CS 89.15/189.5, Fall 2015
COMPUTATIONAL ASPECTS OF
DIGITAL PHOTOGRAPHY

Filtering & convolution

Wojciech Jarosz
wojciech.k.jarosz@dartmouth.edu

@ Dartmout

mailto:wojciech.k.jarosz@dartmouth.edu

IYour Spanish castle illusions

CS 89/189: Computational Photography, Fall 2015

Yuan Tian

Rt s

6 @

-
D
B
3
:
£
P
z

——

~

Yuan Tian

Tianyuan Zhang

Tianyuan Zhang

Weichen

Weichen

Maxim

ITimeIapse photography in the news

CS 89/189: Computational Photography, Fall 2015

11

https://youtu.be/MPql1VHbYI4

https://youtu.be/MPql1VHbYl4

f Today’s agenda

Linear filtering & convolution

- blurring

- sharpening

Complexity analysis

- Optimizations

Denoising from a single image
- Bilateral tiltering

CS 89/189: Computational Photography, Fall 2015

13

Blur, sharpen

I Image processing motivation

Sharpen images
Downsample images

Fake depth of tield

Smooth out noise, skin blemishes

nd

We must understand convolution!

slide by Frédo Dura

After a

CS 89/189: Computational Photography, Fall 2015

15

ISharpening

pueinq opoi4 Ag apl|s e Joyy

16

CS 89/189: Computational Photography, Fall 2015

I Downsampling

Yikes! Herringbone patterns

Downsample by
a scale of 0.2

After a slide by Frédo Durand

I Downsampling

We “randomly” pick a color in the high
frequency pattern

Downsample by
a scale of 0.2

After a slide by Frédo Durand

18

} Downsampling

Solution: blur the pattern to get
average color over new pixels

After a slide by Frédo Durand

19

N Fake tilt shift

http://www.tiltshiftphotography.net/photoshop-tutorial.php

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 20

http://www.tiltshiftphotography.net/photoshop-tutorial.php

I Blur in optics

Diffraction
Lens aberrations
Object movement

Camera shake

Can we remove blur computationally?

- invert the blur equation

After a slide by Frédo Durand

- deconvolution

CS 89/189: Computational Photography, Fall 2015 2

Lens diffraction B

http://luminous-landscape.com/
tutorials/understanding-series/u-
diffraction.shtml

(heavily cropped) *‘

fi11 fl22

See also

http://www.cambridgeincolour.com/
tutorials/diffraction-photography.htm

After a slide by Frédo Durand

fl32 fl45

http://luminous-landscape.com/tutorials/understanding-series/u-diffraction.shtml
http://www.cambridgeincolour.com/tutorials/diffraction-photography.htm

I Blur example: spherical aberration

Pixel value: weighted average of local color

N EN } BB

object with

Sensor color variation

lens

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015

23

¥ Remove optical artifacts

Calibrate lenses and remove blur

e.g. DXO

- gt o

0,”_
.

"=

> \
B \.‘.
~d
. -
i~ 4 .
- . Sy
28R _ : eyl L
: " "‘.‘v"‘
’ oy \-.‘o -
.~ =

Canon l’;OS—l_E—) ﬁ&mﬂu
and Sigma 1224mm {/45-56 EX DG

Before
DxO Ophics Pro

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 24

Removing camera shake

Original Naive Sharpening Fergus et al’s algorithm

3 '4\4
R A
' '. .‘IT

-
-
(O
—
>

O
O

3

‘O
—

L
>

0
Q

O

N
(O
—
Q

K=

<

CS 89/189: Computational Photography, Fall 2015

Convolution 101

I Blur as convolution

Replace each pixel by a linear combination of its
neighbors.

- only depends on relative position of neighbors

The prescription for the linear combination is called the
"convolution kernel”.

local image data kernel modified image

ofolol [L
s] odosjol |7l
ofrfes] L]]

CS 89/189: Computational Photography, Fall 2015 27

After a slide by Frédo Durand

} Linear shift-invariant filtering

Replace each pixel by a linear combination of its
neighbors.

