
CS 61:
Database Systems

Security

2

With great power comes great
responsibility…

William Lamb, 2nd
Viscount Melbourne

Spider Man’s
uncle Ben

OR

Source: Wikipedia

3

Agenda

1. MySQL permissions

2. Demo: SQL injection attacks

3. Password storage/salt and pepper

4. Password cracking

4

Show user permissions on sunapee

1. Connect to Sunapee
2. Click on Administration (upper left)
3. Click on Users and Privileges
4. Find cs61sp20
• Show permissions grants
• Show how to grant permission on a schema

5

Can assign rights to users individually or by
role

Benefits:
• Improved operational efficiency – new hires automatically get the rights they need
• Increased security – people do not get more rights that would typically need
• Increased visibility – easy to see what rights roles have

RBAC: Good idea in principle but has never worked for me!
• There is no generic person, each person has different responsibilities within dept
• People get temporary assignments with other departments, need different rights

(creates a hybrid role)
• Assignment ends, but rights never changed (even if you set a calendar reminder

and ask them if they still need the rights, they never say no!)

Security authorization

Can assign
rights to
individual
users

Can create
roles, assign
rights to roles,
then assign
users to roles

Adapted from: https://www.mysqltutorial.org/mysql-roles/

6

Agenda

1. MySQL permissions

2. Demo: SQL injection attacks

3. Password storage/salt and pepper

4. Password cracking

7

Do not trust user input

8

Consider the following Python code
making a SQL call for restaurant details

What is wrong with this Python code?
Hint: CONCAT is ok, it combines attributes together

restaurant = “nobu” #user input from textbox, Nobu is a restaurant
cursor = cnx.cursor()
query = ("SELECT RestaurantName AS `Restaurant Name`,"

+"CONCAT(TRIM(Building),' ',TRIM(Street)) AS Address, "
+ "Boro "
+"FROM Restaurants "
+"WHERE RestaurantName LIKE '%" + restaurant +"%’) "
+"LIMIT 20"

cursor.execute(query)
return cursor

Nothing is wrong with this query, provided
we can trust the value in restaurant

Using Python as example
rather than web API so I don’t
leave vulnerable API running

9

Adding user input directly into
command is a recipe for trouble!

What is wrong with this Python code?
Hint: CONCAT is ok, it combines attributes together

restaurant = “nobu%' UNION SELECT 1,2,3 -- ”
cursor = cnx.cursor()
query = ("SELECT RestaurantName AS `Restaurant Name`,"

+"CONCAT(TRIM(Building),' ',TRIM(Street)) AS Address, "
+ "Boro "
+"FROM Restaurants "
+"WHERE RestaurantName LIKE '%" + restaurant +"%’)
+"LIMIT 20"

cursor.execute(query)
return cursor

What if the user
enters this instead?

Query is now:
… WHERE RestaurantName LIKE '%nobu%' UNION SELECT 1,2,3 -- LIMIT 20

UNION adds rows from the following SELECT
(number of attributes must match in each query)
LIMIT is commented out as a result of user input

10

sql_injection.py demonstrates injection
vulnerabilities

test if user entry is vulnerable to injection, should see extra row with 1,2,3 if so
nobu%' UNION SELECT 1,2,3 --

#find out what schemas are on this database installation
nobu%' UNION SELECT schema_name, null, null from
information_schema.schemata --

#find tables in a schema
nobu%' UNION SELECT table_name, table_schema, null from
information_schema.tables where table_schema = 'nyc_inspections' --

#find all non-system tables on database
nobu%' UNION (SELECT table_name, table_schema, null from

information_schema.tables where table_schema not like '%schema%' and
table_schema not like '%mysql%' and table_schema <> 'sys') --

#find attributes for restaurants table in nyc_inspections schema
nobu%' UNION (SELECT `column_name`, data_type, character_maximum_length

from information_schema.`columns` where table_schema = 'nyc_inspections' and
table_name = 'Restaurants') --

11

Most sites have a Users table, let’s
steal all the username and passwords

#I’ve created a User’s table in nyc_data
let’s steal the username and passwords of all users!

nobu%' UNION SELECT UserName, UserPassword, null from nyc_data.Users --

You’ve been
pwned!

