
CS 61:
Database Systems

Joins

Adapted from Silberschatz, Korth, and Sundarshan unless otherwise noted

2

Agenda

1. Joins

2. nyc_inspections schema

3. Joins on nyc_inspections

4. Conditional evaluation

3

With JOIN store data one time in multiple
tables; combine to form larger table

ID course_id sec_id semester year

10101 CS-101 1 Fall 2017
10101 CS-315 1 Spring 2018
10101 CS-347 1 Fall 2017
12121 FIN-201 1 Spring 2018
15151 MU-199 1 Spring 2018
22222 PHY-101 1 Fall 2017
32343 HIS-315 1 Spring 2018

instructor table teaches table

Teaches table lists courses and
sections that are taught by instructors

Book’s schema also has additional
table for courses (not shown)

4

With JOIN store data one time in multiple
tables; combine to form larger table

ID course_id sec_id semester year

10101 CS-101 1 Fall 2017
10101 CS-315 1 Spring 2018
10101 CS-347 1 Fall 2017
12121 FIN-201 1 Spring 2018
15151 MU-199 1 Spring 2018
22222 PHY-101 1 Fall 2017
32343 HIS-315 1 Spring 2018

instructor table teaches table

SELECT i.*, t.*
FROM instructor i, teaches t -- cartesian product
WHERE i.ID = t.ID; -- filter cartesian product

5

If we kept data in one large table, there are
several anomalies that can occur

Anomalies if
keep one large
table instead of
multiple tables
• Insert
• Update
• Delete

Problems keeping one large table with many attributes

6

Insert anomalies

Insert anomalies
• If hire a new

instructor,
they do not
show up in
database
until they
teach a
course

Problems keeping one large table with many attributes

7

Update anomalies

Update
anomalies
• If instructor

gets a raise,
must update
salary in all
rows for that
instructor

• Can lead to
inconsistent
data!

• What is the
instructor’s
true salary?

Problems keeping one large table with many attributes

8

Delete anomalies

Delete
anomalies
• If course is

only taught
one time and
instructor
taught only
one course, if
delete
course, loose
instructor
too!

• If delete
PHY-101,
loose
Einstein!

Problems keeping one large table with many attributes

ID course_id sec_id semester year

10101 CS-101 1 Fall 2017
10101 CS-315 1 Spring 2018
10101 CS-347 1 Fall 2017
12121 FIN-201 1 Spring 2018
15151 MU-199 1 Spring 2018
22222 PHY-101 1 Fall 2017
32343 HIS-315 1 Spring 2018

9

We can avoid these anomalies by keeping
data in multiple tables

Better to store data in multiple tables
Insert: new instructor can be added to database without teaching a class
Update: instructor gets a raise, only update one row in instructor table
Delete: can delete course, instructor will still exist in instructor table

instructor table teaches table

10

Agenda

1. Joins

2. nyc_inspections schema

3. Joins on nyc_inspections

4. Conditional evaluation

11

The old single table is now multiple related
tables in nyc_inspections
use nyc_inspections;

One entry
for each
restaurant

CuisineID FK
means
cuisine
must be in
Cuisine
table

12

The old single table is now multiple related
tables in nyc_inspections
use nyc_inspections;

One entry
for each
restaurant

CuisineID FK
means
cuisine
must be in
Cuisine
table

One entry for
each restaurant
inspection

FKs mean Action and Inspection
Type must be in related tables

13

The old single table is now multiple related
tables in nyc_inspections
use nyc_inspections;

One entry
for each
restaurant

CuisineID FK
means
cuisine
must be in
Cuisine
table

One entry for
each restaurant
inspection

One inspection may lead
to many violations

FKs mean Action and Inspection
Type must be in related tables

14

Agenda

1. Joins

2. nyc_inspections schema

3. Joins on nyc_inspections

4. Conditional evaluation

15

Recommended way to join is not in the
WHERE clause, but with JOIN command

Thus far we have joined relations by matching in the WHERE clause, but JOIN is preferred

Format:
SELECT A1, A2, … An
FROM r1 {type} JOIN r2 {type} JOIN .. {type} JOIN rn
where P ;
{type} = [NATURAL | INNER | OUTER [LEFT RIGHT FULL]]. If type not specified, INNER