- only depends on relative position of neighbors

The prescription for the linear combination is called the
"convolution kernel”.

local image data kernel modified image

ofolol [L
s] odosjol |7l
ofrfes] L]]

CS 89/189: Computational Photography, Fall 2015 28

- same kernel for all pixels

After a slide by Frédo Durand

I Example of linear NON-shift invariant transformation?
e.g. neutral-density graduated filter (darken high y):

- J(x,y) = l(x,y)*(1-y/ymax)

Formally, what does linear mean?

- For two scalars a & b and two inputs x & y: F(ax+by) = aF(x)+bF(y)
What does shift invariant mean?

- For a translation T: F(T(x)) = T(F(x))

- It I blur a translated image, | get a translated blurred image

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 29

¥ Questions?

CS 89/189: Computational Photography, Fall 2015

30

§ Convolution algorithm

set output 1mage to zero
for all pixels (x,y) 1n output 1image
for all (x’,y’) 1n kernel
out(x,y) += 1nput(x+x’,y+y’)*xkernel(x’,y’)

(this assumes the kernel coordinates are centered)

local image data kernel modified image

ofotol [L]
s] odosjol |7l
ofrfes] L]

CS 89/189: Computational Photography, Fall 2015 3

After a slide by Frédo Durand

¥ Questions?

local image data kernel modified image

ofotol [L]
s] odosjol |7l
ofrfes] L]

CS 89/189: Computational Photography, Fall 2015 32

After a slide by Frédo Durand

I Convolution (warm-up slide)

1

e

-

Q

O

b -

Q

@)

O

— 1 T 1 .
0

pixel offset

original

' After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 33

¥ Convolution (warm-up slide)

1

)

-

Q

R

=

v

O

O
e ® [— I —
o
= 0
O .
0 pixel offset
9
‘O
I
3
o original filtered
0 (no change)
0
I
<

CS 89/189: Computational Photography, Fall 2015 34

¥ Convolution (warm-up slide)

1

=

9

R

=

%

O

O

® I — I . —
0
pixel offset
original filtered

(no change)

f ; f=f®d

' After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 35

¥ Convolution

coefficient

pixel offset

original

' After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015

¥ Convolution

coefficient

&

pixel offset

ojojofojofo]o
i ojojofojofo]o
orgimna ojojofojofo]o
ojojofojofo]1

' After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 37

¥ Convolution

c

5 1/3

=

Q

O

O

1 T] —
0

pixel offset

original

' After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015

I Blurring

=

5 1/3

2

%

O

O

® 1 T] —
0
pixel offset
original blurred

(applied in both dimensions)

' After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 39

I Blur examples

:
impulse

original

After a slide by Frédo Durand

c

¥ 1/3

=

Q

O

O

1 | ' | T] —
0

pixel offset

CS 89/189: Computational Photography, Fall 2015

8/3

filtered

I Blur examples

3 "
-
o D
impulse C 1/3 8/3
8 \
O
I D I ® I | ' | T] |
original 0 filtered
pixel offset
. 8 8
s edge 4 S 1/3
L =
i ©
B O
% \ \ QS = \ \
g original 0 filtered
I pixel offset

CS 89/189: Computational Photography, Fall 2015

¥ Questions?

CS 89/189: Computational Photography, Fall 2015

42

I More formally: Convolution

(I®g)(x /I g(x —x") dx

nd

slide by Frédo Dura

After a

CS 89/189: Computational Photography, Fall 2015

/

44

¥ Questions?

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 45

What's up with
the flipping?

8 Convolution & probability

Convolution was first used by
Laplace to study the probability of
the sum of two random variables

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 47

I Random variables

How can X+Y=07

- X=-1,Y=1
- X=0, Y=0
- X=1,Y="-1 A PO
S 30%
> 20%
2 1 0 1

S50%

40%

10%

-1

0

1

CS 89/189: Computational Photography, Fall 2015

Probability?

- P(X=-1)*P(Y=1)
- P(X=0)*P(Y=0)
- P(X=1)*P(Y=-1)

48

I Sum of random variables

ZP

nd

slide by Frédo Dura

After a

P(X+Y =k) =

How can X+Y=07

- X=-1,Y=1
- X=0,Y=0
- X=1,Y=-1

30%

50%

20%

-1

0

1

P(Y =k —k)

— k’
50%
40%
10%
10 1

CS 89/189: Computational Photography, Fall 2015

Probability?

