
CS 61:
Database Systems

Multiple table CRUD

Adapted from Silberschatz, Korth, and Sundarshan unless otherwise noted

2

Agenda

1. Creating tables and their attributes

2. Inserting, deleting, and updating rows

3. Keys

4. Relational algebra part 2

5. Joins

2

Agenda
1. Creating tables and their attributes

2. Inserting, deleting, and updating rows

3. Keys

4. Relational algebra part 2

5. Joins

3

SQL has several familiar data types we can
use for attribute domains
Domain types

Domain type Description

CHAR(n) Fixed length character string, with user-specified length n, normally use
varchar instead!

VARCHAR(n) Variable length character strings, with user-specified maximum length n

SMALLINT 2-byte integer, max value 32,767

INT 4-byte integer, max value 2,147,483,647

BIGINT 8-byte integer, max value 9,223,372,036,854,775,807

NUMERIC(p,d)
or
DECIMAL(p,d)

Fixed point number, with user-specified precision of p total digits, with d
digits to the right of decimal point. (ex., numeric(3,1), allows 44.5 to be
stored exactly, but not 444.5 or 0.32; truncate if too big)

REAL/DOUBLE
PRECISION

Floating point and double-precision floating point numbers, max value
2.2250738585072014E- 308

FLOAT(n) Floating point number, with user-specified precision of at least n digits, max
value 1.175494351E-38

DATETIME Format: YYYY-MM-DD HH:MM:SS

4

Create table SQL command sets up the
schema for new relations
Create table

• An SQL relation is defined using the create table command:
CREATE TABLE r

(A1 D1, A2 D2, ..., An Dn,
(integrity-constraint1),

...,
(integrity-constraintk))

• Example:
CREATE TABLE instructor (

ID CHAR(5),
name VARCHAR(20),
dept_name VARCHAR(20),
salary NUMERIC(8,2))

• Easier to create tables graphically with MySQL Workbench (but MySQL
Workbench simply runs this commands for you)

Relation name r

Name/domain (data type)
pairs, one for each attribute

Constrain the values an
attribute can have, more on
this soon!

5

Relations can be altered or deleted using
DDL commands
Alter/delete relations and data

• Delete Table
o DROP TABLE r

• Empty table
o TRUNCATE TABLE r

• Alter
o ALTER TABLE r ADD A D

• Where A is the name of the attribute to be added to
relation r and D is the domain of A

• All exiting tuples in the relation are assigned null as the
value for the new attribute

o ALTER TABLE r DROP A
• where A is the name of an attribute of relation r
• Dropping of attributes not supported by some databases

Delete relation r, both data and schema

Add attribute A with domain D

Delete attribute A from table r

Delete data in relation r, but
keep its schema

6

Agenda

1. Creating tables and their attributes

2. Inserting, deleting, and updating rows

3. Keys

4. Relational algebra part 2

5. Joins

7

INSERT allows us to add new rows to a
table

INSERT INTO table VALUES (v1, v2, …, vn)
• v1 … vn must match order of attributes in table

exactly
• Values for all attributes must be present

OR

Insert: the C in CRUD department table

INSERT INTO table (A1, A2, …, An) VALUES (v1, v2, ….vn)
• v1 and A1 must match but can be in different

order from table schema

Example: add a new department for database
systems, building and budget are still to be
determined

INSERT INTO department (dept_name)
VALUES (‘Database Systems’)

8

We can also INSERT into a table using a
SELECT nested query

INSERT INTO table (A1, A2, …, An)
SELECT B1, B2, …, Bn

FROM other table
WHERE condition

B1 … Bn domains must match A1 … An

Example:
INSERT INTO biology_instructor (ID, `name`, dept_name, salary)
SELECT ID, name, dept_name, salary
FROM instructor
WHERE dept_name = 'Biology';

instructor table

Assumes table called `biology_instructor` exists

biology_instructor table

Insert: the C in CRUD

9

We can also create a table using a SELECT
nested query

INSERT INTO table (A1, A2, …, An)
SELECT B1, B2, …, Bn

FROM other table
WHERE condition

B1 … Bn domains must match A1 … An

Example:
CREATE TABLE biology_instructor
SELECT ID, name, dept_name, salary
FROM instructor
WHERE dept_name = 'Biology';

