
CS 61:
Database Systems

MongoDB Schema Design

Adapted mongodb.com unless otherwise noted

2

Agenda

1. Data relationships

2. Accessing embedded documents

3

The big schema design question is whether
to embed documents or normalize
Embedded vs normalized

Embedded

Each document in a collection has
embedded documents

Normalized

Each entity stands alone
Query second collection for
details on primary collection

Students

Grades
for each
class
taken

4

Embedded data model moves all fields into
one document

Also known as a denormalized data model

Allows applications to store related pieces
of information in the same database record

Improves read performance

Result is fewer database queries and
updates (no joins needed)

Writes to documents are atomic

Use when:
• Have a “contains” or “has” relationship between entities
• 1:M relationship when M ≲ 1000 and when many side will

always appear with one side (not stand alone)
• Document must be < 16 MB in size

> db.Students.find().pretty()
{

"_id" : ObjectId(”ABC"),
"name" : "Alice",
"year" : 20,
"GPA" : 3.5,
"grades" : [

{
"class" : "CS1",
"grade" : "A"
},
{
"class" : "CS10",
"grade" : "A-"
}

]
}

5

Normalized data model references other
documents, like a relational database

Referential integrity
is not enforced

Use when:
• Embedding would result in duplication of data, but would not

improve read performance enough to outweigh duplication
• To represent complex M:N relationships
• To model large hierarchical datasets

Normalized data model

Source: https://docs.mongodb.com/manual/core/data-model-design/

>
db.Students1.find().pretty()
{

"_id" : ObjectId(”ABC"),
"name" : "Alice",
"year" : 20

}

Like normalized
tables in RDBMSStudents collection

Grades collection

> db.Grades.find().pretty()
{

"_id" : ObjectId(”123"),
"student_id" : ObjectId(”ABC"),
"class" : "CS1",
"grade" : "A"

}

{
"_id" : ObjectId(”124"),
"student_id" : ObjectId(”ABC"),
"class" : "CS10",
"grade" : "A-"

}

Writes are not
atomic across
collections, but
MongoDB has
transactions

6

1:1 relationships often suggest using
embedded documents
1:1 relationships

Normalized

// patron collection
{

_id: "joe",
name: "Joe Bookreader"

}

// address collection
{

patron_id: "joe", //patron
street: "123 Fake Street",
city: "Faketon",
state: "MA",
zip: "12345"

}

• Embed address into patron document
• Now one database read gets both

patron and address info vs. two reads
for normalized approach

• Embedding is the preferred approachSource: https://docs.mongodb.com/manual/core/data-model-design/

Embedded

{
_id: "joe",
name: "Joe Bookreader",
address: {

street: "123 Fake Street",
city: "Faketon",
state: "MA",
zip: "12345"

}
}

7

1:1 relationship counter-example is the
subset problem, use normalized approach
1:1 relationship subset problem

If you normally only
need summary data
about a movie, then
having plot and
fullplot means more
disk block reads

Create separate
collection for movie
details

Leave summary fields
in main collection

Only read details
when needed

Source: https://docs.mongodb.com/manual/core/data-model-design/

Easily store multiple
values in array

Would require
multiple tables and
JOINs in RDBMS

{
"_id": 1,
"title": "The Arrival of a Train",
"year": 1896,

"plot": "A train is seen pulling into a station”
"fullplot": "A group of people are standing in a straight line along…
"type": "movie",

"directors": ["Auguste Lumière", "Louis Lumière"],
"imdb": {

"rating": 7.3, "votes": 5043, "id": 12
},
"countries": ["France"],
"genres": ["Documentary", "Short"],
"tomatoes": {

"viewer": {
"rating": 3.7, "numReviews": 59

}
}

8

1:M relationships: embed documents if
number of embedded document is small
1:M embedded relationships

