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ITimeIapse photography in the news
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https://youtu.be/MPql1VHbYI4


https://youtu.be/MPql1VHbYl4

f Today’s agenda

Linear filtering & convolution

- blurring

- sharpening

Complexity analysis

- Optimizations

Denoising from a single image
- Bilateral tiltering

CS 89/189: Computational Photography, Fall 2015
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Blur, sharpen




I Image processing motivation

Sharpen images
Downsample images

Fake depth of tield

Smooth out noise, skin blemishes

nd

We must understand convolution!

slide by Frédo Dura

After a
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ISharpening

pueinq opoi4 Ag apl|s e Joyy
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I Downsampling

Yikes! Herringbone patterns

Downsample by
a scale of 0.2

After a slide by Frédo Durand




I Downsampling

We “randomly” pick a color in the high
frequency pattern

Downsample by
a scale of 0.2

After a slide by Frédo Durand

18



} Downsampling

Solution: blur the pattern to get
average color over new pixels

After a slide by Frédo Durand
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N Fake tilt shift

http://www.tiltshiftphotography.net/photoshop-tutorial.php

After a slide by Frédo Durand
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I Blur in optics

Diffraction
Lens aberrations
Object movement

Camera shake

Can we remove blur computationally?

- invert the blur equation

After a slide by Frédo Durand

- deconvolution
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Lens diffraction B

http://luminous-landscape.com/
tutorials/understanding-series/u-
diffraction.shtml

(heavily cropped) *‘

fi11 fl22

See also

http://www.cambridgeincolour.com/
tutorials/diffraction-photography.htm

After a slide by Frédo Durand
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http://luminous-landscape.com/tutorials/understanding-series/u-diffraction.shtml
http://www.cambridgeincolour.com/tutorials/diffraction-photography.htm

I Blur example: spherical aberration

Pixel value: weighted average of local color

N EN } BB

object with

Sensor color variation

lens

After a slide by Frédo Durand
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¥ Remove optical artifacts

Calibrate lenses and remove blur

e.g. DXO
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After a slide by Frédo Durand
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Removing camera shake

Original Naive Sharpening Fergus et al’s algorithm
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Convolution 101




I Blur as convolution

Replace each pixel by a linear combination of its
neighbors.

- only depends on relative position of neighbors

The prescription for the linear combination is called the
"convolution kernel”.

local image data kernel modified image

ofolol [ L
s ] odosjol |7l
ofrfes] L] ]
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} Linear shift-invariant filtering

Replace each pixel by a linear combination of its
neighbors.

- only depends on relative position of neighbors

The prescription for the linear combination is called the
"convolution kernel”.

local image data kernel modified image

ofolol [ L
s ] odosjol |7l
ofrfes] L] ]
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- same kernel for all pixels

After a slide by Frédo Durand




I Example of linear NON-shift invariant transformation?
e.g. neutral-density graduated filter (darken high y):

- J(x,y) = l(x,y)*(1-y/ymax)

Formally, what does linear mean?

- For two scalars a & b and two inputs x & y: F(ax+by) = aF(x)+bF(y)
What does shift invariant mean?

- For a translation T: F(T(x)) = T(F(x))

- It I blur a translated image, | get a translated blurred image

After a slide by Frédo Durand
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¥ Questions?

CS 89/189: Computational Photography, Fall 2015
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§ Convolution algorithm

set output 1mage to zero
for all pixels (x,y) 1n output 1image
for all (x’,y’) 1n kernel
out(x,y) += 1nput(x+x’,y+y’)*xkernel(x’,y’)

(this assumes the kernel coordinates are centered)

local image data kernel modified image

ofotol [ L]
s ] odosjol |7l
ofrfes] L]
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¥ Questions?

local image data kernel modified image

ofotol [ L]
s ] odosjol |7l
ofrfes] L]
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I Convolution (warm-up slide)
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' After a slide by Frédo Durand
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¥ Convolution (warm-up slide)
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¥ Convolution (warm-up slide)

1

=

9

R

=

%

O

O

® I — I . —
0
pixel offset
original filtered

(no change)

f ; f=f®d

' After a slide by Frédo Durand
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¥ Convolution

coefficient

pixel offset

original

' After a slide by Frédo Durand
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¥ Convolution

coefficient

&

pixel offset
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' After a slide by Frédo Durand
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¥ Convolution
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' After a slide by Frédo Durand
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I Blurring

=

5 1/3

2
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pixel offset
original blurred

(applied in both dimensions)

' After a slide by Frédo Durand
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I Blur examples

:
impulse

original

After a slide by Frédo Durand
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I Blur examples

3 "
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¥ Questions?