JOIN

Example: count how many time each bakery has been inspected
SELECT r.RestaurantID, RestaurantName, count(*)
FROM Restaurants r, Inspections i
WHERE r.RestaurantID = i.RestaurantID
AND r.CuisineID = 5 - - look up bakery ID in Cuisine table
GROUP BY RestaurantID;

Preferred way:

SELECT r.RestaurantID, RestaurantName, count(*)
FROM Restaurants r JOIN Inspections i ON r.RestaurantID = i.RestaurantID
WHERE r.CuisineID = 5
GROUP BY RestaurantID;

Our previous way (old style join):
Join is done in the WHERE clause
Must specify which table attribute from

Recommended way:
Join is done in the FROM clause
using JOIN; implicitly an INNER join

Can still use WHERE to limit results

Both do the same thing!

Joins store results in a temporary
table in the database

Example: count how many time each bakery has been inspected
SELECT r.RestaurantID, RestaurantName, count(*)
FROM Restaurants r, Inspections i
WHERE r.RestaurantID = i.RestaurantID
AND r.CuisineID = 5 - - look up bakery ID in Cuisine table
GROUP BY RestaurantID;

Preferred way:

SELECT RestaurantID, RestaurantName, count(*)
FROM Restaurants r NATURAL JOIN Inspections i
WHERE CuisineID = 5
GROUP BY RestaurantID;

16

Recommended way to join is not in the
WHERE clause, but with JOIN command
JOIN

Could also do a NATURAL JOIN
• No need to tell which attributes

to match for join (uses attributes
with same name to join)

• No duplicate attributes in result

I prefer using JOIN ON (last slide)
I know for sure what attributes
are used for join (or at least use
JOIN USING)

Thus far we have joined relations by matching in the WHERE clause, but JOIN is preferred

Format:
SELECT A1, A2, … An
FROM r1 {type} JOIN r2 {type} JOIN .. {type} JOIN rn
where P ;
{type} = [NATURAL | INNER | OUTER [LEFT RIGHT FULL]]. If type not specified, INNER

17

INNER join only returns rows if comparison
attribute is in both tables
INNER JOIN

Adapted from: https://www.w3resource.com/slides/sql-joins-slide-presentation.php

ID A1

1 m

2 n

4 o

TableA

ID A2

2 p

3 q

5 r

TableB

SELECT *
FROM TableA a JOIN TableB b
ON a.ID=b.ID

2,n
2,p

TableA TableB

ID of 2 is in both tables so it is
returned, others are not

Result has attributes from both
tables (A1 and A2) and duplicate ID

Rows 1 and 4 from TableA and rows
3 and 5 from TableB not returned

Rows returned with attributes from
both tables if match between values
in comparison columns

ID A1 ID A2

2 n 2 p

Result (temp table)

ID A1 A2

2 n p

NATURAL JOIN omits duplicate
attributes (could also pick in SELECT)

18

LEFT OUTER JOIN returns all rows from the
left table
LEFT [OUTER] JOIN

Adapted from: https://www.w3resource.com/slides/sql-joins-slide-presentation.php

ID A1

1 m

2 n

4 o

TableA

ID A2

2 p

3 q

5 r

TableB

SELECT *
FROM TableA a LEFT JOIN TableB b
ON a.ID=b.ID

2,n
2,p

TableA TableB

ID of 2 is in both tables so it is
returned

All rows from left table (TableA) as
written in command are returned

3 and 5 in TableB not returned
because those keys not in TableA

All rows from TableA returned

1,m
4,o

ID A1 ID A2

2 n 2 p

1 m NULL NULL

4 n NULL NULL

Result (temp table)

19

RIGHT OUTER JOIN returns all rows from
the right table
RIGHT [OUTER] JOIN

Adapted from: https://www.w3resource.com/slides/sql-joins-slide-presentation.php

ID A1

1 m

2 n

4 o

TableA

ID A2

2 p

3 q

5 r

TableB

SELECT *
FROM TableA a RIGHT JOIN TableB b
ON a.ID=b.ID

2,n
2,p

TableA TableB

ID of 2 is in both tables so it is
returned

All rows from right table (TableB) as
written in command are returned

1 and 4 in TableA not returned
because those keys not in TableB

All rows from TableB returned

3,q
5,r

ID A1 ID A2

2 n 2 p

NULL NULL 3 q

NULL NULL 5 5

Result (temp table)