Normalized
// patron collection
{ _id: "joe",

name: "Joe Bookreader” }

// address collection
{ patron_id: "joe", //patron

street: "123 Fake Street",
city: "Faketon",
state: "MA",
zip: "12345” }

{ patron_id: "joe", //patron
street: "1 Some Other Street",
city: "Boston",
state: "MA",
zip: "12345 }

Source: https://docs.mongodb.com/manual/core/data-model-design/

• All addresses read in with one read of document
• No need for a JOIN operation to get addresses
• Subset problem applies here too
• Use if address does not need to stand alone

Max document
size is 16MBEmbedded

{ "_id": "joe",
"name": "Joe Bookreader",
"addresses": [

{ "street": "123 Fake Street",
"city": "Faketon",
"state": "MA",
"zip": "12345” },

{ "street": "1 Some Other Street",
"city": "Boston",
"state": "MA",
"zip": "12345” }

]
}

9

1:M relationships: use normalized
references to avoid duplication
1:M normalized relationships

Source: https://docs.mongodb.com/manual/core/data-model-design/

//publisher collection
{ _id: "oreilly",

name: "O'Reilly Media",
founded: 1980,
location: "CA” }

//books collection
{ _id: 123456789,

title: "MongoDB: The Definitive Guide",
author: ["Kristina Chodorow", "Mike Dirolf"],
published_date: ISODate("2010-09-24"),
pages: 216,
language: "English",
publisher_id: "oreilly” }

{ _id: 234567890,
title: "50 Tips and Tricks for MongoDB ",
author: "Kristina Chodorow",
published_date: ISODate("2011-05-06"),
pages: 68,
language: "English",
publisher_id: "oreilly"}

//books collection
{ title: "MongoDB: The Definitive Guide",

author: ["Kristina Chodorow", "Mike Dirolf"],
published_date: ISODate("2010-09-24"),
pages: 216,
language: "English",
publisher: { name: "O'Reilly Media",

founded: 1980, location: "CA” }
}

{ title: "50 Tips and Tricks for MongoDB ",
author: "Kristina Chodorow",
published_date: ISODate("2011-05-06"),
pages: 68,
language: "English”,
publisher: { name: "O'Reilly Media",

founded: 1980, location: "CA” }
}

10

M:N relationships can be easily
implemented with two-way referencing

Adapted from https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-schema-design-part-1

db.person.findOne()
{ _id: ObjectId(”ABC"), name: ”Alice",
tasks [// Alice is assigned three tasks

ObjectId(”123"), //write lesson plan below
ObjectId(”124"), //another task
ObjectId(”125") //Alice’s third task
]

}

db.tasks.findOne()
{ _id: ObjectID(”123"), description: "Write lesson plan", due_date: ISODate("2014-04-01"),
assigned: [ObjectId(”ABC") // Reference to Alice

ObjectId(“DEF”) //Reference to another person assigned to this task
]

}

M:N Two collections
One person is assigned many tasks
One task is assigned to many people

Create array of references
• Person to task
• Task to person

Advantage:
• Easy to find who is assigned to tasks, and which tasks a person is assigned

Disadvantage:
• If person added to removed from task, must update two tables

11

Sometimes it is useful to denormalize

Adapted from https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-schema-design-part-1

db.person.findOne()
{ _id: ObjectId(”ABC"), name: ”Alice",
tasks [// Alice is assigned three tasks

ObjectId(”123"), //write lesson plan below
ObjectId(”124"), //another task
ObjectId(”125") //still another task
]

}

db.tasks.findOne()
{ _id: ObjectID(”123"), description: "Write lesson plan", due_date: ISODate("2014-04-01"),
assigned: [{person _id: ObjectId(”ABC"), name: “Alice”}, // now have Alice’s name

{person_id: ObjectId(“DEF”), name: “Bob”} //also have Bob’s name
]

}

M:N

Denormalize to include person’s name
in tasks collection of assigned people

Now do not need to look up the
names of people assigned to tasks

Advantage:
• No need to lookup people’s name when finding tasks

Disadvantage:
• If Alice’s name changes, must update person collection and all entries in task collection

Use denormaliztion if many
more reads than writes

Do not denormalize something
that changes frequently!