CS 89/189: Computational Photography, Fall 2015
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I More formally: Convolution

(I®g)(x /I g(x —x") dx

nd

slide by Frédo Dura

After a
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¥ Questions?

After a slide by Frédo Durand
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What's up with
the flipping?




8 Convolution & probability

Convolution was first used by
Laplace to study the probability of
the sum of two random variables

After a slide by Frédo Durand
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I Random variables

How can X+Y=07

- X=-1,Y=1
- X=0, Y=0
- X=1,Y="-1 A PO
S 30%
> 20%
2 1 0 1

S50%

40%

10%

-1

0

1

CS 89/189: Computational Photography, Fall 2015

Probability?

- P(X=-1)*P(Y=1)
- P(X=0)*P(Y=0)
- P(X=1)*P(Y=-1)
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I Sum of random variables

ZP

nd

slide by Frédo Dura

After a

P(X+Y =k) =

How can X+Y=07

- X=-1,Y=1
- X=0,Y=0
- X=1,Y=-1

30%

50%

20%

-1

0

1

P(Y =k —k)

— k’
50%
40%
10%
10 1

CS 89/189: Computational Photography, Fall 2015

Probability?

- P(X=-1)*P(Y=1)
- P(X=0)*P(Y=0)
- P(X=1)*P(Y=-1)
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¥ Questions?

After a slide by Frédo Durand
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§ Compare

nd

Forward model: light goes from x to x+x’

Backward model: light at x comes from x-x’

slide by Frédo Dura

After a

CS 89/189: Computational Photography, Fall 2015
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I Image processing

| will often use the term “convolution” improperly and
fail to flip the kernel

- Called correlation

- Won't matter most of the time because our kernels are
symmetric

After a slide by Frédo Durand
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¥ Questions?
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Movie break




https://youtu.be/HyZflIxwsfl


https://youtu.be/HyZfIlxwsfI




http://graphics.stanford.edu/courses/cs178/applets/
convolution.html

After a slide by Frédo Durand
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http://graphics.stanford.edu/courses/cs178/applets/convolution.html

I Box filter

' After a slide by Frédo Durand
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I Nice and smooth: Gaussian

' After a slide by Frédo Durand
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I Gaussian formula

http://en.wikipedia.org/wiki/Gaussian_function

2

ae 202

r is the distance to the center

a is a normalization constant

- | usually just normalize my kernels
after the tact

o is the standard deviation and controls
the width of the Gaussian

CS 89/189: Computational Photography, Fall 2015 60
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http://en.wikipedia.org/wiki/Gaussian_function

http://en.wikipedia.org/wiki/Gaussian_function

I Gaussian formula

2
ae 207
1 —
0.8 —
. . e o 0.6 —
Gaussians have infinite support os -
0.2 —
0

- >0 everywhere

but are often truncated

- consider Gaussian to be zero beyond e.g. 30 ~ =

- for computational tractability/efticiency

After a slide by Frédo Durand
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Sharpening




 How can we sharpen?

Blurring was easy

Sharpening is not as obvious

After a slide by Frédo Durand
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 How can we sharpen?

Blurring was easy

Sharpening is not as obvious

ldea: amplify the stuff not in the blurry image

nd

output = input + k*(input-blur(input))

slide by Frédo Dura

After a

CS 89/189: Computational Photography, Fall 2015
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Sharpening

blurred
= high pass

E
3
O
3
£ _ sharpened
O - .
- IMmage
2
<
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I Sharpening: kernel view

Recall

fl=frk(f-fog

f is the input
. f’is a sharpened image
2 ¢ is a blurring kernel

k is a scalar controlling the strength of sharpening

slide by

After a

CS 89/189: Computational Photography, Fall 2015
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I Sharpening: kernel view

Recall

fl=frk(f-fog

Denote 6 the Dirac kernel (pure impulse)

f=foo

slide by Frédo Durand

After a

CS 89/189: Computational Photography, Fall 2015
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I Sharpening: kernel view

Recall

f'=f+k=(f-f®g)
fr=fed+k«(fed-feg)
fr=fo((k+1)5-g)

