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8 Administrivia
Assignment 2 available now

- back to programming

- due next Wednesday
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I Last time...

Light & Color
- Physics background

- Color perception & measurement
- Color reproduction

- Color spaces
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What is light?
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) Spectral distribution function (SPD)

Light can be a mixture of many wavelengths

- SPD: intensity as a function of wavelength over enter spectrum
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Light-matter interaction
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I Physical light to perceptual color
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IThe eye as a measurement device
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IA simple light detector model
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d Light detection math
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Stimulus
(arbitrary spectrum)
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I Linear algebra interpretation
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I Linear algebra interpretation

L M S Input
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I Linear algebra interpretation

L M S Input
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I Linear algebra interpretation
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¥ Cone responses to a spectrum s

Integral notation: Matrix notation:
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I Physical light to perceptual color
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) Basic fact of colorimetry

Take a spectrum (which is an infinity of numbers)
Eye produces three numbers (a projection to 3D)

This throws away a lot of information!
- many spectra can produce same S, M, L tristimulus values!
- metamers

- affected by illuminant
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I Warning: tricky thing with color
Cone responses overlap & are not orthogonal!

Basis functions for analysis

- eyes, cameras
are different than for synthesis
- lights, monitors

The RGB in your camera is different than
the RGB in your monitor!
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I Color reproduction (the right way)

We want to compute the combination of R, G, B that will
project to the same visual response as s

span of
spectrum s’ monitor’s
primaries
spectrum s e
visual response span of
to s and s’ eye’s spectral
response
functions
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} Color reproduction as linear algebra

What color do we see when we look at the display?

- Feed C to display
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} Color reproduction as linear algebra

What color do we see when we look at the display?
- Feed C to display
- Display produces s;

Mgrgp C
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} Color reproduction as linear algebra

What color do we see when we look at the display?
- Feed C to display
- Display produces s;

- Eye looks at s, and produces E

E = Mgspyr Mrggp C

S s« SR s - 5G I's - SRB R
M| = |rmy-sg "m:Sc "™ -S| |G
L 't = SR ' - 5@G 'l - SB B
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} Color reproduction as linear algebra

Goal of reproduction: visual response to s and s; is the
same:

Mgy s = Mgyt Sq = f
Substitute in expression for s,

Msmr s = Mgy Mrgp C
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‘ \ These curves are the color-matching functions for the 1931 stan-

CO‘OF matChiﬂg matrix fOr RGB dard observer, The average results of 17 color-normal observers

having matched each wavelength of the equal-energy spectrum
with primaries of 435.8 nm, 546.1 nm, and 700 nm.
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I Meaning of these curves/rows

Monochromatic wavelength A can be reproduced with:
b(A) amount of the 435.8nm primary,

+ ¢(A) amount of the 546.1 primary,

+r(A) amount of the 700 nm primary
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I CIE XYZ color space

Linear algebra to the rescue!
Purely positive basis functions
Linear transformation of CIE RGB

Non-physical primaries

Tristimulus values
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I CIE XYZ color cone

3D spaces can be hard to visualize

Chrominance is our notion of color, as opposed to
brightness/luminance

Recall that our eyes correct for
multiplicative scale factors

- discount light intensity

CS 89/189: Computational Photography, Fall 2015
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Chromaticity
Diagram




I The CIE xyY Color Space

Chromaticity (x,y) can be derived by normalizing the XYZ

color components:
X Y

T X4Y+Z T XY +2Z
- (x,y) characterize color

L

- Y characterizes brightness
Combining xy with Y allows us to represent any color

Plotting on xy plane allows us to see all colors of a single
brightness

CS 89/189: Computational Photography, Fall 2015
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I CIE Chromaticity Chart
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¥ CIE RGB Color Space

Color primaries at:
435.8,546.1,700.0 nm
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} Color Gamuts
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I CIE Chromaticity Chart Features

520 .

White Point

Dominant wavelength 07

Inverse color

0.8-

0.6-

500+
0.5-

y
0.4-

0.31 2

0.2-

0.1-

0.0

00 01

CS 89/189: Computational Photography, Fall 2015



I Perceptually-Uniform Color Spaces

All these color spaces so far are perceptually non-
uniform:s:

- two colors close together in space are not necessarily
visually similar

- two colors far apart are not necessarily very ditterent!

Measuring “perceptual distance” in color spaces
important for many industries

Experiments by MacAdams

CS 89/189: Computational Photography, Fall 2015
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I MacAdams

Test patches

Color Ellipses
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I CIELab and CIELuv Color Spaces

Two attempts to make a perceptually-uniform color
space

MacAdams ellipses become nearly (but not perfectly)
circular T -
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Higher-level color
perception




I Higher-level color perception

Color perception is much more complicated than

response of SML cones...

Visual pathway

- Alot happens after the cones

- But: cone responses are input to further processing

CS 89/189: Computational Photography, Fall 2015
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} Color constancy

Also known as chromatic adaptation

Color of object is perceived as the same even under
varying illumination

For example:

- A white sheet of paper under green illumination is still
perceived as white, even though the reflected light is green!
The human brain inters the white color from the context,
which is “green-ish” too because of the green illumination.
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} Color constancy

CS 89/189: Computational Photography, Fall 2015
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blue and black?

or

white and gold?




http://xkcd.com/1492/ |



I Hering’s opponent process theory (1874)

After sensing by cones, colors are encoded as red
versus green, blue versus yellow, and black versus white

Physiological evidence found in the 1950s

+ + +

i

Red/Green Blue/Yellow Black/White
Receptors Receptors Receptors
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I Dual process theory

Inputs are LMS cone responses

Output has a different parameterization:
- Light-dark

- Blue-yellow
- Red-green | i
Trlchromatlc Opponent Process

CS 89/189: Computational Photography, Fall 2015
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¥ Color opponents wiring

Sums for brightness

Differences for color
First zone (or stage):
opponents

layer of retina with -
three independent
types of cones

At the end, it's just a 3x3
matrix compared to LMS

Second zone (or stage):
signals from cones
either excite or inhibit
second layer of
neurons, producing

'.:' / ) g 2 |
opponent signals L blue or yellow \red or green  / light to

dark
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Opponent Colors

Image Afterimage







Fixate on the + for >30s. Blinking is OK.

- - -’.
B S

When you eventually move your eyes the image will suddenly
reappear or become more vibrant if it didn't disappear.
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I Opponent color spaces

Luminance, red-green, blue-yellow

CIELab

YUV Y - 0.299 0.587 0.114 ] [R
U| = [—0.14713 —0.28886  0.436 G
v 0615  —0.51499 —0.10001| | B
R 1 0 1.13983 | [Y']
G| = |1 —0.39465 —0.58060| |U
B 1 2.03211 0o ||V

YcrCb

- used a lotin image/video compression
Y = 040299 -Rp)+ (0587 -Gp)+(0.114 -Bp)
Cp = 128 — (0.168736 -R}) — (0.331264 -Gj) + (0.5 -Bj)
Cr =128+ (05  -Rj) — (0.418688 -G}y) — (0.081312-B}) YUV YCrCb
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I Programming Assignment 2

Gamma Spanish castle illusion
Colorspaces Grayworld whitebalance
- color2gray Histograms
- luminance—chrominance - autolevels

separation

- visualize RGB histogram
- luminance-only brightness/

contrast

- RGBsYUV

- histogram equalization &
histogram matching

CS 89/189: Computational Photography, Fall 2015
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} Slide credits

Frédo Durand

Steve Marschner

Matthias Zwicker
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