Two collections
One person is assigned many tasks
One task is assigned to many people

12

Embedding vs. normalization rules of
thumb

Adapted from https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-schema-design-part-3

1. Favor embedding unless there is a compelling reason not to
2. The need to access an object on its own is a compelling reason not to embed
3. Arrays should not grow unbounded:

• If there are more than a couple hundred documents on the many side,
don’t embed them

• If there are more than a few thousand on the many side, don’t use an array
of ObjectId references

• High-cardinality arrays are a compelling reason not to embed
4. Don’t be afraid of application-level joins: if you index correctly and use the

projection specifier, then application-level joins are barely more expensive than
server-side joins in a relational database

5. Consider the read/write ratio when denormalizing: a field that is mostly read
and only seldomly updated is a good candidate for denormalization

6. Your design should depend on how your application accesses data!

Advice from William Zola, MongoDB Lead Technical Support Engineer

13

Agenda

1. Data relationships

2. Accessing embedded documents

14

Add new items to array using $push

db.Students.update(
{name:"Alice"},
{$push:

{
grades:{

class:"CS61",
grade:"A”

}
}

}
)

Add new grade for Alice

Find document to
update

Add entry to
grades array using
$push

> db.Students.find().pretty()
{

"_id" : ObjectId(”ABC"),
"name" : "Alice",
"year" : 20,
"GPA" : 3.5,
"grades" : [

{
"class" : "CS1",
"grade" : "A"
},
{
"class" : "CS10",
"grade" : "A-"
}

]
}

15

Add new items to array using $push

Grade for CS61
added

db.Students.update(
{name:"Alice"},
{$push:

{
grades:{

class:"CS61",
grade:"A”

}
}

}
)

Add new grade for Alice

Find document to
update

Add entry to
grades array using
$push

> db.Students.find().pretty()
{

"_id" : ObjectId(”ABC"),
"name" : "Alice",
"year" : 20,
"GPA" : 3.5,
"grades" : [

{
"class" : "CS1",
"grade" : "A"
},
{
"class" : "CS10",
"grade" : "A-"
}
{
“class” : “CS61”,
“grade” : “A”
}

]
}

Use $pull to remove
item from array

db.Students.find(
{

"grades.class":"CS61",
"grades.grade":"A”

}
)

// Returns Alice document

16

Access embedded document using “dot
notation”

Find students who got an A in CS61

Reference fields in
grades array with
dot notation

> db.Students.find().pretty()
{

"_id" : ObjectId(”ABC"),
"name" : "Alice",
"year" : 20,
"GPA" : 3.5,
"grades" : [

{
"class" : "CS1",
"grade" : "A"
},
{
"class" : "CS10",
"grade" : "A-"
}
{
“class” : “CS61”,
“grade” : “A”
}

]
}

17

Practice
1. Design a MongoDB database for restaurant inspections from our running example

• Each restaurant has:
• Name, Boro, Cuisine

• Each restaurant can be inspected many times, each inspection has
• Date, Score, zero or more violations

• Each violation has
• Code (e.g., 06N), Description (e.g., “Improperly cleaned food surface”)

2. Insert several restaurants into your database
• Name: Morris Park Bake Shop, boro: Bronx, Cuisine: Bakery

• Inspected on 5/5/2020, score 10, violations 06N, 08B
• Inspected on 4/4/2019, score 12, violations 12C

• Name: Tim’s Tasty Treats, boro: Manhattan, Cuisine: Fruits/Vegetables
• Inspected on 3/3/2020, score 5, violations none
• Inspected on 2/2/2019, score 7, violations 08B

3. Query your database
• Find all bakeries
• Find just the names of all restaurants inspected after 5/1/2020
• Find all inspections that had a violation code of 08B

18