Sharpening is also a convolution

slide by Frédo Durand

After a
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ISharpening kernel

Note: many other sharpening kernels exist
(just like we saw multiple blurring kernels)

Amplity the difference between a pixel and its neighbors
fr=rf®{(k+1)s—-g)

nd

slide by Frédo Dura

blue: positive
red: negative

CS 89/189: Computational Photography, Fall 2015
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I Alternate interpretation
out = input + k*(input-blur(input))
out = (1 + k)*input - k*blur(input)
out = lerp(blur(input), input, 1+k)

- linearly extrapolate from the blurred image “past” the
original input image

CS 89/189: Computational Photography, Fall 2015
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Unsharp mask




I U nSha rp maSk http://www.tech-diy.com/UnsharpMasks.htm

Sharpening is often called "unsharp mask” because
photographers used to sandwich a negative with a
blurry positive film in order to sharpen

egative | |
Negative 'l‘ (1
- — — |
'
aptioesad plusis spacer prodeces i pap
oy conleod amoust of shurpness
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After a slide by Frédo Durand
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http://www.tech-diy.com/UnsharpMasks.htm

' After a slide by Frédo Durand

Flg.4: The two
examples here shaw
a detail of the brick-
work 10 the left of
the church door. The
one on the left was
printed with the
negative alone - the
one on the right was
printed with both
nogative and mask
as a sandwich. The
increase in local
contrast and edge
sharpnuss s minute,
but clearty visible.
Grade 2.5 was used
for the straight print
bt incroased to 4.5
for the sandwiched
Image 10 compon-
sate for the reduced
contrast,

Fig.5: These two
examples show a
dotail of the lower
right hand side of
the church door.
Here the difference
In sharpness |s
clearly visible
between the (left)
negative and (right)
sandwich prints.

Al photos © Rolph W Lombraoht

http://www.tech-diy.com/images/unsharp2.jpg

CS 89/189:

Computational Photography, Fall 2015
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http://www.tech-diy.com/images/unsharp2.jpg

B Unsharp mask

http://en.wikipedia.org/wiki/Unsharp_masking

http://www.largeformatphotography.info/unsharp/

http://www.tech-diy.com/UnsharpMasks.htm

http://www.cambridgeincolour.com/tutorials/unsharp-mask.htm

After a slide by Frédo Durand
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Problem with excess

Haloes around strong edges
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I Oversharpening

1.7
11.2

8 = 8

R

O

ko
I III‘ ‘\II |||‘TTT|,

-0.25
-0.3

original Sharpened

(differences are accentuated;
constant areas are left untouched).

After a slide by Frédo Durand
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f Bells and whistles

Apply mostly on luminance

Old Clarity in Lightroom/Adobe Camera Raw
- As far as | understand, apply only for mid-tones
- Avoids haloes around black and white points
Only apply at edges

- To avoid the amplitication of noise

Sharpening chrominance as well

After a slide by Frédo Durand

- But with very large blur
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} Lightroom demo

CS 89/189: Computational Photography, Fall 2015
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Oriented filters




I Gradient: finite difference

horizontal gradient [[-1, 1]]
vertical gradient: [[-1], [1]]

slide by Frédo Durand

After a

CS 89/189: Computational Photography, Fall 2015
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I Gradient: finite difference

horizontal gradient [[-1, 1]]
vertical gradient: [[-1], [1]]

Horizontal gradient Vertical gradient Gradient magnitude
(absolute value) (absolute value)

After a slide by Frédo Durand
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I Gradient

e.g. Sobel [http://en.wikipedia.org/wiki/Sobel_operator]

—1 0 1 -1 -2 -1

G, =([—-2 0 2l ®A and Gy, = |0 0 0 | KA
—1 0 1 +1 +2 +1
Horizontal gradient Vertical gradient

After a slide by Frédo Durand
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d Convolution cost?

set output 1mage to zero
for all pixels (x,y) 1n output 1image
for all (x’,y’) 1n kernel
out(x,y) += 1nput(x+x’,y+y’)*xkernel(x’,y’)

Cost?
- O(input.width * input.height * kernel.width * kernel.height)

After a slide by Frédo Durand
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Separable filters




) Separability

Sometimes the 2D kernel can be decomposed into the
convolution of a horizontal and a vertical filter.

