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Today’s agenda
Info on paper discussions 
Noise 
Denoising with multiple images 
- Probability review 

Noise characteristics 
Sources of noise 
Class portraits!
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https://youtu.be/o9BqrSAHbTc



Presentation guidelines
30 minutes per paper (presentation + discussion) 
You may use Powerpoint/Keynote, blackboard, etc. 
Focus on getting across the main points of the paper first 
- Present the paper as if everyone skimmed it but forgot it, or didn't 

understand. 

- First present the problem that the paper solves and the general 
approach. 

- You should then give a clear and concise description of the main 
technical parts of the paper (algorithms, equations, etc).
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Presentation guidelines
Everyone will have read the paper before class. 
- Your job should not be simply reciting what is in the paper 

- Go beyond that, working out exactly how the algorithm (or 
theory) works and deciding how to present this in class. 

- The best way to present an approach may not be the order 
in which things are described in the paper.
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Leave no stone unturned
A paper's content may not be sufficient to fully describe 
how a technique works. 
- may depend on prior papers/techniques 

A major goal of your presentation is to fill in these gaps 
and present a complete picture of the paper in class. 
If there is something you don't understand, you must 
either work it out yourself, or come to office hours so 
that we can resolve it together.
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Presentation guidelines
Some authors provide presentations and other material 
online. 
- Proper attribution rules apply 

Practice, practice, practice 
- You should practice your presentation at home, and time 

yourself, before coming to class. 

- Pay attention to what you did (and did not) like about your 
classmates’ presentation style, level of preparation, etc. with an 
eye toward improving your own presentation skills.
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Paper discussion
Everyone else will not be a passive observer 
Discussant will initiate and facilitate the discussion 
Everyone is expected to participate in the discussions 
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Things to think about
Limitations 
- Do you think everything will work as described? 

- What are the corner/failure cases? 

- The paper may not be forthcoming about limitations 

Future work? 
Relations/comparisons 
- How does the paper relate to other papers we have read? 

- Can you imagine applying the ideas to a different problem?
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Noise



Noisy image
Usually for dark conditions
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Noise
Fluctuation when taking 
multiple shots
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Canon 1D mark IIN at ISO 3200
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What should the histogram be within this box?

Canon 1D mark IIN at ISO 3200
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Photoshop demo
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Should be single values for RGB (constant color)

Histogram of grey patch
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Recap
Noise exists 
Noise can be observed as:  
- fluctuation over time 

- fluctuation over space when should be constant
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Denoising by 
averaging
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Averaging pseudo-code
mean = imSeq[1] 
for i = 2 to imSeq.size(): 

mean += imSeq[i] 
mean /= imSeq.size()
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3 images
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Probabilistic 
perspective



Noise statistics / probability
Denote pixel values like random variables X 
Mean: μ or E[x], the true measurement 
Variance: σ2[x] = ~ average squared error  
- more precisely: average squared difference to mean 

Standard deviation: σ[x] = square root of variance 
- In same unit as measurement
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Estimating the sample mean
Say we have N measurements xi 

How would you estimate their mean?
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Estimating the sample variance
Say we have N measurements xi 

How would you estimate their variance? 
Use original definition: 

- this underestimates variance!
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Estimating the sample variance

Divide by N-1, not by N 
- Otherwise, variance would be underestimated on average 

- called Bessel correction: removes bias 

- Intuition: we use the same samples for estimating the mean 
and variance, which introduces correlation that 
underestimates variance
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Example with coin flip, N=2
We do 2 coin flips 
Try to estimate mean & variance 
Sometimes we’ll be wrong 
- e.g. if we get 0 twice, we’ll think variance is zero 

- but we’d like to be right on average (called unbiased)
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Example with coin flip, N=2
4 scenarios: (0,0) ; (0, 1) ; (1, 0) ; (1, 1) 
- mean estimates: 0 ; 0.5 ; 0.5 ; 1 
- average of the mean estimations: 0.5, equal to true mean (unbiased) 
true variance: 0.25 
sum of squared differences to sample mean: 0; 0.5; 0.5; 0 
estimator                                           0 ; 0.25 ; 0.25 ; 0 
- 0.125 on average, biased 
estimator                                           0 ; 0.5 ; 0.5 ; 0 
- 0.25 on average, unbiased
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Signal-to-noise ratio (SNR)
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SNR in practice
Be careful. Sometimes variance is zero (for no good 
reason) and will break things 
- practical hack: take the max of σ2 and a small number, e.g. 

