
CS 61:
Database Systems

Distributed systems

Adapted mongodb.com unless otherwise noted

2

Agenda

1. Centralized systems

2. Distributed systems
• High availability
• Scalability

3. MongoDB

3

A single database can handle many
thousands of transactions per second

Source: https://www.mysql.com/why-mysql/benchmarks/

MySQL 8.0

MySQL 5.7

Your start up that you’re certain will be a smashing success in the market is unlikely to
overwhelm a database running on a single reasonable server for quite some time

-- Pierson

Premature
optimization
is the root of
all evil

-- Knuth

I take these numbers
with a grain of salt

Scale vertically – get a bigger box
Scale horizontally – get more boxes

4

Let’s estimate performance
Assume:
Each user interaction takes 10 queries on average (normalization)
Average of 30 user interactions/visitor
Database can handle 100,000 queries per second

Source: percona.com

If you exceed these numbers,
you’ll need some help from
someone who took more than
an introductory database class!Max user interactions/second:

100,000 queries x 1 interaction = 10,000 interactions
second 10 queries second

Max user interactions/day:
10,000 interactions x 60*60*24 seconds = 864M interactions

second day day
Max user visits/day:

864M interactions x 1 visitor = 28.8M visitors
day 30 interactions day

5

Agenda

1. Centralized systems

2. Distributed systems
• High availability
• Scalability

3. MongoDB

6

With one database, you’ve put all you eggs
in one basket!

User 1

If the single database fails,
you’re out of luck

Want
• High availability
• Scalability

User 2

User n

DatabaseAPI

7

With SANs you can have real-time, block-
level replication to another database

Database

User 1

User 2

User n

API

SAN have block-level access
• Change made to one SAN immediately

replicated to another SAN
• API accesses back up database if

primary fails
• Expensive, but real-time

Cold standby: replica current to a point in time
Warm standby: replica kept current
Hot standby: replica is open for read-only ops
Failover: replica takes over for primary

Replica ideally
located offsite

SAN Replica
Database

SAN

8

Log shipping is another, often more cost-
effective high availability solution

User 1

User 2

User n

Log shipping: send write-ahead logs to
backup database
• Back up replays logs to stay current
• Some delay until log operations

applied to replica
• Network speed/reliability important

Replica likely
located offsite

DatabaseAPI Replica
Database

Transaction log

9

Partitioning can help with scalability when
data become large
Partitioning

Node 1 Node 2 Node n

ID Name Salary

100 Alice 100,000

200 Bob 90,000

300 Charlie 85,000

…

ID Name Salary

100 Alice 100,000

…

ID Name Salary

200 Bob 90,000

…

ID Name Salary

300 Charlie 85,000

…

Horizontal partitioning
(aka sharding) slices data
by rows and spreads
across multiple nodes

Vertical partitioning slices
data by columns

Partitioning increases
capacity
• Each machine may be

small, but only handles
a subset of overall data

• Tradeoff: increased
complexity

Global distributed schema
keeps track of data locations

Logical data view

Adapted from Coronel and Morris

10

Sharding horizontally partitions data based
on an attribute chosen as the shard key
Partitioning

Node 1 Node 2 Node n

ID Name Salary

100 Alice 100,000

200 Bob 90,000

300 Charlie 85,000

…

ID Name Salary

100 Alice 100,000

…

ID Name Salary

200 Bob 90,000

…

ID Name Salary

300 Charlie 85,000

…

Choose an attribute to
serve as the shard key
• Shard key difficult

change once database
is partitioned

• Want cardinality >
number of shards

Hashing:
• Hash shard key to get

replica number like
CS10 hash table

Range partitioning:
• Distribute based on a

partition key (Names
A-E go to database 1,
F-J go to database 2, …

Logical data view

Adapted from Coronel and Morris

11

Problem: queries may affect multiple
shards; use Two-Phase Commit (2PC)
Two-phase commit (2PC) protocol

ID Name Salary

100 Alice 100,000

…

ID Name Salary

200 Bob 90,000

…

ID Name Salary

300 Charlie 85,000

…

UPDATE Employee
SET Salary = Salary * 1.05

Two-phase commit: DO-UNDO-REDO protocol
• DO: Record before and after values in write

ahead transaction log
• UNDO: Reverses operation using

transaction log
• REDO: redoes an operation written by DO

One node chosen
as coordinator

Node 1 Node 2 Node n

Adapted from Coronel and Morris

Node 1 Node 2 Node n

12

Problem: queries may affect multiple
shards; use Two-Phase Commit (2PC)