Use CREATE TABLE make table
and fill with subquery results

instructor table

biology_instructor table

Insert: the C in CRUD

10

UPDATE allows us to change rows in a table

UPDATE table SET A1=v1, A2=v2

WHERE P

Example: Give a 5% salary raise to
instructors whose salary is less than average

UPDATE instructor
SET salary = salary * 1.05
WHERE salary < (SELECT AVG (salary)

FROM instructor);

Avg is 74,833.33
Updates:

Srinivasan
Mozart
El Said
Califieri
Crick

Note: subquery in the WHERE clause

instructor tableInsert: the C in CRUD

11

Practice: UPDATE

The restaurant_inspections tables has columns for latitude and
longitude, most of the time these values are included, sometimes
they are null or zero

1. Examine latitude attribute
• Find how many restaurants have a NULL latitude and how

many have a non-NULL latitude
• Find how many have a zero for latitude

2. Update latitude and longitude to NULL if latitude is zero
(assumes longitude is invalid too)

Insert: the C in CRUD

12

Delete removes rows from a table

Example: Delete all tuples in the instructor
relation instructors associated with a
department located in the Watson
building

DELETE FROM instructor
WHERE dept name IN

(SELECT dept name
FROM department
WHERE building = 'Watson');

Delete: the D in CRUD

DELETE FROM table
WHERE P

instructor table

department table

Deletes:
Crick
Einstein
Gold

13

Practice: DELETE
Delete: the D in CRUD

The restaurant_inspections table has rows where the restaurant name
(dba) is NULL

1. Find out how many restaurants have NULL for dba
2. Delete those restaurants
3. Confirm those restaurants have been deleted

14

Agenda

1. Creating tables and their attributes

2. Inserting, deleting, and updating rows

3. Keys

4. Relational algebra part 2

5. Joins

15

Some thoughts on same conventions
instructor table department table

My preference: use TableNameID
(e.g., InstructorID) not just ID

Can be confusing when combining
multiple tables if just use ID

I also prefer:
• Capital first letter then lower

case, with capital letter for
other words (DepartmentName)
for table and attribute names

• Spell out name (e.g., “Section”
not “sec”), can be confusing
later, does “sec” mean security
or section?

• Other people disagree! YMMV

16

Keys uniquely identify table rows (tuples)
based on their attributes
• Keys uniquely identify table rows and can be comprised of multiple attributes
• Let K Í R (R is the set of attributes in relation r, K is a subset of R)
• K is a superkey of R if values for K are sufficient to identify a unique tuple of each

possible relation r(R)
• Example: {ID} and {ID,name} are both superkeys of instructor

• More formally: if t1 and t2 are tuples in r, and t1 ≠ t2, then t1.K ≠ t2.K
• If K is a superkey, then so is any superset of K
• Superkey K is a candidate key if K is minimal (no subset of K is also a superkey)

• Example: {ID} is a candidate key for Instructor, {ID, name} is not
• Database designer chooses a candidate key to be the primary key (PK)

• Must choose wisely (two instructors could have the same name, so use ID)
• Choose primary keys based on attributes that rarely change

• Typically list primary key attributes first in relation schema and underline
• Example: classroom(building, room_number, capacity)
• Classroom primary key is comprised of building and room number

17

Key summary

Superkey Candidate
key Primary key Foreign key

• Uniquely
identifies a row

• Can have more
attributes than
necessary to
identify row

• Candidate key
chosen to
identify each
row

• Superkey with
minimal
number of
attributes

• Can be more
than one
candidate key
for a relation

• Values in
one table
must
match
primary key
in another
table

18

Foreign keys constrain attribute values to
primary keys of another relation

Foreign key (FK) constraint: attribute A for each tuple of relation r1 (dept_name
in instructor) must contain the value of the primary key of some tuple in relation
r2 (dept_name in department).