20

FULL OUTER JOIN returns all rows from
both tables
FULL [OUTER] JOIN

Adapted from: https://www.w3resource.com/slides/sql-joins-slide-presentation.php

ID A1

1 m

2 n

4 o

TableA

ID A2

2 p

3 q

5 r

TableB

SELECT *
FROM TableA a FULL JOIN TableB b
ON a.ID=b.ID

ID A1 ID A2

2 n 2 p

1 m NULL NULL

4 n NULL NULL

NULL NULL 3 q

NULL NULL 5 5

Result (temp table)

2,n
2,p

TableA TableB

ID of 2 is in both tables so it is
returned

All rows from both tables are
returned

All rows from both tables returned

3,q
5,r

1,m
4,o

NOTE: MySQL does not support
FULL OUTER JOIN

21

Practice

You’ve opened a new fruit/vegetable restaurant in Manhattan called ‘Tim’s
Tasty Treats’ (keep the apostrophe in the name!):
• Insert a new row in your Restaurants table for this restaurant

o Set the RestaurantID to 1111
o Set the CuisineID to the proper value for a fruits/vegetables restaurant
o You can set address, phone, lat/long to NULL (or another value)

• See how many other fruit/vegetable restaurants there are (your
competition)

• Count how many times each fruit/vegetable restaurant has been inspected,
include:
o RestaurantID
o RestaurantName
o Count of inspections
o Make sure Tim’s restaurant is on the list and shows zero inspections!

(note: this is tricky!)

Use nyc_inspections

22

Agenda

1. Joins

2. nyc_inspections schema

3. Joins on nyc_inspections

4. Conditional evaluation

use nyc_inspections;
SELECT i.RestaurantID, RestaurantName, InspectionDate, Score,

IF(Grade IS NULL,'N/A',Grade) AS Grade, GradeDate
FROM Inspections i JOIN Restaurants r on i.RestaurantID = r.RestaurantID
WHERE r.RestaurantID = 30075445
ORDER BY InspectionDate;

23

IF allows conditional evaluation, giving one
of two values

Practice: Some restaurant inspection grades are NULL
If Grade is null, return ‘N/A’ else return Grade

Format:
SELECT IF (expr, true value, false value) AS name

If expr results in true or not null, return
true value else return false value

See day5.sql

IF command

Like a lambda
expression in many
programming languages

Note: if attribute could come from more
than relation, identify which one

24

COALESCE returns the first non-null value
in a list of arguments

Example:
SELECT OrderID, COALESCE(State, Country, 'N/A') AS Location
FROM Orders

Given a table of customer orders
• Try using State as Location
• If State is NULL, try Country
• If Country is NULL, use ‘N/A’

Format:
SELECT COALESCE(value1, value2, … valuen) AS name

valuex can be an attribute or literal
If value1 is NULL, SQL tries value2, …
Returns first non-null value
If all values are NULL, returns NULL

COALESCE

SELECT i.RestaurantID, RestaurantName, count(*) AS `Total Inspections`,
CASE

WHEN count(*) < 10 THEN 'Infrequent inspections '
WHEN count(*) BETWEEN 10 AND 15 THEN 'Moderate inspections'
ELSE 'Frequent inspections'

END AS Frequency
FROM Inspections i, Restaurants r
WHERE i.RestaurantID = r.RestaurantID
GROUP BY i.RestaurantID;

25

CASE provides if-then-else logic in one of
two formats
CASE

SELECT CASE attribute
WHEN value1 THEN result1
WHEN value2 THEN result2
[ELSE else result]

END AS AttributeName

OR
SELECT CASE

WHEN expr1 THEN result1
WHEN expr2 THEN result2
[ELSE else result]

END AS AttributeName

Practice: Categorize restaurants as having infrequent (<10), moderate (10-15),
or frequent (>10) inspections

No attribute here,
it is in expressionValue of attribute

Don’t forget END!

Can use BETWEEN x and y; or
Could have used count(*) >10 AND count(*) > 15

See day5.sql

26

Practice
CASE practice
We can combine CASE with aggregate operations. For each restaurant provide
the number of times an inspection resulted in each possible letter Grade
• First determine the grades possible (or at least those than have been given)
• Then on one line provide the number of times each restaurant received a

distinct grade (e.g. RestaurantID, RestaurantName, A, B, C…, NULL, Total)
• Output should look like this:

27