Example: box
- g(x) = const if (-k < x < k), 0 otherwise

- glxy) = g(x) ® gly)

- (separability doesn’t require the two 1D kernels to be the
same, but it's the case here)

o —

CS 89/189: Computational Photography, Fall 2015 88
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d Separable box blur

First blur horizontally using g(x)
Then blur vertically using g(y)

nd

X |

slide by Frédo Dura

| After a

CS 89/189: Computational Photography, Fall 2015
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} Separable convolution cost?

for all pixels (x,y) 1n output 1image
for all x’ 1n kernel
outX(x,y) += 1nput(x+x’,y)*kernel(x’)
for all pixels (x,y) 1n output 1image
for all y’ 1n kernel
out(x,y) += outX(x,y+ty’)xkernel(y’)

§ Horizontal cost? O(input.width * input.height * kernel.width)
é Vertical cost? O(input.width * input.height * kernel.height)
g Total: O(input.width * input.height * (kernel.height+kernel.width))
é Instead of: O(input.width * input.height * (kernel.height*kernel.width))

CS 89/189: Computational Photography, Fall 2015 90



} Good news

Gaussians are separable too

See Assignment 4!

CS 89/189: Computational Photography, Fall 2015
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I Box blur: Can we do even better?

Can we get even better asymptotic complexity?

Very large kernel sizes?

CS 89/189: Computational Photography, Fall 2015
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I Box blur: Can we do even better?

pixel i

Since 2D box is separable, let’s focus
on the 1D case [[D:ﬁ[[D:D

The neighborhoods of pixel i and v

neighborhood(i)

pixel 1+1 are very similar I:I:I:I:I:I:I:I:Ij:l
In fact, they only differ by 2 pixels, so: 'T’

neighborhood(i+1)
out(i+l) = out(1) + (Iin(1+k+1l) - in(1-k+1))/(2k+1)

Asymptotically independent of kernel size, depends only on
Image size!

CS 89/189: Computational Photography, Fall 2015 93



I Box blur cost?

Nalve: O(input.width * input.height * (kernel.height*kernel.width))
Sepa rable:  Ol(input.width * input.height * (kernel.height+kernel.width))

Incremental: O(input.width * input.height -—Heermetheight-+ermetwicth))
O(input.width * input.height)

After a slide by Frédo Durand
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l Repeated convolution

|

CS 89/189: Computational Photography, Fall 2015
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l Repeated convolution

i

A4

CS 89/189: Computational Photography, Fall 2015
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} Repeated convolution

CS 89/189: Computational Photography, Fall 2015
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l Repeated convolution

CS 89/189: Computational Photography, Fall 2015

98



l Repeated convolution

Convolution of two box kernels yields a tent kernel

_ S
N

CS 89/189: Computational Photography, Fall 2015
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} Repeated convolution

Yet another convolution with a box yields piecewise quadratic

Ha
N
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} Repeated convolution

The pattern continues

- Box ftiltering the piecewise quadratic will yield a piecewise
cubic, and so on.

Each time we make the kernel smoother

Taking this to the limit will yield a Gaussian

CS 89/189: Computational Photography, Fall 2015 101



delta 1D box box box ® box box ® box ® box box ® box ® box ® box box ® box ® box ® box ® box

Photoshops' Gaussian

not a true Gaussian



I Gaussian blur as multi-box blur

Can approximate Gaussian blur with several box blurs
Asymptotically independent of kernel size!

Assignment 4 extra credit

- whatis Gaussian's o for 5 box blurs?

CS 89/189: Computational Photography, Fall 2015 103



Nitty-gritty stuff




I Best input to debug convolution

Impulse

slide by Frédo Durand

After a
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d Centering the kernel

Our images are defined with 0,0 in the upper left corner

Kernels are usually assumed to have origin at the center

After a slide by Frédo Durand
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I Normalization

As a rule of thumb, you want kernels to be normalized
when you want the output to preserve the overall
brightness of the image.

After a slide by Frédo Durand
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Denoising from a
single image




I Denoising from 1 image

We can’t take average over multiple
Images

After a slide by Frédo Durand
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I Denoising from 1 image

We can't take average over multiple | SIOEMIEEL
images S

ldea 1: take a spatial average

- Most pixels have roughly the same color
as their neighbor

- Noise looks high frequency => do a low
DASS

Here: Gaussian blur

After a slide by Frédo Durand
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} Gaussian blur

After Gaussian blur,

' After a slide by Frédo Durand
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} Gaussian blur

Noise is mostly gone After Gaussian blur,

But image is blurry .
- duh!

