
CS 61:
Database Systems

Advanced SQL

Adapted from https://www.mysqltutorial.org/ unless otherwise noted

2

Review: database schema has tables for
Restaurants and Inspections (and others)
use nyc_inspections;

One entry
for each
restaurant

CuisineID FK
means
cuisine
must be in
Cuisine
table

One entry for
each restaurant
inspection

FKs mean Action and Inspection
Type must be in related tables

3

Added two columns to Restaurants that we
will keep updated as inspections change
use nyc_inspections;

I’ve added InspectionCount
and InspectionAvgScore
that we will keep
updated as
inspections as are
created, updated,
or deleted

Could compute on
demand, but by
precomputing we
save time during
SELECT queries

4

Agenda

1. Stored procedures and functions

2. Triggers

5

NOTE: we can use variables in SQL, either
by setting values directly or via query
Set variable value directly

• No need to declare variable
or type

• Format: @varname
• To see value use variable in

SELECT statement

Set value in query

• Use SELECT columns INTO variables
• Can have multiple variables, but only

one row
• Use LIMIT 1 if query would return more

than one row

RestaurantID from
previous query
(value 1111)

6

Stored procedures and functions allow us
to store business logic in the database
In the “bad old days” we embedded SQL directly into our application
programs. This caused problems:
• What if multiple applications access the same database, how do we

make sure they both implement the same business logic?
• How do we keep multiple applications following the same rules

when changes occur?

Stored procedures and functions allow us to move some business logic
into the database itself
• Now changes made in a single place
• Can make changes to logic and may not break applications

SQL is reasonably consistent across database vendors, but functions
and stored procedures tend to be vendor-specific (our focus is MySQL)

Downsides:
If you use a lot of stored procedures and
functions, tends to increase memory utilization

Also difficult to debug (no means to stop query
execution and examine state)

7

Stored procedures allow us to save one or
more SQL statements
Consider the following query

When you run this query from MySQL Workbench,
database runs it and returns results as shown

• If you run this query a lot, you might want to save it so you can easily run it again
• If you save it, the database can compile it for *possibly* slightly faster execution
• Could use a view, but views have trouble with updates and deletes
• Stored procedures are *far* more powerful than views

8

To create a stored procedure in MySQL,
first change the delimiter

• A stored procedure may have many
commands separated by ;

• Temporarily change delimiter to
something else ($$, //, etc) so
MySQL knows the function is not
done until it encounters the
delimiter again

• Change delimiter back to ; at end

9

Then add your SQL, and change the
delimiter back to a semicolon

Create stored procedure and give it a name
• Can have several SQL

commands between BEGIN
and END statements

• Can call other stored
procedures

Change command delimiter back to
semicolon
Procedure stored as part of database

Use CALL to execute stored procedure

Same results as executing from
MySQL Workbench directly

10

Call your stored procedure using the CALL
command

On first call, MySQL looks up procedure
name in the database catalog, compiles
the code, places it in cache memory, and
executes code

On subsequent calls, execute from cache
Multiple stored procedures in cache can
use up memory quickly!
Each database user has its own cache!

Banks love stored procedures
• Consistent business logic
• Secure – can control access

11

Stored procedures can take input and
output variables (and input/output)

Parameters
• Can have multiple params
• Give name and domain
• IN – input, value not changed

inside stored procedure
• OUT – output, value returned
• INOUT – input and output

variable

12

Stored procedures can take input and
output variables (and input/output!)

