CS 89.15/189.5, Fall 2015

COMPUTATIONAL ASPECTS OF DIGITAL PHOTOGRAPHY

Filtering & convolution

Wojciech Jarosz wojciech.k.jarosz@dartmouth.edu

Your Spanish castle illusions

Timelapse photography in the news

Today's agenda

Linear filtering & convolution

- blurring
- sharpening

Complexity analysis

- Optimizations

Denoising from a single image

- Bilateral filtering

mus sharpen

Image processing motivation

Sharpen images

Downsample images

Fake depth of field

Smooth out noise, skin blemishes

• • •

We must understand convolution!

Sharpening

Downsampling

Yikes! Herringbone patterns

Downsampling

We "randomly" pick a color in the high frequency pattern

Downsampling

Solution: blur the pattern to get average color over new pixels

Fake tilt shift

http://www.tiltshiftphotography.net/photoshop-tutorial.php

Blur in optics

Diffraction

Lens aberrations

Object movement

Camera shake

Can we remove blur computationally?

- invert the blur equation
- deconvolution

Lens diffraction

http://luminous-landscape.com/tutorials/understanding-series/udiffraction.shtml

(heavily cropped)

See also

http://www.cambridgeincolour.com/tutorials/diffraction-photography.htm

Blur example: spherical aberration

Pixel value: weighted average of local color

Remove optical artifacts

Calibrate lenses and remove blur

e.g. DXO

Removing camera shake

Original

Naïve Sharpening

Fergus et al's algorithm

Convolution 101

Blur as convolution

Replace each pixel by a linear combination of its neighbors.

- only depends on relative position of neighbors

The prescription for the linear combination is called the "convolution kernel".

local image data				
10	5	3		
4	5	1		
1	1	7		

Linear shift-invariant filtering

Replace each pixel by a linear combination of its neighbors.

- only depends on relative position of neighbors

The prescription for the linear combination is called the "convolution kernel".

- same kernel for all pixels

local image data				
	10	5	3	
	4	5	1	
	1	1	7	

Example of linear NON-shift invariant transformation?

e.g. neutral-density graduated filter (darken high y):

- J(x,y) = I(x,y)*(1-y/ymax)

Formally, what does linear mean?

- For two scalars a & b and two inputs x & y: F(ax+by) = aF(x)+bF(y)

What does shift invariant mean?

- For a translation T: F(T(x)) = T(F(x))
- If I blur a translated image, I get a translated blurred image

Questions?

Convolution algorithm

```
set output image to zero
for all pixels (x,y) in output image
  for all (x',y') in kernel
   out(x,y) += input(x+x',y+y')*kernel(x',y')
```

(this assumes the kernel coordinates are centered)

Questions?

```
for all pixels (x,y) in
  for all (x',y')
  out(x,y) += input(x+x',y+y')*kernel(x',y')
```

(this assumes the kernel coordinates are centered)

ter a slide by Frédo Durand

Convolution (warm-up slide)

Convolution (warm-up slide)

Convolution (warm-up slide)

original

f

5

filtered (no change)

$$f = f \otimes \delta$$

Convolution

original

Convolution

original

Convolution

original

Blurring

original

blurred (applied in both dimensions)

Blur examples

Blur examples

Questions?

Formally

More formally: Convolution

$$(I \otimes g)(x) = \int_{x'} I(x') g(x - x') dx'$$

8

Questions?

$$(I \otimes g)(x) = \int_{x'} I(x') g(x - x') dx'$$

What's up with the flipping?

Convolution & probability

Convolution was first used by Laplace to study the probability of the sum of two random variables

fter a slide by Frédo Duran

Random variables

How can X+Y=0?

$$- X=-1, Y=1$$

$$- X=0, Y=0$$

$$- X=1, Y=-1$$

Probability?

