL operation cost
• I/O costs
• Processing costs
• Resource costs (RAM and

temporary space)

9

Cost-based example: multiple ways to
execute the same query

Adapted from Coronel and Morris

Optimizer Products table Vendors table
Knows 7,000 rows 300 rows
Estimates NH products: 1,000 NH vendors: 10

Optimizer tries to determine best way to execute query
• Book gives detailed analysis of cost
• I will focus on I/O operations
• Two ways this query could be executed

Want data from both tables, so will
require a JOIN

10

Two options to execute the query
Two options

Optimizer
must choose
which
approach is
better

𝜎VendorState=‘NH’

|
⋈p.VendorID = v.VendorID

/ \
Products Vendors

⋈p.VendorID = v.VendorID

/ \
Products 𝜎VendorState=‘NH’(Vendors)

1) JOIN first, then SELECT NH 2) SELECT NH first, then JOIN

Adapted from Coronel and Morris

11

Option 1: JOIN first, then SELECT

Step Operations Read I/O
Ops

Write I/O
Ops

Total I/O
Ops

1 Cartesian Product (Product
x Vendor)

7,000 + 300
= 7,300

2,100,000 2,107,300

2 Select rows from Step 1
with same vendor codes

2,100,000 7,000 2,107,000

3 Select rows from Step 2
with State = NH

7,000 1,000 8,000

Total 2,114,300 2,108,000 4,222,300

Products: 7,000 rows
NH products: 1,000

Vendors: 300 rows
NH vendors: 10

1) JOIN first, then SELECT NH

𝜎VendorState=‘NH’(𝜎p.VendorID = v.VendorID(Products X Vendors))

Remember
from Relational
Algebra, a JOIN
is a Cartesian
Product
followed by a
SELECT

Adapted from Coronel and Morris

12

Option 2: SELECT first, then JOIN
2) SELECT NH first, then JOIN

𝜎 p.VendorID = v.VendorID(Products X 𝜎 VendorState=‘NH’(Vendors))

Step Operations Read I/O
Ops

Write I/O
Ops

Total I/O
Ops

1 Select rows in Vendor with
State = ‘NH’

300 10 310

2 Cartesian product Products
x Step 1

7,000 + 10
= 7,010

70,000 77,010

3 Select rows in Step 2 with
same vendor codes

70,000 1,000 71,000

Total 77,310 71,010 148,320

Option 1:
4,222,300

Option 2:
148,320

Optimizer picks
Option 2 as
execution plan
(28 times
smaller)

This example considers
only I/O cost, the book is
more precise

Adapted from Coronel and Morris

Products: 7,000 rows
NH products: 1,000

Vendors: 300 rows
NH vendors: 10

13

Agenda

1. Query processing

2. Tips for fast queries

3. Explain (yourself)

14

Majority of performance problems are
related to poorly written SQL code

A carefully written query almost always outperforms a poorly written
query
• When possible, use simple columns or literals as operands; try to avoid

using conditional expressions with functions
• Numeric field comparisons are faster than character, date, and NULL

comparisons
• Equality comparisons are faster than inequality comparisons
• When using multiple AND conditions, write the condition most likely to be

false first (take advantage of short circuiting)
• When using multiple OR conditions, write the condition most likely to be

true first (short circuiting again)
• Avoid the use of NOT logical operator (NOT Price>10 becomes Price <= 10)
• For text matching, use ‘A%’ not ‘%A%’ if possible
• Consider your index use!

Adapted from Coronel and Morris

15

Consider your index use

Indices speed up reads, but slow down writes
• Reads need only scan rows meeting criteria, not full table scan
• Writes must update tables as well as (possibly) index

Impractical to put index on every attribute
• Take up too much memory
• Performance hit

Considerations for indices:
• Use when attribute used in WHERE, HAVING, ORDER BY, or GROUP BY

clauses of frequently run queries
• Do not use on small tables
• Do not use with low cardinality (small number of unique values)
• Declare PK and FK so optimizer can use indexes on JOINs

(automatically done by MySQL)
• Declare indices for non-prime attributes used in JOINs
• Drop infrequently used indices

Index considerations

16

Agenda

1. Query processing

2. Tips for fast queries

3. Explain (yourself)

17

Often indexes can increase SQL read
performance significantly
Show indexes

Table name

1 if can contain duplicates
0 otherwise

Key name
Primary key always called PRIMARY

Column sequence
number in index (first
starts at 1 for multi-
column indexes)

Adapted from: https://dev.mysql.com/doc/mysql-infoschema-excerpt/5.7/en/statistics-table.html

Column name

Collation: how
sorted
A = ascending
D = descending

Cardinality:
Estimated number
of unique values

Null, entire
column indexed
otherwise
number of
indexed
characters

YES if column can
be NULL

Type of index:
BTREE (default)
HASH

Can the
optimizer
use this
index?

18

Indices can be created on multiple
attributes

Optimizer can use index on left
most prefix
• Can use on Boro
• Can use on Boro and ZipCode
• Cannot use on just ZipCode

(left most not met)

19

EXPLAIN tells you how MySQL is using
indices

17

EXPLAIN tells you how MySQL is using
indices

There are 26,573 rows in Restaurants table

Using index, execution plan only estimates
scanning 13,279 rows; does not do a full table
scan

But there are only 10,649 rows in Manhattan

MySQL uses estimates from table statistics to
guess how many rows it will need to process

Possible indices

Indices used

20

EXPLAIN tells you how MySQL is using
indices

Full table scan if only use ZipCode

ZipCode is the second index, not part of the left most

Remember unique rows (the Cardinality) is MySQL’s estimate, may not be exact

Can use ANALYZE TABLE <name> to get updated key distribution and cardinality
statistics from random sample (just an estimate, not an exact count)

Optimizer may use selectivity and cardinality to determine where to use index on
JOIN operations

21

EXPLAIN tells you how MySQL is using
indices

Using both index attributes
scans of only 201 rows

22

Can suggest (or force) use of index, even if
optimizer chooses otherwise

Create index based on first
three characters of restaurant
name

Suggest (with USE) or require
(with FORCE) use of index

Only needs to scan 18 rows
(not 26,573 rows!)

23

Explain also shows how multiple tables
are accessed in a JOIN

SIMPLE – no subqueries or UNIONs
PRIMARY – outermost in JOIN
DERIVED – part of subquery within FROM
SUBQUERY – first SELECT in subquery
…
Others, see MySQL documentation

• const – table has only one matching indexed
row

• ref – all matching rows of indexed column are
read for each combination of rows from
previous table

• all – table scan!
…
Others, see MySQL documentation

Number of rows read

More info at https://www.sitepoint.com/using-explain-to-write-better-mysql-queries/

24

Practice: Indices
Download customers_schema.sql from course web page
• Take at the customers table and the fields it contains
• List the indices on this table

Try running the following command:
SELECT * FROM Customers
WHERE ContactFirstName like 'A%'
OR ContactLastName LIKE 'A%’;

Answer these questions:
What does this command do?
What indices does it use?
Try suggesting the query use the composite indices
How do the execution times compare with and without your suggestion
Adaptec from https://www.mysqltutorial.org/mysql-index/mysql-use-index/

25