' After a slide by Frédo Durand
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Bilateral filtering




} Gaussian blur

Noise is mostly gone After Gaussian blur,

But image is blurry
- duh!

Problem: not all neighbors have the
same color

Bilateral filter idea: only consider
neighbors that have similar values

After a slide by Frédo Durand
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I Bilateral filter

Tomasi and Manduci 1998 http://www.cse.ucsc.edu/~manduchi/Papers/
ICCV98.pdf

Developed for denoising

Related to
- SUSAN filter [Smith and Brady 95] http://citeseer.ist.psu.edu/smith?5susan.html

- Digital-TV [Chan, Osher and Chen 2001] http://citeseer.ist.psu.edu/
chanO1digital.html

- sigma filter http://www.geogr.ku.dk/CHIPS/Manual/t187.htm

Full survey: http://people.csail.mit.edu/sparis/publi/2009/fntcgv/
Paris_09_Bilateral_filtering.pdf

After a slide by Frédo Durand
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) Bilateral filtering

Images are often piecewise constant with noise

added

- Then nearby pixels are a different noisy
measurement of the same value

Simply blurring doesn’t work

- also blurs edges

We should blur only within each constant-
colored region =

- not across edges between regions

After a slide by Marc Levoy
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) Bilateral filtering

It pixels are similar in intensity, they are probably f===
from the same region of the scene

Perform a “convolution” where the weight
applied to nearby pixels falls off with:

- increasing (x,y) distance from the pixel being

5 blurred

= - increasing intensity difference from the pixel

s being blurred 00 o
s i.e.blurin domain and range dimensions!

<

CS 89/189: Computational Photography, Fall 2015 [Tomasi and Manduchi 1998] 117



) Start with Gaussian filtering

Here, input is a step function + noise

St e

S

After a slide by Frédo Durand

output input
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I Gaussian filter as weighted average

Weight of £ depends on distance to x

After a slide by Frédo Durand

output input
119



§ The problem of edges

Here, I(£) "pollutes” our estimate J(x)
It is too different

After a slide by Frédo Durand
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I Principle of Bilateral filtering

Penalty g on the intensity difference

J(x) = E f(x,8) gU&-1x) I(E)

k(x)
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[Tomasi and Manduchi 1998]

) Bilateral filtering

Spatial Gaussian f

J(x) = k(lx) Y f(x,8)eU&-1x) IE)

"""""
o
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[Tomasi and Manduchi 1998]

) Bilateral filtering

Spatial Gaussian f
Gaussian g on the intensity difference

J(x) = g 2 f 5 gUE) = 1)) (&)
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[Tomasi and Manduchi 1998]
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I Bilateral filtering is non-linear ..

The weights are different for each output pixel

1
J(x) = f(x,g) gUE)-1(x)) 1
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I Bilateral filter

- Vi

é v »
" L “. L]
_ & r

After a slide by Frédo Durand

Noisy input After bilateral filter



After a slide by Frédo Durand

Noisy input After bilateral filter

chroma
noise



I Chroma noise

Our visual system has different spatial frequency
response to chrominance vs. luminance

Pertorm Bilateral filtering in YUV
Bigger spatial filterin U & V

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 128



B Normal RGB Bilateral filt
Yo . » |
-.".‘ {. .}“
- 1 l ;
' o o -
S ~ R
AR T s

nd

slide by Frédo Dura

After a

Noisy input After bilateral filter



After a slide by Frédo Durand

Noisy input After YUV bilateral filter
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) Bilateral filtering

Also used to remove skin blemishes in portraits

- Surtace blur in photoshop
(although box spatial kernel instead of Gaussian)

Usetul for lots of other things
- More in tfuture lectures

- In particular, tone mapping for contrast reduction and high-
dynamic-range imaging

After a slide by Frédo Durand
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¥ Photoshop surface blur

Note the radius and threshold controls

- same as Odomain @Nd Orange

|m| Add an adjustment

Radius: lS ‘ pixels

Threshold: | 15 levels

‘w
: Background
-y

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 133



Assignment 4




IAssignment 4

Convolution
Separable
Unsharp mask
Gradient
Denoising

YUV denoising
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Other approaches
to denoising




I Denoising

Bayesian coring in the wavelet domain
- Simoncelli & Adelson

Big heuristics

- BM3D

NL means

- Buades et al.

- Bilateral in the space of patches

Statistics of natural images
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