-
$$P(X=-1)*P(Y=1)$$

$$- P(X=0)*P(Y=0)$$

-
$$P(X=1)*P(Y=-1)$$

fter a slide by Frédo Durar

Sum of random variables

$$P(X + Y = k) = \sum_{k'} P(X = k') P(Y = k - k')$$

How can X+Y=0?

$$- X=-1, Y=1$$

$$- X=0, Y=0$$

$$- X=1, Y=-1$$

Probability?

$$- P(X=-1)*P(Y=1)$$

$$- P(X=0)*P(Y=0)$$

-
$$P(X=1)*P(Y=-1)$$

ter a slide by Frédo Duran

Questions?

$$P(X + Y = k) = \sum_{k'} P(X = k') P(Y = k - k')$$

How can X+Y=0?

$$- X = -1, Y = 1$$

$$- X=0, Y=0$$

$$- X=1, Y=-1$$

Probability?

$$- P(X=-1)*P(Y=1)$$

$$- P(X=0)*P(Y=0)$$

$$- P(X=1)*P(Y=-1)$$

Compare

$$P(X + Y = k) = \sum_{k'} P(X = k') P(Y = k - k')$$
$$(I \otimes g)(x) = \int_{x'} I(x') g(x - x') dx'$$

Forward model: light goes from x to x+x'
Backward model: light at x comes from x-x'

lmage processing

I will often use the term "convolution" improperly and fail to flip the kernel

- Called correlation
- Won't matter most of the time because our kernels are symmetric

Questions?

Movie break

Blur zoo

http://graphics.stanford.edu/courses/cs178/applets/convolution.html

Box filter

Nice and smooth: Gaussian

Gaussian formula

http://en.wikipedia.org/wiki/Gaussian_function

$$ae^{-\frac{r^2}{2\sigma^2}}$$

r is the distance to the center a is a normalization constant

- I usually just normalize my kernels after the fact

 σ is the standard deviation and controls the width of the Gaussian

Gaussian formula

http://en.wikipedia.org/wiki/Gaussian_function

$$ae^{-\frac{r^2}{2\sigma^2}}$$

- >0 everywhere

- for computational tractability/efficiency

Sharpening

How can we sharpen?

Blurring was easy

Sharpening is not as obvious

How can we sharpen?

Blurring was easy

Sharpening is not as obvious

Idea: amplify the stuff not in the blurry image

output = input + k*(input-blur(input))

Sharpening

Sharpening: kernel view

Recall

$$f' = f + k * (f - f \otimes g)$$

f' is a sharpened image g is a blurring f'

k is a scalar controlling the strength of sharpening

Sharpening: kernel view

Recall

$$f' = f + k * (f - f \otimes g)$$

Denote δ the Dirac kernel (pure impulse)

$$f = f \otimes \delta$$

Sharpening: kernel view

Recall

$$f' = f + k * (f - f \otimes g)$$

$$f' = f \otimes \delta + k * (f \otimes \delta - f \otimes g)$$

$$f' = f \otimes ((k+1)\delta - g)$$

Sharpening is also a convolution

Sharpening kernel

Note: many other sharpening kernels exist (just like we saw multiple blurring kernels)

Amplify the difference between a pixel and its neighbors

$$f' = f \otimes ((k+1)\delta - g)$$

blue: positive red: negative

Alternate interpretation

```
out = input + k*(input-blur(input))
out = (1 + k)*input - k*blur(input)
out = lerp(blur(input), input, 1+k)
```

- linearly extrapolate from the blurred image "past" the original input image

Questions?

Unsharp mask

Sharpening is often called "unsharp mask" because photographers used to sandwich a negative with a blurry positive film in order to sharpen

Fig.4: The two

Fig.5: These two
examples show a
detail of the lower
right hand side of
the church door.
Here the difference
in sharpness is
clearly visible
between the (left)
negative and (right)
sandwich prints.

Unsharp mask

http://en.wikipedia.org/wiki/Unsharp_masking

http://www.largeformatphotography.info/unsharp/

http://www.tech-diy.com/UnsharpMasks.htm

http://www.cambridgeincolour.com/tutorials/unsharp-mask.htm

Sharpening++

Problem with excess

Haloes around strong edges

Oversharpening

Bells and whistles

Apply mostly on luminance

Old Clarity in Lightroom/Adobe Camera Raw

- As far as I understand, apply only for mid-tones
- Avoids haloes around black and white points

Only apply at edges

- To avoid the amplification of noise

Sharpening chrominance as well

- But with very large blur

Lightroom demo

Oriented filters

Gradient: finite difference

horizontal gradient [[-1, 1]]

vertical gradient: [[-1], [1]]

er a slide by Frédo Duranc

Gradient: finite difference

horizontal gradient [[-1, 1]] vertical gradient: [[-1], [1]]