Referential integrity constraint: value of attribute must be the value of any
tuple’s attribute of another relation (not necessarily PK, but is in practice)

instructor table department table

FK PK

FK in one relation is PK in another

Example:
CREATE TABLE instructor (

ID CHAR(5),
name VARCHAR(20) NOT NULL
dept_name VARCHAR(20),
salary NUMERIC(8,2),
PRIMARY KEY (ID),
FOREIGN KEY(dept_name) REFERENCES department(dept_name));

19

Integrity constrains ensure attributes have
values we expect; set when creating table
Integrity constraints

• Some integrity constraints
o PRIMARY KEY(A1, ..., An)
o FOREIGN KEY(Ai …,Aj) REFERENCES r(Ak …,Al)
o NOT NULL

• SQL prevents any update to the database that violates an integrity
constraint

name can’t be null

Attribute value must be a
primary key in relation rAttribute cannot be null

Instructor is uniquely identified
by primary key ID

Instructor’s dept_name must be value
of a primary key in department table

Must be non-null and unique for
each tuple (no duplicates)

If update
violates any
constraint,
SQL will
reject
command

Can use auto_increment to create an
increasing ID if numeric (BIGINT)

20

Integrity constrains ensure attributes have
values we expect
Integrity constraints

• create table takes (
ID varchar(5),
course_id varchar(8),
sec_id varchar(8),
semester varchar(6),
year numeric(4,0),
grade varchar(2),
primary key (ID, course_id, sec_id, semester, year) ,
foreign key (ID) references student (ID),
foreign key (course_id, sec_id, semester, year) references
section(course_id, sec_id,semester,year));

Composite primary key (made of
multiple attributes)

Value for foreign key
attributes must be in a tuple
in the section relation

SQL will reject if integrity
constraints are not met

21

We can create and populate tables using
one statement
Limited number of actions in restaurant_inspections

There are only fives
types of actions
recorded over all
inspections

Instead of storing
the text for each
action, we can
create a table for
Actions with an ID
for each action and
a description

In the inspection
table we can use the
action ID as a
foreign key

22

We can create and populate tables using
one statement
CREATE TABLE Actions (ActionID INT NOT NULL AUTO_INCREMENT,
ActionDescription VARCHAR(150),
PRIMARY KEY (ActionID))

SELECT DISTINCT Action AS ActionDescription
FROM restaurant_inspections
WHERE Action is not null;

ActionID is primary key (PK),
so it must be non-null (NN)

23

We can create and populate tables using
one statement
CREATE TABLE Actions (ActionID INT NOT NULL AUTO_INCREMENT,
ActionDescription VARCHAR(150),
PRIMARY KEY (ActionID))

SELECT DISTINCT Action AS ActionDescription
FROM restaurant_inspections
WHERE Action is not null;

ActionID is primary key (PK),
so it must be non-null (NN)

Can use auto_increment to
create a unique increasing
integer ID for each entry

24

We can create and populate tables using
one statement
CREATE TABLE Actions (ActionID INT NOT NULL AUTO_INCREMENT,
ActionDescription VARCHAR(150),
PRIMARY KEY (ActionID))

SELECT DISTINCT Action AS ActionDescription
FROM restaurant_inspections
WHERE Action is not null;

Select clause fills new table
with data from
restaurant_inspections

25

We can create and populate tables using
one statement
CREATE TABLE Actions (ActionID INT NOT NULL AUTO_INCREMENT,
ActionDescription VARCHAR(150),
PRIMARY KEY (ActionID))

SELECT DISTINCT Action AS ActionDescription
FROM restaurant_inspections
WHERE Action is not null;

SELECT clause fills new table
with data from
restaurant_inspections

Auto_increment fills ActionID
with increasing integer values
for us

Notice we did not specify
ActionID in the SELECT clause,
MySQL filled it for us

26

Add a foreign key constraint to an existing
table with the ALTER TABLE command
Create a foreign key constraint

• Add foreign key constraint
o ALTER TABLE r1 ADD FOREIGN KEY (A1) REFERENCES r2(A2);

Table getting FK

Attribute holding FK
in table getting FK

Referenced table

Attribute in referenced table that
serves as FK constraint

27

Agenda

1. Creating tables and their attributes

2. Inserting, deleting, and updating rows

3. Keys

4. Relational algebra part 2

5. Joins

ID course_id sec_id semester year

10101 CS-101 1 Fall 2017
10101 CS-315 1 Spring 2018
10101 CS-347 1 Fall 2017
12121 FIN-201 1 Spring 2018
15151 MU-199 1 Spring 2018
22222 PHY-101 1 Fall 2017
32343 HIS-315 1 Spring 2018
45565 CS-101 1 Spring 2018
76766 BIO-101 1 Summer 2017
76766 BIO-301 1 Summer 2018
83821 CS-190 1 Spring 2017
83821 CS-190 2 Spring 2017
83821 CS-319 2 Spring 2018
98345 EE-181 1 Spring 2017