UPDATE Employee
SET Salary = Salary * 1.05

Phase 1: Preparation
• Coordinator send Prepare to Commit

message to all subordinate nodes
• Subordinates write transaction log and send

acknowledgement to coordinator
• Coordinator ensures all nodes ready to

commit or abortsOne node chosen
as coordinator

Prepare

Prepare

Two-phase commit (2PC) protocol

ID Name Salary

100 Alice 100,000

…

ID Name Salary

200 Bob 90,000

…

ID Name Salary

300 Charlie 85,000

…
Adapted from Coronel and Morris

Node 1 Node 2 Node n

13

Problem: queries may affect multiple
shards; use Two-Phase Commit (2PC)

UPDATE Employee
SET Salary = Salary * 1.05

One node chosen
as coordinator

OK

OK

Phase 1: Preparation
• Coordinator send Prepare to Commit

message to all subordinate nodes
• Subordinates write transaction log and send

acknowledgement to coordinator
• Coordinator ensures all nodes ready to

commit or aborts

Two-phase commit (2PC) protocol

ID Name Salary

100 Alice 100,000

…

ID Name Salary

200 Bob 90,000

…

ID Name Salary

300 Charlie 85,000

…
Adapted from Coronel and Morris

Node 1 Node 2 Node n

14

Problem: queries may affect multiple
shards; use Two-Phase Commit (2PC)

UPDATE Employee
SET Salary = Salary * 1.05

Phase 2: Commit
• Coordinator broadcasts commit message
• Each subordinate updates with DO
• Subordinates reply with COMMITTED or

NOT COMMITTED
• If any nodes reply NOT COMMITTED, then

UNDO followed by REDOOne node chosen
as coordinator

Commit

Commit

Two-phase commit (2PC) protocol

ID Name Salary

100 Alice 100,000

…

ID Name Salary

200 Bob 90,000

…

ID Name Salary

300 Charlie 85,000

…
Adapted from Coronel and Morris

Node 1 Node 2 Node n

15

Problem: queries may affect multiple
shards; use Two-Phase Commit (2PC)

UPDATE Employee
SET Salary = Salary * 1.05

One node chosen
as coordinator

COMMITTED

COMMITTED

Phase 2: Commit
• Coordinator broadcasts commit message
• Each subordinate updates with DO
• Subordinates reply with COMMITTED or

NOT COMMITTED
• If any nodes reply NOT COMMITTED, then

UNDO followed by REDO

Two-phase commit (2PC) protocol

ID Name Salary

100 Alice 100,000

…

ID Name Salary

200 Bob 90,000

…

ID Name Salary

300 Charlie 85,000

…
Adapted from Coronel and Morris

Node 1 Node 2 Node n

16

Problem: queries may affect multiple
shards; use Two-Phase Commit (2PC)

UPDATE Employee
SET Salary = Salary * 1.05

One node chosen
as coordinator

COMMITTED

NOT COMMITTED

Phase 2: Commit
• Coordinator broadcasts commit message
• Each subordinate updates with DO
• Subordinates reply with COMMITTED or

NOT COMMITTED
• If any nodes reply NOT COMMITTED, then

UNDO followed by REDO

Two-phase commit (2PC) protocol

ID Name Salary

100 Alice 100,000

…

ID Name Salary

200 Bob 90,000

…

ID Name Salary

300 Charlie 85,000

…

UNDO, then
REDO

Adapted from Coronel and Morris

17

Data might be replicated to several nodes
located across the globe

Data replication scenarios
Fully replicated: multiple copies of each database partition at multiple sites
Partially replicated: multiple copies of some database partitions at multiple sites
Unreplicated: stores each database partition at a single site

A1 A2
A1

A2
New York London

Hong Kong

A1 replicated
in NY and
London

A2 replicated
in NY and
Hong Kong

18

All replicated nodes should have same
data, but network latency raises issues

A1 A2
A1

A2

A potential problem: consistency rule says all copies
must be identical when data changes are made
• Push replication (focus on consistency)

• After data update, send changes to all replicas
• Data unavailable until changes to propagate across all copies, but

data is always consistent across copies
• Pull replication (focus on availability)

• Send message to all replicas, they decide when to apply change
• Data is available, but not consistent until changes propagate

Read operations
just query the
nearest replica

19

The network may be partitioned by
communication breaks

A1 A2
A1

A2

The network may have multiple communication links between each node
If one link fails, other nodes will still be reachable
Multiple link failure, however, may separate some nodes – called a network partition