Horizontal gradient (absolute value)

Vertical gradient (absolute value)

Gradient magnitude

\fter a slide by Frédo Durar

Gradient

e.g. Sobel [http://en.wikipedia.org/wiki/Sobel_operator]

$$\mathbf{G}_{x} = \begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix} \otimes \mathbf{A} \quad \text{and} \quad \mathbf{G}_{y} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ +1 & +2 & +1 \end{bmatrix} \otimes \mathbf{A}$$

Horizontal gradient

Vertical gradient

Convolution cost?

```
set output image to zero
for all pixels (x,y) in output image
  for all (x',y') in kernel
   out(x,y) += input(x+x',y+y')*kernel(x',y')
```

Cost?

- O(input.width * input.height * kernel.width * kernel.height)

Separable filters

Separability

Sometimes the 2D kernel can be decomposed into the convolution of a horizontal and a vertical filter.

Example: box

- $g(x) = const if (-k \le x \le k), 0 otherwise$
- $-g(x,y)=g(x)\otimes g(y)$
- (separability doesn't require the two 1D kernels to be the same, but it's the case here)

Separable box blur

First blur horizontally using g(x)
Then blur vertically using g(y)

Separable convolution cost?

```
for all pixels (x,y) in output image
    for all x' in kernel
       outX(x,y) += input(x+x',y)*kernel(x')
for all pixels (x,y) in output image
   for all y' in kernel
       out(x,y) += outX(x,y+y')*kernel(y')
Horizontal cost? O(input.width * input.height * kernel.width)
Vertical cost?
                   O(input.width * input.height * kernel.height)
Total:
                   O(input.width * input.height * (kernel.height+kernel.width))
Instead of:
                   O(input.width * input.height * (kernel.height*kernel.width))
```

Good news

Gaussians are separable too

See Assignment 4!

Box blur: Can we do even better?

Can we get even better asymptotic complexity?

Very large kernel sizes?

Box blur: Can we do even better?

Since 2D box is separable, let's focus on the 1D case

The neighborhoods of pixel i and pixel i+1 are very similar

In fact, they only differ by 2 pixels, so:

$$neighborhood(i+1)$$

$$out(i+1) = out(i) + (in(i+k+1) - in(i-k+1))/(2k+1)$$

Asymptotically independent of kernel size, depends only on image size!

Box blur cost?

Naïve: O(input.width * input.height * (kernel.height*kernel.width))

Separable: O(input.width * input.height * (kernel.height+kernel.width))

Incremental: O(input.width * input.height + (kernel.height + kernel.width))

O(input.width * input.height)

Convolution of two box kernels yields a tent kernel

Yet another convolution with a box yields piecewise quadratic

The pattern continues

- Box filtering the piecewise quadratic will yield a piecewise cubic, and so on.

Each time we make the kernel smoother

Taking this to the limit will yield a Gaussian

Photoshops' Gaussian not a true Gaussian

Gaussian blur as multi-box blur

Can approximate Gaussian blur with several box blurs

Asymptotically independent of kernel size!

Assignment 4 extra credit

- what is Gaussian's σ for 5 box blurs?

Nitty-gritty stuff

Best input to debug convolution

Impulse

Centering the kernel

Our images are defined with 0,0 in the upper left corner Kernels are usually assumed to have origin at the center

Normalization

As a rule of thumb, you want kernels to be normalized when you want the output to preserve the overall brightness of the image.

Denoising from a single image

Denoising from 1 image

We can't take average over multiple images

Denoising from 1 image

We can't take average over multiple images

Idea 1: take a spatial average

- Most pixels have roughly the same color as their neighbor
- Noise looks high frequency => do a low pass

Here: Gaussian blur

Gaussian blur

Gaussian blur

Noise is mostly gone But image is blurry

- duh!

Bilateral filtering

Gaussian blur

Noise is mostly gone

But image is blurry

- duh!