- P(X=-1)*P(Y=1)
- P(X=0)*P(Y=0)
- P(X=1)*P(Y=-1)

49

¥ Questions?

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 50

§ Compare

nd

Forward model: light goes from x to x+x’

Backward model: light at x comes from x-x’

slide by Frédo Dura

After a

CS 89/189: Computational Photography, Fall 2015

51

I Image processing

| will often use the term “convolution” improperly and
fail to flip the kernel

- Called correlation

- Won't matter most of the time because our kernels are
symmetric

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 52

¥ Questions?

CS 89/189: Computational Photography, Fall 2015

53

Movie break

https://youtu.be/HyZflIxwsfl

https://youtu.be/HyZfIlxwsfI

http://graphics.stanford.edu/courses/cs178/applets/
convolution.html

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015

http://graphics.stanford.edu/courses/cs178/applets/convolution.html

I Box filter

' After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 58

I Nice and smooth: Gaussian

' After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 59

I Gaussian formula

http://en.wikipedia.org/wiki/Gaussian_function

2

ae 202

r is the distance to the center

a is a normalization constant

- | usually just normalize my kernels
after the tact

o is the standard deviation and controls
the width of the Gaussian

CS 89/189: Computational Photography, Fall 2015 60

After a slide by Frédo Durand

http://en.wikipedia.org/wiki/Gaussian_function

http://en.wikipedia.org/wiki/Gaussian_function

I Gaussian formula

2
ae 207
1 —
0.8 —
. . e o 0.6 —
Gaussians have infinite support os -
0.2 —
0

- >0 everywhere

but are often truncated

- consider Gaussian to be zero beyond e.g. 30 ~ =

- for computational tractability/efticiency

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 6

http://en.wikipedia.org/wiki/Gaussian_function

Sharpening

 How can we sharpen?

Blurring was easy

Sharpening is not as obvious

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 63

 How can we sharpen?

Blurring was easy

Sharpening is not as obvious

ldea: amplify the stuff not in the blurry image

nd

output = input + k*(input-blur(input))

slide by Frédo Dura

After a

CS 89/189: Computational Photography, Fall 2015

64

Sharpening

blurred
= high pass

E
3
O
3
£ _ sharpened
O - .
- IMmage
2
<

CS 89/189: Computational Photography, Fall 2015 65

I Sharpening: kernel view

Recall

fl=frk(f-fog

f is the input
. f’is a sharpened image
2 ¢ is a blurring kernel

k is a scalar controlling the strength of sharpening

slide by

After a

CS 89/189: Computational Photography, Fall 2015

66

I Sharpening: kernel view

Recall

fl=frk(f-fog

Denote 6 the Dirac kernel (pure impulse)

f=foo

slide by Frédo Durand

After a

CS 89/189: Computational Photography, Fall 2015

6/

I Sharpening: kernel view

Recall

f'=f+k=(f-f®g)
fr=fed+k«(fed-feg)
fr=fo((k+1)5-g)

Sharpening is also a convolution

slide by Frédo Durand

After a

CS 89/189: Computational Photography, Fall 2015

63

ISharpening kernel

Note: many other sharpening kernels exist
(just like we saw multiple blurring kernels)

Amplity the difference between a pixel and its neighbors
fr=rf®{(k+1)s—-g)

nd

slide by Frédo Dura

blue: positive
red: negative

CS 89/189: Computational Photography, Fall 2015

After a

69

I Alternate interpretation
out = input + k*(input-blur(input))
out = (1 + k)*input - k*blur(input)
out = lerp(blur(input), input, 1+k)

- linearly extrapolate from the blurred image “past” the
original input image

CS 89/189: Computational Photography, Fall 2015

/70

?