1e-6

CS 89/189: Computational Photography, Fall 2015 31

Af
te

r a
 sl

id
e 

by
 F

ré
do

 D
ur

an
d



Basic probability 
tools



Goal
Analyze how the mean & variance evolve when we 
denoise by averaging multiple frames 
Formula for average: 
- addition 

- multiply by scalar
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Expected value
E[kx] = 
E[x+y] = 
E[xy] =
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Expected value
E[kx] = kE[x] 
E[x+y] = 
E[xy] =
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Expected value
E[kx] = kE[x] 
E[x+y] = E[x]+E[y] 
E[xy] =
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Expected value
E[kx] = kE[x] 
E[x+y] = E[x]+E[y] 
E[xy] = E[x]E[y]?
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Expected value
E[kx] = kE[x] 
E[x+y] = E[x]+E[y] 
E[xy] = E[x]E[y] 
- only when they are uncorrelated! 
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Variance identity
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Multiplication by k: 

Addition of two random variables

Variance properties
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variance is additive!

not linear, quadratic!
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Take home message
Noise/measurement as random variable 
Mean, variance, standard deviation 
Variance: 
- multiplication by k => k2 

- addition => addition 

SNR, log of SNR
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Convergence



Convergence
Assume images are IID random measurements 
Variance for one image:  
Average: 
What is the variance of the average?
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Convergence
Assume images are IID random measurements 
Variance for one image:  
Average:
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IMPORTANT RESULT
Denoising by averaging:  
- variance is reduced as 1/N 

- standard deviation (error) is reduced by sqrt(N)
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Alignment



Brute force
Assignment 3! 
Try all possible shifts within +/- maxOffset 
Keep the one with minimum sum of square differences
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Casio EXF1, Google glass
Can do denoising by aligning and averaging N images
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Noise 
characteristics



Analyzing noise
Camera on tripod, many pictures 
Compute mean, variance, stddev, SNR

CS 89/189: Computational Photography, Fall 2015 50

Af
te

r a
 sl

id
e 

by
 F

ré
do

 D
ur

an
d



Exposure
Get the right amount of light to sensor/film 
Two main parameters: 
- Shutter speed 

- Aperture (area of lens) 
+ sensor sensitivity (ISO)  

In what follows, I kept the exposure the same and 
explored the tradeoff between shutter speed and ISO
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Canon 1D IIN at ISO 3200
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Canon 1D IIN at ISO 3200
Looks noisy, especially in dark areas
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Canon 1D IIN at ISO 3200
Denoised with 45 images (estimator of mean)
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Canon 1D IIN at ISO 3200
Standard deviation (some alignment issues...)
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Canon 1D IIN at ISO 3200
Standard deviation (some alignment issues...)

For each pixel, for each channel, compute  
 
 

and display as an image

s
N
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Canon 1D IIN at ISO 3200
Standard deviation (some alignment issues...)

Observations: 
more noise in bright image areas

more less
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Canon 1D IIN at ISO 3200
log SNR
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Canon 1D IIN at ISO 3200
log SNR — looks a lot like the image!

even though we have more noise, 
bright areas have better SNR
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Observations
Noise is more visible in dark areas 
Noise is numerically higher in bright areas 
SNR is better in bright areas
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Canon 1D IIN at ISO 3200
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Canon 1D II, ISO 100
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Canon 1D IIN at ISO 3200
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Canon 1D II at ISO 100
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Canon 1D IIN at ISO 3200
Af

te
r a

 sl
id

e 
by

 F
ré

do
 D

ur
an

d

log SNR



Canon 1D IIN at ISO 1600
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Canon 1D IIN at ISO 400
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Nikon D3s at 1600 ISO
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Nikon D3s at 1600 ISO
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Canon 1D Mark IIN at 1600 ISO
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Recap and questions?
Noise level depends on 
- pixel intensity 