20

The network may be partitioned by
communication breaks

A1 A2
A1

A2

If both links to
Hong Kong fail,
Hong Kong is
partitioned
from New York
and London

The network may have multiple communication links between each node
If one link fails, other nodes will still be reachable
Multiple link failure, however, may separate some nodes – called a network partition

21

The network may be partitioned by
communication breaks

A1 A2
A1

A2

The network may have multiple communication links between each node
If one link fails, other nodes will still be reachable
Multiple link failure, however, may separate some nodes – called a network partition

22

It impossible to be consistent, available,
and partition tolerant simultaneously

The CAP theorem showed that it is impossible to have three
desirable properties at the same time in distributed systems

Consistency
• All nodes should return the same data at the same time
• Replicas should be immediately updated
• Network latency means this cannot happen

Availability
• A request is always fulfilled by the system
• No request is ever lost

Partition tolerant
• The system will operate even if nodes fail
• Operations that are lost due to node failure

are picked up by other nodes
• The system will only fail if all nodes fail

Eric A. Brewer, “Towards robust distributed systems,” Principles of Distributed Computing, ACM, July 2000.

CAP theorem

Trade-off between consistency
and availability

BASE rather than ACID:
Basically Available, Soft state,
Eventually consistent (BASE)

Data changes are not immediate
but propagate slowly through the
system until all replicas are
eventually consistent

23

Agenda

1. Centralized systems

2. Distributed systems
• High availability
• Scalability

3. MongoDB

24

MongoDB is a NoSQL database designed
for high availability and scalability

MongoDB is a document database designed for scalability and flexibility

• MongoDB is “schemaless”
• Stores data in JSON-like documents
• Fields can vary from document to

document
• Data structure can change over time

• MongoDB is a distributed database at its core
• High availability (replication)
• Horizontal scaling (sharding)
• Geographic distribution built in

• MongoDB is free to use
• Cloud-based version at MongoDB Atlas

(https://www.mongodb.com/cloud/atlas)
Adapted from Mongo documentation

https://www.mongodb.com/cloud/atlas

25

Mongo solves the high availability problem
using two different types of nodes

Replica set: Group of database servers
that provide high availability and
redundancy using two different types of
nodes

• Primary: Receives all write
operations

• Secondary: replicate operations
from primary to maintain an
identical data set

Mongo recommends at least a three-
member replica set (more even better)

All members of replica set can accept
read operations

Mongo replication

Heartbeat

Adapted from Mongo documentation

Every two
seconds

Replica sets store the
same data in all nodes

Purpose: redundancy for
high availability

26

If the primary nodes fails, other nodes hold
an election to pick a new primary

Replica sets use elections to determine
which set member will be primary

Elections triggered:
• Start up
• New node added to set
• Secondary member looses

connectivity to primary for 10
seconds (default)

• Called automatic failover when
new primary takes over

Mongo replication

Adapted from Mongo documentation

27

Mongo shards data across multiple
nodes, each shard can be replicated

Source: https://severalnines.com/blog/turning-mongodb-replica-set-sharded-cluster

Data is split
into three
shards based
on shard key
for scalability

Each shard is
replicated
across three
nodes for high
availability

Config servers
keep track of
data location in
shards

Mongos routes user
requests to correct shard

Replication with sharding

28

If network is partitioned, behavior
depends on primary’s location

Source: https://severalnines.com/blog/turning-mongodb-replica-set-sharded-cluster

If primary in
partition with
majority
nodes, primary
continues

Node in non-
majority
partition stays
as secondary
(read only)

Replication with sharding

29

If network is partitioned, behavior
depends on primary’s location

Source: https://severalnines.com/blog/turning-mongodb-replica-set-sharded-cluster

If primary in
partition in
non-majority
partition, steps
down as
primary

Election in
majority
partition to
choose new
primary

Replication with sharding

30

Homework: get access to a MongoDB
database

Create a cloud-based MongoDB database
1. Create a free cloud-based account at Mongo Atlas:

https://www.mongodb.com/cloud/atlas

2. Install mongo shell to interact with your database
Mac (assumes you have brew installed):
brew tap mongodb/brew
brew install mongodb-community-shell

Windows:
https://www.mongodb.com/download-center/community (install only shell)

3. Optional: install Compass (like MySQL Workbench):
https://www.mongodb.com/products/compass

OR

Install MongoDB locally on your machine
https://docs.mongodb.com/manual/installation/ (includes shell)

https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/download-center/community
https://www.mongodb.com/products/compass
https://docs.mongodb.com/manual/installation/

31

