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Domain, range



Domain vs. range
2D plane: domain of images 
color value: range (R3 for us) 
- red, green and blue components stored in 

im(x, y, 0), im(x, y, 1), im(x, y, 2), respectively
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Basic types of operations
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Point operations:  
range only 

Assignment 2
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output(x,y) = f(image(x,y))

image(x,y)

output(x,y)
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Basic types of operations
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Point operations:  
range only 

Assignment 2
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Domain  
operations 

Assignment 6

image(x,y)

output(x,y)

output(x,y) = image(f(x,y))

output(x,y) = f(image(x,y))
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Basic types of operations
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Point operations:  
range only 

Assignment 2
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Domain  
operations 

Assignment 6

Neighborhood operations:  
domain and range 

Assignments 3, 4, 5

image(x,y)

output(x,y)

output(x,y) = image(f(x,y))

output(x,y) = f(image(x,y))



Light & perception



Light from sources is reflected by objects and reaches 
the eye 
The amount of light from the source gets multiplied by 
the object reflectance  
- on a per-wavelength basis

Light matter, eyes
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Human perception 
Our eyes have an uncanny ability to discount the 
illumination 
- Only objects really matter for survival 

- Light is only useful to understand if you’re a photographer 
or to choose your sun lotion
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Illusion by Adelson
A & B have exactly the same tone
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Illusion by Adelson
A & B have exactly the same tone
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Mechanism to discount light
Light adaptation 
- We re-center our neural response around the current average 

brightness 

- neural + chemical + pupil 

Chromatic adaptation 
- eliminate color cast due to light sources 

e.g. Daylight is white but tungsten is yellowish 

- Related to white balance - more soon 

- and Spanish Castle illusion
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Contrast is about ratios
Contrast between 1 & 2 is the same as between 100 & 200 
Useful to discount the multiplicative effect of light
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0.1 to 0.2 0.4 to 0.8
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Exposure
On cameras, exposure (shutter speed, aperture, ISO) has a 
multiplicative effect on the values recorded by the sensor.  
Changes the “brightness”, not contrast
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http://photographystepbystep.com/exposure-2/auto-bracketing/
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White balance



White balance & Chromatic adaptation
Different illuminants have different color 
temperature 
Our eyes adapt: chromatic adaptation 
- We actually adapt better in brighter scenes 

- This is why candlelit scenes still look yellow
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www.shortcourses.com/guide/guide2-27.html
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http://www.shortcourses.com/guide/guide2-27.html


White balance problem
When watching a picture on screen or print, we 
adapt to the illuminant of the room, not that of 
the scene in the picture 
The eye cares more about objects’ intrinsic color, 
not the color of the light leaving the objects 
We need to discount the color of the light source
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Same object,  
different illuminants
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White balance & Film
Different types of film for fluorescent, tungsten, daylight 
Need to change film! 

Electronic & Digital imaging are more flexible
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Von Kries adaptation
Multiply each channel by a gain factor 
- R’=R*kr 

- G’=G*kg 

- B’=B*kb
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http://www.cambridgeincolour.com/tutorials/white-balance.htm
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http://www.cambridgeincolour.com/tutorials/white-balance.htm


Von Kries adaptation
Multiply each channel by a gain factor 
Note that the light source could have a more complex effect 
- Arbitrary 3⨉3 matrix 

- More complex spectrum transformation

CS 89/189: Computational Photography, Fall 2015 20

http://www.cambridgeincolour.com/tutorials/white-balance.htm
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http://www.cambridgeincolour.com/tutorials/white-balance.htm


White balance challenge
How do we find the scaling factors for r, g, and b?
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Best way to do white balance
Grey card:  
Take a picture of a neutral object  
(white or gray) 
Deduce the weight of each channel 
If the object is recoded as rw, gw, bw  
use weights k/rw, k/gw, k/bw  
where k controls the exposure
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Lightroom demo
Most photo editing software lets you click 
on a neutral object to achieve white 
balance 
- In “Levels” in Photoshop 

- In “Basic” in Lightroom 

- You also often have presets such as 
daylight, tungsten
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Party name tags
Provide excellent white references!
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write(im/im(300, 214))
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Without grey cards
We need to “guess” which pixels correspond to white 
objects
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Grey world assumption
Assume average color in the image is grey 
Use weights proportional to  

Usually assumes 18% grey to set exposure
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Brightest pixel assumption
Highlights usually have the color of the light source  
- At least for dielectric materials 

White balance by using the brightest pixels 
- Plus potentially a bunch of heuristics 

- In particular use a pixel that is not saturated/clipped
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Refs
Recent work on color constancy 
- http://gvi.seas.harvard.edu/paper/perceptionbased-color-

space-illuminationinvariant-image-processing 

- http://gvi.seas.harvard.edu/paper/color-subspaces-
photometric-invariants 

- http://people.csail.mit.edu/billf/papers/BayesJOSA.pdf 

Still an open problem!
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http://gvi.seas.harvard.edu/paper/perceptionbased-color-space-illuminationinvariant-image-processing
http://gvi.seas.harvard.edu/paper/color-subspaces-photometric-invariants
http://people.csail.mit.edu/billf/papers/BayesJOSA.pdf
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Questions?