• This stored procedure takes
BoroName as input, returns
the number of Restaurants in
the boro (10,651) in
@BoroCount

• Also returns table of matching
restaurants (as shown)

• To not return table, comment
out first SELECT

• Can see value of @BoroCount
with SELECT @BoroCount

13

Stored procedures also have statements
like a traditional programming language
Local variables
• Can declare local variables in stored procedures
• Cursors to get a results set (can iterate over)

Flow control
• IF THEN ELSE
• CASE
• LOOP
• WHILE
• LEAVE (exits stored procedure)
• Structured error handling

• Stored
procedures are
not as capable
as a traditional
programming
language

• But more
capable than
standard SQL

We just scratched
the surface today

14

Practice
use nyc_inspections;

1. Create a stored procedure to return the min, max, avg, and
count of inspection scores for a given restaurant ID
• Hint, you’ll need IN and OUT variables

2. Test your procedure on Morris Park Bake Shop at 1007 Morris
Park Avenue

3. Double check your results are accurate!

15

Stored functions are like stored procedures
but return one value

• Functions return one value
• Can be used anywhere a SQL

expression can be used
• Can have parameters like

stored procedures, but can
only be IN

16

Stored functions are like stored procedures
but return one value

DETERMINISTIC means it will always return the same value
for the same input
• Allows database to cache results knowing they won’t

change
• “Assessment of the nature of a routine is based on the

“honesty” of the creator”1

• Default is NOT DETERMINISTIC

Must return a value in RETURN statement

[1] https://dev.mysql.com/doc/refman/8.0/en/create-procedure.html

17

Practice
use nyc_inspections;

1. Create a function that classifies restaurants based on how
many times they have been inspected. Input: number of
inspection scores. Return:
• ‘Low’ if fewer than 7 scores
• ‘Intermediate’ if between 7 and 12 scores
• ‘High’ if more than 12 scores

2. Use your function in a SELECT command to return each
RestaurantName and its inspection classification

18

Agenda

1. Stored procedures and functions

2. Triggers

19

Trigger fire in response to an event such as
an INSERT, UPDATE, or DELETE on a table

A trigger is a stored program invoked automatically before or after
an event such as:
• INSERT
• UPDATE
• DELETE

MySQL only supports row-level triggers
• If 100 rows inserted, updated, or deleted, trigger fires 100 times
• Other databases have statement-level triggers that fire once per

statement

20

Like most things, triggers have pros and
cons

Pros
• Triggers provide another way to

check the integrity of data
• Triggers give an alternative way

to run scheduled tasks:
o No need to wait for scheduled

cron jobs to run
o Triggers are invoked

automatically before or after a
change is made to the data in a
table

• Triggers can be useful for auditing
the data changes in tables
o Make an entry into an audit

table when data is added,
changed, or deleted

Cons
• For simple validations, easier to

use NOT NULL, UNIQUE, CHECK and
FOREIGN KEY constraints

• Can be difficult to troubleshoot
o Execute automatically in the

database
o May not invisible to client

applications
• May increase processing overhead

21

Create trigger on Inspection table INSERT
to update statistics on Restaurant table

Give trigger a name

Can operate BEFORE or AFTER
an INSERT, UPDATE, or DELETE on a
specified table (Inspections)

SQL commands can
reference the OLD or
NEW values of an
attribute

Goal: Keep avg score and count of inspections scores current in Restaurant table when
Inspection table changes (e.g., if new Inspection entered, add one to count)

Now if a new Inspection is inserted into the Inspections table,
the avg score and count are updated in Restaurants table
Can do the same for UPDATES and DELETES (see today’s SQL file)

22

Practice
use nyc_inspections;

You’re wondering if someone is paying off Health Inspectors to change inspection
scores. You would like to log any changes to scores made in the Inspections table
1. Create an Audit table where we can log changes, include columns for:

• The table that was changed (here always Inspections)
• The primary key of the row that was changed
• The attribute that was changed (here always Scores)
• The score value before the change (e.g., score was a 5)
• The score value after the change (e.g., score is now a 4)
• The user that made the change (use the USER() function)
• The date and time the change was made (look at CURRENT_TIMESTAMP)

2. Create a trigger that fires each time any score is updated in Inspections
3. To test, update InspectionID 26070 (Morris Park Bake Shop) from a score of 5

to a score of 4
4. Check your Audit table and confirm this change was logged

5. Are there any advantages to logging the change with a trigger vs. writing an
entry into the Audit table with a user application?

23

