CS 61:

Database Systems

MongoDB Schema Design

Adapted mongodb.com unless otherwise noted

» 1. Data relationships

2. Accessing embedded documents

The big schema design question is whether

to embed documents or normalize

Embedded vs normalized

Embedded . Students Normalized

Grades

for each

class

taken
Each document in a collection has Each entity stands alone
embedded documents Query second collection for

details on primary collection 3

Embedded data model moves all fields into

one document

> db.Students.find().pretty()

Also known as a denormalized data model

Allows applications to store related pieces
of information in the same database record

Improves read performance

. IICSlII’ . -
TPV Result is fewer database queries and

updates (no joins needed)

: "CSs10",
« HA_N

Writes to documents are atomic

Use when:

* Have a “contains” or “has” relationship between entities

e 1:Mrelationship when M < 1000 and when many side will
always appear with one side (not stand alone)

e Document must be <16 MB in size

Normalized data model references other

documents, like a relational database

Normalized data model Grades collection
> db.Grades.find().pretty()

student lecti Like normalized
uaents coliection .
tables in RDBMS "_id" . ObjeCtId("123") .

> , "student_id" : ObjectId(”ABC"),
db.Studentsl.find . "class" "CS].",

Ilgradell : IIAII

" id" : ObjectId(”124"),
"student_id" : ObjectId(”ABC"),

Referential integrity
"class" : "(CS10",

is not enforced

"grade" : "A-"
Use when:
 Embedding would result in duplication of data, but would not Writes are not
improve read performance enough to outweigh duplication atomic across
* To represent complex M:N relationships collections, but
« To model large hierarchical datasets MongoDB has

transactions .

Source: https://docs.mongodb.com/manual/core/data-model-design/

1:1 relationships often suggest using
embedded documents

1:1 relationships

Normalized Embedded

address: {
street: "123 Fake Street",

city: "Faketon",
// address collection state: "MA",
zip: "12345"

patron_id: "joe", //patron }
street: "123 Fake Street",

(s:'lcg'lce Ii?\I/I(eAt“on ‘ Embed address into patron document
o . Now one database read gets both
Apn A patron and address info vs. two reads
for normalized approach
Embedding is the preferred approach

Source: https://docs.mongodb.com/manual/core/data-model-design/

6

1:1 relationship counter-example is the
subset problem, use normalized approach

1:1 relationship subset problem

If you normally only
need summary data
about a movie, then
having plot and

fullplot means more

"fullplot”: "A group of people are standing in a straight line along... disk block reads

"type": "movie",

"directors": ["Auguste Lumiere", "Louis Lumiere"],
"imdb": { Create separate

"rating": 7.3, "votes": 5043, "id": 12 collection for movie

I3 details
"countries": ["France"],

"genres”: ["Documentary”, "Short"], Leave summary fields

"tomatoes": {
"viewer": {

} rating': 3.7, "numReviews": 59 Only read details

when needed

in main collection

Source: https://docs.mongodb.com/manual/core/data-model-design/

1:M relationships: embed documents if
number of embedded document is small

1:M embedded relationships Max document

Normalized Embedded size is 16MB
atron collection

"addresses": |
{ "street": "123 Fake Street",
"city": "Faketon",
"state": "MA",
"zip": "12345” },

// address collection

{ patron_id: "joe", //patron
street: "123 Fake Street",
city: "Faketon",
state: "MA",

Jip: "12345” } { "street": "1 Some Other Street",

"city": "Boston",
"state": "MA",

atron_id: "joe", //patron
p — J //p "Zip”: ll12345ﬂ }

street: "1 Some Other Street",
city: "Boston",

state: "MA",

zip: "12345 }

}

All addresses read in with one read of document
No need for a JOIN operation to get addresses
Subset problem applies here too g
Source: https://docs.mongodb.com/manual/core/data-model-design/ Use if address does not need to stand alone

1:M relationships: use normalized

references to avoid duplication

1:M normalized relationships //publisher collection
//books collection { _id: "oreilly",
{ title: "MongoDB: The Definitive Guide", name: "O'Reilly Media",
author: ["Kristina Chodorow", "Mike Dirolf"],| | Hiillac il
published_date: ISODate("2010-09-24"), location: "CA” }
pages: 216, //t?ooks collection
language: "English", {_id: 123456789,
publisher: { name: "O'Reilly Media", title: "MongoDB: The Definitive Guide",
founded: 1980, location: "CA” } author: ["Kristina Chodorow", "Mike Dirolf"],
) published date: ISODate("2010-09-24"),
pages: 216,
{ title: "50 Tips and Tricks for MongoDB ", Iangage: 'English",
author: "Kristina Chodorow",
published_date: ISODate("2011-05-06"), { _id: 234567890,
pages: 68, title: "50 Tips and Tricks for MongoDB ",
language: "English”, author: "Kristina Chodorow",

published_date: ISODate("2011-05-06"),

publisher: { name: "O'Reilly Media",

founded: 1980, location: "CA” } pages: 68,
language: "English",

. sy, n . 1]
Source: https://docs.mongodb.com/manual/core/data-model-design/ pUbIISher_ld' Orellly }