12

Do not store passwords
in plain text!

13

Use prepared statement to avoid user
input as part of SQL command
Vulnerable Prepared statement
restaurant = “nobu”
cursor = cnx.cursor()
query = ("SELECT RestaurantName, "

+"Building, "
+ "Boro "
+"FROM Restaurants "
+"WHERE RestaurantName LIKE"
+"'%" + restaurant +"%’) "
+"LIMIT 20”)

cursor.execute(query)
return cursor

restaurant = “nobu”
cursor = cnx.cursor()
query = ("SELECT RestaurantName, "

+"Building, ",
+"Boro, "
+"FROM Restaurants "
+"WHERE RestaurantName LIKE”
+" %s ”
+"LIMIT 20")

cursor.execute(query, ('%'+restaurant+'%’,))
return cursor

User input is included in
the SQL query string
• Can be abused!

Prepared statement adds user
input as a parameter after
command is compiled

Parse
• Check syntax
• Check table and

columns exist

Compile
• Convert query

to machine
code

Optimize
• Choose optimal

execution plan
14

Prepared statements add data after
compiling, optimizing, and caching

Adapted from: http://javabypatel.blogspot.com/2015/09/how-prepared-statement-in-java-prevents-sql-injection.html

Parse/Compile/
Optimize Cache Replace

placeholders Execute

High-level overview of SQL execution process

Cache
• Store optimized

query plan in
cache

• If command
submitted
again, skip prior
steps (already
done)

Replace placeholders
• Prepared statement

are not complete
statements

• Have placeholders
for some values

• But, format of
command is set now

• Placeholders filled
with literal values

• Place holder data
doesn’t change
command format

UPDATE Users SET UserName = ? AND Password = ?

Execute
• Query is executed
• Data is returned
• Malicious data is

stored in table, not
executed

15

Even if you use prepared statements,
be wary of data in your database!

Source: https://portswigger.net/web-security/sql-injection

Second-order attack:
User enters data with SQL embedded
Prepared statement does not run this code, data is stored in table

Later someone runs a command where user = ‘badguy’
Command executes; here resets admin password

Can’t trust
data in
database
either!

16

Now we know why the comic on the
course web site is funny!

Source: https://xkcd.com/327/

17

Practice
Assume a log in form issues the following SQL behind the scenes
where user input is used directly in the SQL:

SELECT * FROM Users WHERE
UserName = ‘username’ AND
Password = ‘password’

The site then logs you in if one row is
returned by the query

What could you enter in the username
or password fields to log in as
‘administrator’ even if you do not know
the password?

Enter: administrator’ --
Command now:
SELECT * FROM Users WHERE
UserName = ‘administrator’--
AND Password = ‘password’

18

Agenda

1. MySQL permissions

2. Demo: SQL injection attacks

3. Password storage/salt and pepper

4. Password cracking

19

Review: hashing takes plain text and
outputs a fixed-length digest

Plain text
password

Fixed length
digest of
password

Hash
function

Input:
“my secret password”

Output:
a7303f3eee5f3ff1942bfbb1797ea0af

Hash function is a mathematical one-way trap door
• Cannot find plain text in “reasonable” amount

of time given only the hash digest
• Or can we?

20

DO NOT store user passwords in plain text!