I Questions

/1

Computational Photography, Fall 2015

CS 89/189

Unsharp mask

I U nSha rp maSk http://www.tech-diy.com/UnsharpMasks.htm

Sharpening is often called "unsharp mask” because
photographers used to sandwich a negative with a
blurry positive film in order to sharpen

egative | |
Negative 'l‘ (1
- — — |
'
aptioesad plusis spacer prodeces i pap
oy conleod amoust of shurpness

-~) 5
O A\ I ~ ot . % R L L
- |f- -.-‘) < . Y ™ ':“
- B 4 1 - 'Y
f S S N ! --.7 §2.4 .
. 3 = 2 _——
(. \". . »
Y >,
‘ - foog y'rﬂ é .ﬁ, - ,‘:'-‘. £/,
N 4 -
: v L
2 A * .
)

. T
‘ .’g;;;ﬁ.“., ;i B2
aan TN L S |

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 /3

http://www.tech-diy.com/UnsharpMasks.htm

' After a slide by Frédo Durand

Flg.4: The two
examples here shaw
a detail of the brick-
work 10 the left of
the church door. The
one on the left was
printed with the
negative alone - the
one on the right was
printed with both
nogative and mask
as a sandwich. The
increase in local
contrast and edge
sharpnuss s minute,
but clearty visible.
Grade 2.5 was used
for the straight print
bt incroased to 4.5
for the sandwiched
Image 10 compon-
sate for the reduced
contrast,

Fig.5: These two
examples show a
dotail of the lower
right hand side of
the church door.
Here the difference
In sharpness |s
clearly visible
between the (left)
negative and (right)
sandwich prints.

Al photos © Rolph W Lombraoht

http://www.tech-diy.com/images/unsharp2.jpg

CS 89/189:

Computational Photography, Fall 2015

~
N

http://www.tech-diy.com/images/unsharp2.jpg

B Unsharp mask

http://en.wikipedia.org/wiki/Unsharp_masking

http://www.largeformatphotography.info/unsharp/

http://www.tech-diy.com/UnsharpMasks.htm

http://www.cambridgeincolour.com/tutorials/unsharp-mask.htm

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 75

http://en.wikipedia.org/wiki/Unsharp_masking
http://www.largeformatphotography.info/unsharp/
http://www.tech-diy.com/UnsharpMasks.htm
http://www.cambridgeincolour.com/tutorials/unsharp-mask.htm

Sharpening++

Problem with excess

Haloes around strong edges

-
-
(O
—
>

O
O

3

‘O
—

L
>

0
Q

O

N
(O
—
Q

K=

<

CS 89/189: Computational Photography, Fall 2015

I Oversharpening

1.7
11.2

8 = 8

R

O

ko
I III‘ ‘\II |||‘TTT|,

-0.25
-0.3

original Sharpened

(differences are accentuated;
constant areas are left untouched).

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 /8

f Bells and whistles

Apply mostly on luminance

Old Clarity in Lightroom/Adobe Camera Raw
- As far as | understand, apply only for mid-tones
- Avoids haloes around black and white points
Only apply at edges

- To avoid the amplitication of noise

Sharpening chrominance as well

After a slide by Frédo Durand

- But with very large blur

CS 89/189: Computational Photography, Fall 2015 /9

} Lightroom demo

CS 89/189: Computational Photography, Fall 2015

80

Oriented filters

I Gradient: finite difference

horizontal gradient [[-1, 1]]
vertical gradient: [[-1], [1]]

slide by Frédo Durand

After a

CS 89/189: Computational Photography, Fall 2015

82

I Gradient: finite difference

horizontal gradient [[-1, 1]]
vertical gradient: [[-1], [1]]

Horizontal gradient Vertical gradient Gradient magnitude
(absolute value) (absolute value)

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 83

I Gradient

e.g. Sobel [http://en.wikipedia.org/wiki/Sobel_operator]

—1 0 1 -1 -2 -1

G, =([—-2 0 2l ®A and Gy, = |0 0 0 | KA
—1 0 1 +1 +2 +1
Horizontal gradient Vertical gradient

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 84

http://en.wikipedia.org/wiki/Sobel_operator

d Convolution cost?

set output 1mage to zero
for all pixels (x,y) 1n output 1image
for all (x’,y’) 1n kernel
out(x,y) += 1nput(x+x’,y+y’)*xkernel(x’,y’)

Cost?
- O(input.width * input.height * kernel.width * kernel.height)

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 86

Separable filters

) Separability

Sometimes the 2D kernel can be decomposed into the
convolution of a horizontal and a vertical filter.