M:N relationships can be easily

implemented with two-way referencing

M:N Two collections
db.person.findOne() One person is assigned many tasks
{ _id: Objectld("ABC"), name: "Alice", One task is assigned to many people

tasks [// Alice is assigned three tasks
Objectld(”123"), //write lesson plan below
Objectld(”124"), //another task

Objectld(”125") //Alice’s third task
] — Create array of references

} * Person to task
* Task to person

db.tasks.findOne()
{ _id: ObjectID(”123"), descri : "Write lesson plan", due_date: ISODate("2014-04-01"),
assigned: [Objectld(”"ABC") // Reference to Alice

Objectld(“DEF”) //Reference to another person assigned to this task

]

i Advantage:
e Easy to find who is assigned to tasks, and which tasks a person is assigned

Disadvantage:

e If person added to removed from task, must update two tables "

Adapted from https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-schema-design-part-1

Sometimes it is useful to denormalize

M:N Two collections
db.person.findOne() One person is assigned many tasks
{ _id: Objectld("ABC"), name: "Alice", One task is assigned to many people

tasks [// Alice is assigned three tasks
Objectld(”123"), //write lesson plan below

ObJ:ectId(:124::), //a.nother task Denormalize to include person’s name
]ObJeC“d(125") //still another task in tasks collection of assigned people
} Now do not need to look up the

names of people assigned to tasks
db.tasks.findOne()

{ _id: ObjectID(”123"), description: "Wpife lesson plan", due_date: ISODate("2014-04-01"),
assigned: [{person _id: Objectld(”ABC"), name: “Alice”}, // now have Alice’s name
{person_id: Objectld(“DEF”), name: “Bob”} //also have Bob’s name
] Use denormaliztion if many

} Advantage: more reads than writes

* No need to lookup people’s name when finding tasks Do not denormalize something

Disadvantage: that changes frequently!

* If Alice’s name changes, must update person collection and all entries in task coIIectlilon

Adapted from https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-schema-design-part-1

Embedding vs. normalization rules of

thumb

Advice from William Zola, MongoDB Lead Technical Support Engineer

1. Favor embedding unless there is a compelling reason not to
2. The need to access an object on its own is a compelling reason not to embed
3. Arrays should not grow unbounded:
* |f there are more than a couple hundred documents on the many side,
don’t embed them
* |f there are more than a few thousand on the many side, don’t use an array
of Objectld references
e High-cardinality arrays are a compelling reason not to embed
4. Don’t be afraid of application-level joins: if you index correctly and use the
projection specifier, then application-level joins are barely more expensive than
server-side joins in a relational database
5. Consider the read/write ratio when denormalizing: a field that is mostly read
and only seldomly updated is a good candidate for denormalization
6. Your design should depend on how your application accesses data!

12
Adapted from https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-schema-design-part-3

1. Data relationships

» 2. Accessing embedded documents

13

Add new items to array using Spush

» "Cg91™)
« BAN

: "CSs1e",
« HA_N

Add new grade for Alice

db.Students.update(.
{name:"Alice"}, + Find document to
{$push: update

{
grades:q{
class:"(CS61",
grade:"A”

I3 \
b Add entry to

grades array using
Spush

14

Add new items to array using Spush

Add new grade for Alice

db.Students.update(,
{name:"Alice"}, % Find document to
{$push: update
{
L e grades:q{
; ugﬁl ! class:"(CS61",
grade:"A”
¥ \
::gf.l.@" : y ; Add entry to
') grades array using
Spush

: “CSe61”,
. upm Grade for CS61

added Use Spull to remove

item from array

15

Access embedded document using “dot

notation”

: "Cs1Y,
: IIAII

: "CSs1e",
« HA_N

: “CSol”,
. UpT

Find students who got an A in CS61

db.Students. find(

{
"grades.class":"(CS61",

"grades.grade':"A"

}
) Reference fields in
grades array with

// Returns Alice document dot notation

16

Practice

1. Design a MongoDB database for restaurant inspections from our running example
* Each restaurant has:
* Name, Boro, Cuisine
* Each restaurant can be inspected many times, each inspection has
* Date, Score, zero or more violations
* Each violation has
 Code (e.g., 06N), Description (e.g., “Improperly cleaned food surface”)

2. Insert several restaurants into your database
 Name: Morris Park Bake Shop, boro: Bronx, Cuisine: Bakery
* Inspected on 5/5/2020, score 10, violations 06N, 08B
* Inspected on 4/4/2019, score 12, violations 12C
 Name: Tim’s Tasty Treats, boro: Manhattan, Cuisine: Fruits/Vegetables
* Inspected on 3/3/2020, score 5, violations none
* Inspected on 2/2/2019, score 7, violations 08B

3. Query your database
* Find all bakeries
* Find just the names of all restaurants inspected after 5/1/2020

* Find all inspections that had a violation code of 08B .

18