Note: same
password
results in
same hash

Do not store
passwords in
plain text

Instead store
hash of
password

Hash
Password

If adversary steals
passwords, cannot
read plain-text
password

21

On log in: hash plain text password and
compare with database

Hash user’s plain text password
and look for match in database

Because hash function is
deterministic, same password
will always result in same digest

Hashes match
for testuser

User
submitted
valid
password

Hash
Password

Username: “testuser”
Password: “password”

Hashed password:
5f4dcc3b5aa765d61d8327deb882cf99

22

Dictionary attack: try all words in a
dictionary looking for a match

Dictionary attack:
Hash all words in a dictionary, if
word hash matches database hash,
password is “cracked”

Password: “aardvark”
Password: “alice”
Password: “anteater”
…
Password: “password”

Will not crack
if user’s
password not
in dictionary

Crack one,
crack all with
same password

Change your
password if in
dictionary!

Hash
Password

Username: “testuser”
Password: “password”

Hashed password:
5f4dcc3b5aa765d61d8327deb882cf99

Assume
adversary
steals
hashed
passwords

Look up database
password in
rainbow table

Lots of time and
storage needed

Length limited23

Rainbow table attacks precompute all
possible character combinations

Hash
Password

Username: “testuser”
Password: “password”

Hashed password:
5f4dcc3b5aa765d61d8327deb882cf99

Rainbow table attack:
Precompute all character
combinations up to certain length
Store resulting hash for each combo

Password: “a”
Password: “aa”
Password: “aaa”
…
Password: “password”

Assume
adversary
steals
hashed
passwords

• But add salt
to each word

• Slows
adversary

Use salt to prevent attacks

Password

Username: “testuser”
Password: “password”

Password + Salt: “password.ef_ob’3”
Salted hashed password:
62c21dd30b2d7e6e6671628458aeaf1f

Salt:
• Random string of characters appended

(or prepended or both) to password
before hash

• Each user gets unique salt
• Salt stored in plain text in database
• User need not know value of salt, it is

added on server side

If salt is long (say 64 characters)
rainbow table is impractical

Dictionary attack still possible
• Password plus salt unlikely to be

in database

Adding pepper is even better

Password

Username: “testuser”
Password: “password”

Password + Salt + Pepper: “password.ef_ob’3Secret”
Salted hashed password:
2811922850bbcd79683b58e43d1ab76f

Pepper:
• Random string of characters appended

to password + salt before hash
• Pepper kept secret, not stored in

database
• One pepper for all users

Another variant
• Pepper is one

character chosen at
random for each user

• Not stored
• On log, try ‘a’, then ‘b’

• Will
eventually
find match

• Slows
adversary

26

Agenda

1. MySQL permissions

2. Demo: SQL injection attacks

3. Password storage/salt and pepper

4. Password cracking

27

Exercise
Enter username and password at phoney sign up site:
https://cs.dartmouth.edu/~tjp/cs61/saveUser.html
• Site stores entries into Users table on sunapee cs61 schema
• Table has unique constraint on UserName (so choose something

else if what you enter is already taken)
• NOTE: for demonstration purposes only, it stores the password in

plain text! You would not do this is production!
• Also stores hashed and salted hash passwords

Assume an adversary does a SQL injection attack (or otherwise steals
Users table) and gets usernames with hashed and salted passwords
• What can they do? They do not have the users’ passwords
• Enter hashcat!

https://cs.dartmouth.edu/~tjp/cs61/saveUser.html

28

Hashcat is a password hashing tool

1. Download usertable.csv from Sunapee

2. Extract hashes from usertable.csv
cat usertable.csv | awk "-F," '{print $4}' > unsalted.txt
cat usertable.csv | awk "-F," '{print $6 ":" $5}' > salted.txt

3. Crack passwords
Unsalted
hashcat -m 0 -a 0 unsalted.txt ~/Downloads/rockyou.txt --potfile-disable

Salted
hashcat -m 10 -a 0 salted.txt ~/Downloads/rockyou.txt --potfile-disable

m is hash type:
• 0 = MD5
• 10 = MD5(password+salt)

a is attack mode
• 0 = dictionary
• Rockyou.txt is dictionary
• potfile-disable means restart

29