Example: box
- g(x) = const if (-k < x < k), 0 otherwise

- glxy) = g(x) ® gly)

- (separability doesn’t require the two 1D kernels to be the
same, but it's the case here)

o —

CS 89/189: Computational Photography, Fall 2015 88

After a slide by Frédo Durand

d Separable box blur

First blur horizontally using g(x)
Then blur vertically using g(y)

nd

X |

slide by Frédo Dura

| After a

CS 89/189: Computational Photography, Fall 2015

89

} Separable convolution cost?

for all pixels (x,y) 1n output 1image
for all x’ 1n kernel
outX(x,y) += 1nput(x+x’,y)*kernel(x’)
for all pixels (x,y) 1n output 1image
for all y’ 1n kernel
out(x,y) += outX(x,y+ty’)xkernel(y’)

§ Horizontal cost? O(input.width * input.height * kernel.width)
é Vertical cost? O(input.width * input.height * kernel.height)
g Total: O(input.width * input.height * (kernel.height+kernel.width))
é Instead of: O(input.width * input.height * (kernel.height*kernel.width))

CS 89/189: Computational Photography, Fall 2015 90

} Good news

Gaussians are separable too

See Assignment 4!

CS 89/189: Computational Photography, Fall 2015

91

I Box blur: Can we do even better?

Can we get even better asymptotic complexity?

Very large kernel sizes?

CS 89/189: Computational Photography, Fall 2015

92

I Box blur: Can we do even better?

pixel i

Since 2D box is separable, let’s focus
on the 1D case [[D:ﬁ[[D:D

The neighborhoods of pixel i and v

neighborhood(i)

pixel 1+1 are very similar I:I:I:I:I:I:I:I:Ij:l
In fact, they only differ by 2 pixels, so: 'T’

neighborhood(i+1)
out(i+l) = out(1) + (Iin(1+k+1l) - in(1-k+1))/(2k+1)

Asymptotically independent of kernel size, depends only on
Image size!

CS 89/189: Computational Photography, Fall 2015 93

I Box blur cost?

Nalve: O(input.width * input.height * (kernel.height*kernel.width))
Sepa rable: Ol(input.width * input.height * (kernel.height+kernel.width))

Incremental: O(input.width * input.height -—Heermetheight-+ermetwicth))
O(input.width * input.height)

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 94

l Repeated convolution

|

CS 89/189: Computational Photography, Fall 2015

925

l Repeated convolution

i

A4

CS 89/189: Computational Photography, Fall 2015

26

} Repeated convolution

CS 89/189: Computational Photography, Fall 2015

97

l Repeated convolution

CS 89/189: Computational Photography, Fall 2015

98

l Repeated convolution

Convolution of two box kernels yields a tent kernel

_ S
N

CS 89/189: Computational Photography, Fall 2015

99

} Repeated convolution

Yet another convolution with a box yields piecewise quadratic

Ha
N

CS 89/189: Computational Photography, Fall 2015 100

} Repeated convolution

The pattern continues

- Box ftiltering the piecewise quadratic will yield a piecewise
cubic, and so on.

Each time we make the kernel smoother

Taking this to the limit will yield a Gaussian

CS 89/189: Computational Photography, Fall 2015 101

delta 1D box box box ® box box ® box ® box box ® box ® box ® box box ® box ® box ® box ® box

Photoshops' Gaussian

not a true Gaussian

I Gaussian blur as multi-box blur

Can approximate Gaussian blur with several box blurs
Asymptotically independent of kernel size!

Assignment 4 extra credit

- whatis Gaussian's o for 5 box blurs?

CS 89/189: Computational Photography, Fall 2015 103

Nitty-gritty stuff

I Best input to debug convolution

Impulse

slide by Frédo Durand

After a

CS 89/189: Computational Photography, Fall 2015 105

d Centering the kernel

Our images are defined with 0,0 in the upper left corner

Kernels are usually assumed to have origin at the center

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 106

I Normalization

As a rule of thumb, you want kernels to be normalized
when you want the output to preserve the overall
brightness of the image.

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 107

Denoising from a
single image

I Denoising from 1 image

We can’t take average over multiple
Images

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 109

I Denoising from 1 image

We can't take average over multiple | SIOEMIEEL
images S

ldea 1: take a spatial average

- Most pixels have roughly the same color
as their neighbor

- Noise looks high frequency => do a low
DASS

Here: Gaussian blur

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 110

} Gaussian blur

After Gaussian blur,

' After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 111

} Gaussian blur

Noise is mostly gone After Gaussian blur,

But image is blurry .
- duh!