29

from xkcd
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Take home messages
Discounting the illumination is useful 
Ratios matter 
Optical illusions are not optical but fun
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Gamma



Images are usually gamma encoded 

Instead of storing the light intensity x, they store x𝛾

to get more precision in dark areas for 8-bit encoding

Linearity and gamma
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Linearity and gamma
Images are usually gamma encoded 

Instead of storing the light intensity x, they store x𝛾

to get more precision in dark areas for 8-bit encoding

CS 89/189: Computational Photography, Fall 2015 33

6 bit encoding for emphasis: 
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Gamma demo
http://web.mit.edu/lilis/www/gammavis.html 
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http://web.mit.edu/lilis/www/gammavis.html


Linearity and gamma
Images are usually gamma encoded 

Instead of storing the light intensity x, they store x𝛾 
Half of image processing algorithms work better in linear 
space 
- If linearity is important 

- To deal with ratios and multiplicative factors better 

Half work better in gamma space 
- closer to logarithmic scale
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How to capture linear images
http://www.mit.edu/~kimo/blog/linear.html
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http://www.mit.edu/~kimo/blog/linear.html


Take home message
Images are usually gamma-encoded 
gamma ~2.2 
provides better quantization 
sometimes good for algorithms 
sometimes bad 
- convert to linear values!
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Histograms



Histogram
Histogram: 
- For each value (e.g. 0-255), how many pixels have 

this value? 

Cumulative histogram: 
- for each value x, how many pixels have a value 

smaller than x? 

Normalized: divide value of each bin by total 
number of pixels 
- histogram = discrete PDF 

- cumulative histogram = discrete CDF
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(wikipedia)
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Very useful on camera
Allows you to tell if you use the dynamic range entirely
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Bad: bright values under-used 
(underexposure)

Bad: bright values saturate 
(overexposure)

http://www.luminous-landscape.com/tutorials/understanding-series/understanding-histograms.shtml

http://www.luminous-landscape.com/tutorials/understanding-series/understanding-histograms.shtml


Histogram 
equalization



Histogram equalization
Given an image with a certain histogram, 
monotonic remapping to get a flat histogram
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Histogram equalization
Ideal flat histogram: y% of pixels have a value less than y% 
- assuming everything is normalized to [0,1] 

Flip it: a pixel with value larger than y% of all pixels should 
have value y% 
For an old value x%, we know the number of pixels that 
have value < x%: cumulative histogram (also called CDF) 
Therefore, we want x to be mapped to its cumulative 
histogram value. 
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Histogram matching
Histogram matching 
- Given a desired histogram 

- Map each value of an image channel to a new value, such 
that the new histogram matches the desired histogram 

Histogram equalization 
- The desired histogram is simply constant 

- What shape is the cumulative histogram?
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target

Histogram matching
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adjusting the cumulative 
distribution function (cdf) 
- Cumulative histogram of input

input



Histogram matching is done by 
adjusting the cumulative 
distribution function (cdf) 
- Cumulative histogram of input 

- Followed by inverse cumulative 
histogram of target

Histogram matching
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Histogram matching is done by 
adjusting the cumulative 
distribution function (cdf) 
- Cumulative histogram of input 

- Followed by inverse cumulative 
histogram of target (linear)

Histogram equalization
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Cumulative  
distribution  
function (CDF)
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Histogram equalization
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Input Equalized



Debugging



Debugging
Doubt everything 
Debug pieces in isolation 
- Binary search/divide and conquer 

Display/print everything 
- In particular intermediate results 

Create simple inputs 
- where you can easily manually compute 

the result 

- e.g. constant image, edge image, etc. 

- use small images (e.g. 3x3) 

- including (especially) inputs 
to intermediate stages 

- use input thats isolate 
different failure modes 

Change one thing at a time 
- e.g. to verify that a given 

command has the effect you 
want, modify it to break it 
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Slide credits
Frédo Durand

CS 89/189: Computational Photography, Fall 2015 52


