
CS 61:
Database Systems

Access via programming languages

2

Agenda

1. Direct database access

2. Web APIs

3. Node.js

3

Python can directly query the database
Steps to access MySQL from Python

1. Install connector to MySQL:
sudo pip install mysql-connector-python

2. Get a connection to the database
cnx=mysql.connector.connect(user=<username>, password=<pwd>,

host="sunapee.cs.dartmouth.edu",
database="nyc_inspections")

3. Query the database
cursor = cnx.cursor()
query = ("SELECT RestaurantID, RestaurantName, Boro "

+"FROM Restaurants r JOIN Cuisine c USING (CuisineID) "
+"WHERE RestaurantName LIKE %s") #%s is a parameter

cursor.execute(query, ('%'+restaurant_name+'%’,))#query,params

4. Loop over results
for row in cursor:

print str(row)

Cursors are like an iterator
• Read only
• Non-scrollable

Create a database user with
minimal necessary rights

4

get_restaurants.py is example of client-side
Python code directly querying the database
get_restaurants.py

1. Download get_restaurants.py and db.json from course web page
2. Edit db.json with your credentials
3. Run:

python get_restaurants.py restaurant_name <localhost|sunapee>
• Replace restaurant_name with your own choice (e.g., Nobu or

‘Rosa Mexicano’)
• Provide either localhost or sunapee (localhost default)

python get_restaurants.py nobu sunapee
python get_restaurants.py ‘rosa mexicano’ localhost

Fetches data about one restaurant
Problem: business logic is hidden inside python code
We can do better!

Client MySQL

5

Agenda

1. Direct database access

2. Web APIs

3. Node.js

6

A (possibly apocryphal) letter from Jeff
Bezos to Amazon developers

• All teams will henceforth expose their data and
functionality through service interfaces.

• Teams must communicate with each other through
these interfaces.

• There will be no other form of inter-process
communication allowed: no direct reads of another
team’s data store, no shared-memory model, no
back-doors whatsoever. Only service interface calls.

• It doesn’t matter what technology they use.
• All service interfaces, must expose the interface to

developers in the outside world. No exceptions.
• Anyone who doesn’t do this will be fired. Thank

you; have a nice day!

Source: https://apievangelist.com/2012/01/12/the-secret-to-amazons-success-internal-apis/, lightly edited for space

In short: don’t do
what we just did
with Python!

Create an API
instead

https://apievangelist.com/2012/01/12/the-secret-to-amazons-success-internal-apis/

7

RESTful APIs rely on four HTTP “verbs” to
implement CRUD operations

API
/api/restaurants

Smart phone
apps

Web browser

“Thick client”
apps

Client side Server side

Clients make
RESTful calls
over network
to API listening
on server

Create: use POST
Include params to
create a new
restaurant

8

RESTful APIs rely on four HTTP “verbs” to
implement CRUD operations

API
/api/restaurants

Smart phone
apps

Web browser

“Thick client”
apps

Client side Server side

POST

GET

PUT

DELETE

Update: use PUT
Update restaurant
with RestaurantID = :id

/api/restaurants
/api/restaurants/:id

Read: use GET
If no id passed in URL,
get all restaurants,
otherwise get data for
RestaurantID = :id

Delete: use DELETE
Delete restaurant with
RestaurantID = :id

By convention
HTTP verb
tells API what
CRUD
operation to
perform

/api/restaurants

/api/restaurants/:id

/api/restaurants/:id

Clients make
RESTful calls
over network
to API listening
on server

Calls are
stateless (all
information
needed is
provided in
each call)

Create: use POST
Include params to
create a new
restaurant

9

RESTful APIs rely on four HTTP “verbs” to
implement CRUD operations

API
/api/restaurants

Smart phone
apps

Web browser

“Thick client”
apps

Client side Server side

POST

GET

PUT

DELETE

Update: use PUT
Update restaurant
with RestaurantID = :id

/api/restaurants
/api/restaurants/:id

Read: use GET
If no id passed in URL,
get all restaurants,
otherwise get data for
RestaurantID = :id

Delete: use DELETE
Delete restaurant with
RestaurantID = :id

APIs access
database and
return results
to client side

MySQL

/api/restaurants

/api/restaurants/:id

/api/restaurants/:id

APIs access
database as
user with
minimal
required
rights

Clients make
RESTful calls
over network
to API listening
on server

10
https://medium.com/@benbob/the-gospel-of-dogfooding-can-i-hear-an-amen-brother-1af4d82cf221

11

Agenda

1. Direct database access

2. Web APIs

3. Node.js

12

Server-side API written in JavaScript
running on Node.js
Node.js example

1. Install Node.js on your machine:
https://nodejs.org/en/download/

2. Create a folder for this project (e.g., Documents/cs61/nodeExample)
3. Download example server-side code (api.js, config.js, package.json)

from course web page for today into that folder
4. Edit the config.js with your database credentials: replace username and

password
5. From command line:

• Change directory into folder: cd Documents/cs61/nodeExample
• Get all needed libraries (listed in package.json): npm install
• Start server running: nodemon api.js
• Start browser and enter URL: localhost:3000/api/restaurants
• Should see a list of 10 restaurants in JSON format
• Try connecting to sunapee: nodemon api.js sunapee

6. Download Postman (www.postman.com) to try other verbs

API MySQLClient

https://nodejs.org/en/download/

13

Client-side code written in Python calls
server-side API written in JavaScript
Python example

Client side:
Call web API from Python:

python call_api.py

Data normally returned from API in JSON format
Client-side Python code would then process the JSON data

API MySQLClient

14