' After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 112

Bilateral filtering

} Gaussian blur

Noise is mostly gone After Gaussian blur,

But image is blurry
- duh!

Problem: not all neighbors have the
same color

Bilateral filter idea: only consider
neighbors that have similar values

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 114

I Bilateral filter

Tomasi and Manduci 1998 http://www.cse.ucsc.edu/~manduchi/Papers/
ICCV98.pdf

Developed for denoising

Related to
- SUSAN filter [Smith and Brady 95] http://citeseer.ist.psu.edu/smith?5susan.html

- Digital-TV [Chan, Osher and Chen 2001] http://citeseer.ist.psu.edu/
chanO1digital.html

- sigma filter http://www.geogr.ku.dk/CHIPS/Manual/t187.htm

Full survey: http://people.csail.mit.edu/sparis/publi/2009/fntcgv/
Paris_09_Bilateral_filtering.pdf

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 115

http://www.geogr.ku.dk/CHIPS/Manual/f187.htm
http://citeseer.ist.psu.edu/chan01digital.html
http://people.csail.mit.edu/sparis/
http://www.cis.rit.edu/fairchild/PDFs/PRO22.pdf
http://people.csail.mit.edu/sparis/publi/2009/fntcgv/Paris_09_Bilateral_filtering.pdf

) Bilateral filtering

Images are often piecewise constant with noise

added

- Then nearby pixels are a different noisy
measurement of the same value

Simply blurring doesn’t work

- also blurs edges

We should blur only within each constant-
colored region =

- not across edges between regions

After a slide by Marc Levoy

CS 89/189: Computational Photography, Fall 2015 [Tomasi and Manduchi 1998] 116

) Bilateral filtering

It pixels are similar in intensity, they are probably f===
from the same region of the scene

Perform a “convolution” where the weight
applied to nearby pixels falls off with:

- increasing (x,y) distance from the pixel being

5 blurred

= - increasing intensity difference from the pixel

s being blurred 00 o
s i.e.blurin domain and range dimensions!

<

CS 89/189: Computational Photography, Fall 2015 [Tomasi and Manduchi 1998] 117

) Start with Gaussian filtering

Here, input is a step function + noise

St e

S

After a slide by Frédo Durand

output input
118

I Gaussian filter as weighted average

Weight of £ depends on distance to x

After a slide by Frédo Durand

output input
119

§ The problem of edges

Here, I(£) "pollutes” our estimate J(x)
It is too different

After a slide by Frédo Durand

output < input
120

I Principle of Bilateral filtering

Penalty g on the intensity difference

J(x) = E f(x,8) gU&-1x) I(E)

k(x)

After a slide by Frédo Durand

output <~ . 1nput

121

[Tomasi and Manduchi 1998]

) Bilateral filtering

Spatial Gaussian f

J(x) = k(lx) Y f(x,8)eU&-1x) IE)

"""""
o

After a slide by Frédo Durand

output < input

122

[Tomasi and Manduchi 1998]

) Bilateral filtering

Spatial Gaussian f
Gaussian g on the intensity difference

J(x) = g 2 f 5 gUE) = 1)) (&)

After a slide by Frédo Durand

123

124

[Tomasi and Manduchi 1998]

Iy

..'—a-o'.oaa_a—.p-.“f.’u'o.‘a—
ﬁf.....-—..u%
WY of-v-a
c'cv

S

D f(xE) eUE-1x) IE)

ion factor

Y F(x.E) gU(E) - I(x))

T
k(x)

1Za
output

(

pueinq opai4 Ag apl|s e Joyy

I Normal
)

I Bilateral filtering is non-linear ..