Problem: not all neighbors have the same color

Bilateral filter idea: only consider neighbors that have similar values

Bilateral filter

Tomasi and Manduci 1998 http://www.cse.ucsc.edu/~manduchi/Papers/ICCV98.pdf

Developed for denoising

Related to

- SUSAN filter [Smith and Brady 95] http://citeseer.ist.psu.edu/smith95susan.html
- Digital-TV [Chan, Osher and Chen 2001] http://citeseer.ist.psu.edu/chan01digital.html
- sigma filter http://www.geogr.ku.dk/CHIPS/Manual/f187.htm

Full survey: http://people.csail.mit.edu/sparis/publi/2009/fntcgv/Paris_09_Bilateral_filtering.pdf

After a slide by Marc Levoy

Bilateral filtering

Images are often piecewise constant with noise added

- Then nearby pixels are a different noisy measurement of the same value

Simply blurring doesn't work

- also blurs edges

We should blur only within each constantcolored region

- not across edges between regions

After a slide by Marc Levoy

Bilateral filtering

If pixels are similar in intensity, they are probably from the same region of the scene

Perform a "convolution" where the weight applied to nearby pixels falls off with:

- increasing (x,y) distance from the pixel being blurred
- increasing intensity difference from the pixel being blurred
- i.e. blur in domain and range dimensions!

Start with Gaussian filtering

Here, input is a step function + noise

Gaussian filter as weighted average

Weight of ξ depends on distance to x

The problem of edges

Here, $I(\xi)$ "pollutes" our estimate J(x) It is too different

$$J(x) = \sum_{\xi} f(x,\xi) \qquad I(\xi)$$

Principle of Bilateral filtering

Penalty g on the intensity difference

$$J(x) = \frac{1}{k(x)} \sum_{\xi} f(x,\xi) \quad g(I(\xi) - I(x)) \quad I(\xi)$$

input

Bilateral filtering

Spatial Gaussian f

Bilateral filtering

Spatial Gaussian f

Gaussian g on the intensity difference

Normalization factor

$$k(x) = \sum_{\xi} f(x,\xi) g(I(\xi) - I(x))$$

Bilateral filtering is non-linear

The weights are different for each output pixel

Bilateral filter

Noisy input

After bilateral filter

Can we do better?

Noisy input

After bilateral filter

chroma noise

Chroma noise

Our visual system has different spatial frequency response to chrominance vs. luminance

Perform Bilateral filtering in YUV

Bigger spatial filter in U & V

Normal RGB Bilateral filter

Noisy input

After bilateral filter

YUV Bilateral filter

Noisy input

After YUV bilateral filter

Comparison

131

Bilateral filtering

Also used to remove skin blemishes in portraits

- Surface blur in photoshop (although box spatial kernel instead of Gaussian)

Useful for lots of other things

- More in future lectures
- In particular, tone mapping for contrast reduction and high-dynamic-range imaging

Photoshop surface blur

Note the radius and threshold controls

- same as σ_{domain} and σ_{range}

Assignment 4

Assignment 4

Convolution

Separable

Unsharp mask

Gradient

Denoising

YUV denoising

Other approaches to denoising

Denoising

Bayesian coring in the wavelet domain

- Simoncelli & Adelson

Big heuristics

- BM3D

NL means

- Buades et al.
- Bilateral in the space of patches

Statistics of natural images

References

http://www.cambridgeincolour.com/tutorials/image-noise.htm

http://www.cambridgeincolour.com/tutorials/image-noise-2.htm

http://www.clarkvision.com/imagedetail/does.pixel.size.matter2/

http://www.clarkvision.com/articles/digital.sensor.performance.summary/

http://books.google.com/books?id=OYFYt5C4N94C&pg=PA405&dq=binomial+film+grain+noise#v=onepage&q=binomial%20film%20grain%20noise&f=false

http://en.wikipedia.org/wiki/Image_noise

http://www.picturecode.com/noise.htm

http://www.instructables.com/id/Avoiding-Camera-Noise-Signatures/

http://www.photoxels.com/tutorial_noise.html

http://people.csail.mit.edu/hasinoff/hdrnoise/hasinoff-sensornoise-tutorial-iccp10.pptx

http://theory.uchicago.edu/~ejm/pix/20d/tests/noise/

http://www.imatest.com/docs/noise/

http://www.cambridgeincolour.com/tutorials/image-averaging-noise.htm

http://www.petapixel.com/2012/02/21/a-simple-explanation-of-how-iso-works-in-digital-photography/

Slide credits

Frédo Durand