I’ll use the textbook’s instructor and
teaches tables

instructor table teaches table

Teaches table lists courses and
sections that are taught by
instructors

Result has
attributes
from both
relations

Note: ID
appears in
both
instructor
and teaches
table, some
systems
prefix with
table name

29

Cartesian Product: combines every pair of
tuples from two different relations
Cartesian Product: r X s

instructor X teaches
sr

Each tuple from instructor
matched with each tuple
from teaches

This is
probably
not what
we want!

Most rows
about an
instructor
who did
NOT teach a
course

30

Combine Cartesian product with SELECT to
produce a JOIN operation
Join operation

s instructor.id = teaches.id (instructor x teaches))

Now we get
courses
taught by
instructors

Attributes
from both
relations
combined
into a new
relation

31

JOIN: returns attributes from r and s where
attributes in predicate θ match
Join notation: r ⋈𝜽 s

Given relations r (R) and s (S)
Let “theta” be a predicate on attributes R “union” S
The join operation r ⋈" s is defined as 𝑟 ⋈" 𝑠 = 𝜎" (𝑟 × 𝑠)

s instructor.id = teaches.id (instructor x teaches))
𝛉 = instructor.id=teaches.id

Same procedure, just
different notationSame as: instructor ⋈ Instructor.id = teaches.id teaches

32

Agenda

1. Creating tables and their attributes

2. Inserting, deleting, and updating rows

3. Keys

4. Relational algebra part 2

5. Joins

33

JOIN tables in FROM clause using predicate
in WHERE, return attributes in SELECT
Join tables

SELECT name, course_id
FROM instructor , teaches
WHERE instructor.ID = teaches.ID

Conceptual sequence of events
1. Perform Cartesian product over all relations in FROM clause

• Result is Cartesian product like in slide 29
• If three tables, number of tuples = |t1| * |t2| * |t3|,

where |x| = number of tuples in table x
• This result is not particularly useful
• Real databases do not actually go to this trouble (too time consuming)

2. Apply predicates in WHERE clause to result from step 1 (gives rows wanted)
3. Project attributes from SELECT clause (gives columns wanted)

Õname, course_id (
instructor ⋈ Instructor.id = teaches.id teaches)

34

Can use aliases for table and attribute
names

Find the names of all instructors in the Finance department and the courses they
have taught

SELECT name, course_id AS `course number`
FROM instructor i, teaches t
WHERE i.ID = t.ID

AND i.dept_name = 'Finance'

Joins with alias and ‘and’ in where

Attribute will be called
‘course number’ instead
of ‘course_id’ thanks to
AS keyword

Use backtick (single
quote character near the
1 key on your keyboard)
for multiple word names
`course number`

Can alias table names

Could have said ‘from instructor as i ’,
but ‘as’ is not required here

Can now
reference table
and attribute
names by alias

This is an “old style” join,
next class we will look at
another method

35

Practice
Rows in restaurant_inspections table are inspections of restaurants and each
restaurant may have been inspected multiple times
1. Create and populate a table called Restaurants from restaurant_inspections with

one row for each distinct restaurant inspected with these attributes: RestaurantID,
RestaurantName, Building, Street, Boro, and CuisineID (CuisineID initially NULL)
• What did you choose for the primary key (Hint: no need for auto_increment)
• Will this table have the same number of rows as restaurant_inspections?
• How many rows did yours have?

2. Create a table called Cuisine that holds each of the different types of cuisine
restaurants may have
• Decide on a primary key
• Populate the table with distinct cuisine types from restaurant_inspections

3. Add a foreign key constraint to the Restaurants table that references the CuisineID
attribute in the Cuisine table
• Try to assign a CuisineID to a restuarant where the cuisine does not exist

4. Run my script “day4_create_nyc_inspections_schema.sql” before next class to
create a new schema with several tables based on restaurant_inspections

36