The weights are different for each output pixel

1
J(x) = f(x,g) gUE)-1(x)) 1

24535
LT
A ’:';“‘\“\

A%
e
A

RS
IR
":’:\"\‘ (L

PRI

-
1A
ALY

After a slide by Frédo Durand

125

I Bilateral filter

- Vi

é v »
" L “. L]
_ & r

After a slide by Frédo Durand

Noisy input After bilateral filter

After a slide by Frédo Durand

Noisy input After bilateral filter

chroma
noise

I Chroma noise

Our visual system has different spatial frequency
response to chrominance vs. luminance

Pertorm Bilateral filtering in YUV
Bigger spatial filterin U & V

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 128

B Normal RGB Bilateral filt
Yo . » |
-.".‘ {. .}“
- 1 l ;
' o o -
S ~ R
AR T s

nd

slide by Frédo Dura

After a

Noisy input After bilateral filter

After a slide by Frédo Durand

Noisy input After YUV bilateral filter

-
-
(O
—
>

O
O

3

‘O
—

L
>

0
Q

O

N
(O
—
Q

K=

<

Noisy input

Bilateral filter

YUV bilateral filter

) Bilateral filtering

Also used to remove skin blemishes in portraits

- Surtace blur in photoshop
(although box spatial kernel instead of Gaussian)

Usetul for lots of other things
- More in tfuture lectures

- In particular, tone mapping for contrast reduction and high-
dynamic-range imaging

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 132

¥ Photoshop surface blur

Note the radius and threshold controls

- same as Odomain @Nd Orange

|m| Add an adjustment

Radius: lS ‘ pixels

Threshold: | 15 levels

‘w
: Background
-y

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015 133

Assignment 4

IAssignment 4

Convolution
Separable
Unsharp mask
Gradient
Denoising

YUV denoising

CS 89/189: Computational Photography, Fall 2015 135

Other approaches
to denoising

I Denoising

Bayesian coring in the wavelet domain
- Simoncelli & Adelson

Big heuristics

- BM3D

NL means

- Buades et al.

- Bilateral in the space of patches

Statistics of natural images

CS 89/189: Computational Photography, Fall 2015 137

References

http://books.google.com/books?id=0OYFYt5C4N94C&pg=PA405&dg=binomial+film+grain+noise#v=onepage&g=binomial

%20film%20grain%20noise&f=false

nttp://www.picturecode.com/noise.htm

nttp://www.cambridgeincolour.com/tutorials/image-noise.htm

nttp://www.cambridgeincolour.com/tutorials/image-noise-2.htm
nttp://www.clarkvision.com/imagedetail/does.pixel.size.matter2/

nttp://www.clarkvision.com/articles/digital.sensor.performance.summary/

nttp://en.wikipedia.org/wiki/lmage_noise

nttp://www.instructables.com/id/Avoiding-Camera-Noise-Signatures/

http://www.photoxels.com/tutorial_noise.html

nttp://www.imatest.com/docs/noise/

nttp://people.csail.mit.edu/hasinoff/hdrnoise/hasinoff-sensornoise-tutorial-iccp10.pptx

nttp://theory.uchicago.edu/~ejm/pix/20d/tests/noise/

nttp://www.cambridgeincolour.com/tutorials/image-averaging-noise.htm

nttp://www.petapixel.com/2012/02/21/a-simple-explanation-of-how-iso-works-in-digital-photography/

CS 89/189: Computational Photography, Fall 2015

138

http://www.cambridgeincolour.com/tutorials/image-noise.htm
http://www.cambridgeincolour.com/tutorials/image-noise-2.htm
http://www.clarkvision.com/imagedetail/does.pixel.size.matter2/
http://www.clarkvision.com/articles/digital.sensor.performance.summary/
http://books.google.com/books?id=OYFYt5C4N94C&pg=PA405&dq=binomial+film+grain+noise#v=onepage&q=binomial%20film%20grain%20noise&f=false
http://en.wikipedia.org/wiki/Image_noise
http://www.picturecode.com/noise.htm
http://www.instructables.com/id/Avoiding-Camera-Noise-Signatures/
http://www.photoxels.com/tutorial_noise.html
http://people.csail.mit.edu/hasinoff/hdrnoise/hasinoff-sensornoise-tutorial-iccp10.pptx
http://theory.uchicago.edu/~ejm/pix/20d/tests/noise/
http://www.imatest.com/docs/noise/
http://www.cybercom.net/~dcoffin/dcraw/

I Slide credits

Frédo Durand

CS 89/189: Computational Photography, Fall 2015 139