- ISO 

- color channel 

- camera
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Sources of noise



Photon shot noise
The number of photons arriving during an exposure 
varies from exposure to exposure and from pixel to 
pixel, even if the scene is completely uniform 
On average you might get 100 photons, but sometimes 
it will be 98, sometimes 103, etc. 
This phenomenon is governed physics and the value 
follows the Poisson distribution.
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Poisson distribution
Expresses the probability that a certain number of events will 
occur during an interval of time 
Applicable to events that occur 
- with a known average rate, and 

- independently of the time since the last event 

If on average λ events occur in an interval 
of time, the probability p that k events 
occur instead is
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Poisson distribution
The mean and variance of the Poisson distribution are 

The standard deviation is 

Deviation grows slower than average.
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Photon shot noise
Photons arrive in a Poisson distribution 

so 

Shot noise scales as square root of number of photons
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log SNR — dominated by Poisson, ~sqrt(image)

Canon 1D IIN at ISO 3200
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Dark current
Electrons dislodged by random thermal activity 
Increases linearly with exposure time 
Increases exponentially with temperature 
Varies across sensor
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Canon 20D, 612 sec exposure
(http://theory.uchicago.edu/~ejm/pix/20d/tests/noise/)
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Hot pixels
Electrons leaking into well due to manufacturing defects 
Increases linearly with exposure time 
Increases with temperature, but hard to model 
Changes over time, and every camera has them
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Fixing dark current and hot pixels
Solution #1: chill the sensor 
Solution #2: dark frame subtraction 
- available on high-end SLRs 

- compensates for average dark current 

- also compensates for hot pixels and FPN
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Fixed pattern noise (FPN)
Manufacturing variations across pixels, columns, blocks 
Mainly in CMOS sensors 
Doesn’t change over time, so read once and subtract
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Read noise
Thermal noise in readout circuitry 
Again, mainly in CMOS sensors 
Not fixed patterns, so only solution is cooling
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Recap
Photon shot noise 
- unavoidable randomness in number of photons arriving 
- grows as the sqrt of # photons, so brighter lighting and longer exposures 

will be less noisy 
Dark current noise 
- grows with exposure time and sensor temperature 
- minimal for most exposure times used in photography 
- correct by subtraction, but only corrects for average dark current 
Hot pixels, fixed pattern noise 
- caused by manufacturing defects, correct by subtraction 
Read noise 
- electronic noise when reading pixels, unavoidable
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Digital pipeline
Photosites transform photons into charge (electrons) 
- The sensor itself is linear 

Gets amplified (depending on ISO setting) 
Then goes through analog-to-digital converter 
- up to 14 bits/channel these days 

Stop here when shooting RAW 
Then demosaicing, denoising, white balance, a response curve, 
gamma encoding are applied 
Quantized and recorded as 8-bit JPEG
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Pipeline & noise
This is a conceptual diagram, don’t take it too literally  
- e.g. the A-to-D converter is a serious source of noise, but 

usually electronic noise, not quantization artifacts
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ISO amplifies
e.g. going from ISO 100 to ISO 400 amplifies by 4 
both noise & signal
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ISO 3200
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ISO 100
A lot less noisy!
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Pipeline & noise
For a given signal level, and a given desired image brightness… 
Two alternatives 
- use low ISO and brighten digitally 
- use high ISO to get brightness directly 
The latter gives less noise because you don’t amplify post-gain noise
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ISO recap
ISO is a simple gain 
- amplifies noise as well 

But when the signal is low, it’s better to amplify as early 
as possible (ISO rather than digitally) 
Ideally, you make sure the signal is high by use a slower 
exposure or larger aperture

CS 89/189: Computational Photography, Fall 2015 90

Af
te

r a
 sl

id
e 

by
 F

ré
do

 D
ur

an
d



Brain teaser
For the same light level and electronic (per photosite 
read noise), and same total sensor size, is it better to: 
- have a 16 Mpixel sensor and average groups of 4 pixels to 

yield a 4 Mpixel image 

- have a 4Mpixel sensor (with bigger photosites) 

Analyze photon noise and read noise 
- careful about adding vs. averaging
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Different regimes
For bright pixels (in fact, most pixels), photon noise 
dominates 
For dark pixels: electronic (read) noise dominates 
For long exposures, thermal noise kicks in
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Questions?
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Slide credits
Frédo Durand 
Marc Levoy
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